ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.123
Committed: Sat Dec 24 04:30:54 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.122: +3 -1 lines
Log Message:
coding style

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Comparator;
15 import java.util.Iterator;
16 import java.util.NoSuchElementException;
17 import java.util.PriorityQueue;
18 import java.util.Queue;
19 import java.util.SortedSet;
20 import java.util.Spliterator;
21 import java.util.concurrent.locks.Condition;
22 import java.util.concurrent.locks.ReentrantLock;
23 import java.util.function.Consumer;
24
25 /**
26 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
27 * the same ordering rules as class {@link PriorityQueue} and supplies
28 * blocking retrieval operations. While this queue is logically
29 * unbounded, attempted additions may fail due to resource exhaustion
30 * (causing {@code OutOfMemoryError}). This class does not permit
31 * {@code null} elements. A priority queue relying on {@linkplain
32 * Comparable natural ordering} also does not permit insertion of
33 * non-comparable objects (doing so results in
34 * {@code ClassCastException}).
35 *
36 * <p>This class and its iterator implement all of the
37 * <em>optional</em> methods of the {@link Collection} and {@link
38 * Iterator} interfaces. The Iterator provided in method {@link
39 * #iterator()} and the Spliterator provided in method {@link #spliterator()}
40 * are <em>not</em> guaranteed to traverse the elements of
41 * the PriorityBlockingQueue in any particular order. If you need
42 * ordered traversal, consider using
43 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo}
44 * can be used to <em>remove</em> some or all elements in priority
45 * order and place them in another collection.
46 *
47 * <p>Operations on this class make no guarantees about the ordering
48 * of elements with equal priority. If you need to enforce an
49 * ordering, you can define custom classes or comparators that use a
50 * secondary key to break ties in primary priority values. For
51 * example, here is a class that applies first-in-first-out
52 * tie-breaking to comparable elements. To use it, you would insert a
53 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
54 *
55 * <pre> {@code
56 * class FIFOEntry<E extends Comparable<? super E>>
57 * implements Comparable<FIFOEntry<E>> {
58 * static final AtomicLong seq = new AtomicLong(0);
59 * final long seqNum;
60 * final E entry;
61 * public FIFOEntry(E entry) {
62 * seqNum = seq.getAndIncrement();
63 * this.entry = entry;
64 * }
65 * public E getEntry() { return entry; }
66 * public int compareTo(FIFOEntry<E> other) {
67 * int res = entry.compareTo(other.entry);
68 * if (res == 0 && other.entry != this.entry)
69 * res = (seqNum < other.seqNum ? -1 : 1);
70 * return res;
71 * }
72 * }}</pre>
73 *
74 * <p>This class is a member of the
75 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
76 * Java Collections Framework</a>.
77 *
78 * @since 1.5
79 * @author Doug Lea
80 * @param <E> the type of elements held in this queue
81 */
82 @SuppressWarnings("unchecked")
83 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
84 implements BlockingQueue<E>, java.io.Serializable {
85 private static final long serialVersionUID = 5595510919245408276L;
86
87 /*
88 * The implementation uses an array-based binary heap, with public
89 * operations protected with a single lock. However, allocation
90 * during resizing uses a simple spinlock (used only while not
91 * holding main lock) in order to allow takes to operate
92 * concurrently with allocation. This avoids repeated
93 * postponement of waiting consumers and consequent element
94 * build-up. The need to back away from lock during allocation
95 * makes it impossible to simply wrap delegated
96 * java.util.PriorityQueue operations within a lock, as was done
97 * in a previous version of this class. To maintain
98 * interoperability, a plain PriorityQueue is still used during
99 * serialization, which maintains compatibility at the expense of
100 * transiently doubling overhead.
101 */
102
103 /**
104 * Default array capacity.
105 */
106 private static final int DEFAULT_INITIAL_CAPACITY = 11;
107
108 /**
109 * The maximum size of array to allocate.
110 * Some VMs reserve some header words in an array.
111 * Attempts to allocate larger arrays may result in
112 * OutOfMemoryError: Requested array size exceeds VM limit
113 */
114 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
115
116 /**
117 * Priority queue represented as a balanced binary heap: the two
118 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
119 * priority queue is ordered by comparator, or by the elements'
120 * natural ordering, if comparator is null: For each node n in the
121 * heap and each descendant d of n, n <= d. The element with the
122 * lowest value is in queue[0], assuming the queue is nonempty.
123 */
124 private transient Object[] queue;
125
126 /**
127 * The number of elements in the priority queue.
128 */
129 private transient int size;
130
131 /**
132 * The comparator, or null if priority queue uses elements'
133 * natural ordering.
134 */
135 private transient Comparator<? super E> comparator;
136
137 /**
138 * Lock used for all public operations.
139 */
140 private final ReentrantLock lock;
141
142 /**
143 * Condition for blocking when empty.
144 */
145 private final Condition notEmpty;
146
147 /**
148 * Spinlock for allocation, acquired via CAS.
149 */
150 private transient volatile int allocationSpinLock;
151
152 /**
153 * A plain PriorityQueue used only for serialization,
154 * to maintain compatibility with previous versions
155 * of this class. Non-null only during serialization/deserialization.
156 */
157 private PriorityQueue<E> q;
158
159 /**
160 * Creates a {@code PriorityBlockingQueue} with the default
161 * initial capacity (11) that orders its elements according to
162 * their {@linkplain Comparable natural ordering}.
163 */
164 public PriorityBlockingQueue() {
165 this(DEFAULT_INITIAL_CAPACITY, null);
166 }
167
168 /**
169 * Creates a {@code PriorityBlockingQueue} with the specified
170 * initial capacity that orders its elements according to their
171 * {@linkplain Comparable natural ordering}.
172 *
173 * @param initialCapacity the initial capacity for this priority queue
174 * @throws IllegalArgumentException if {@code initialCapacity} is less
175 * than 1
176 */
177 public PriorityBlockingQueue(int initialCapacity) {
178 this(initialCapacity, null);
179 }
180
181 /**
182 * Creates a {@code PriorityBlockingQueue} with the specified initial
183 * capacity that orders its elements according to the specified
184 * comparator.
185 *
186 * @param initialCapacity the initial capacity for this priority queue
187 * @param comparator the comparator that will be used to order this
188 * priority queue. If {@code null}, the {@linkplain Comparable
189 * natural ordering} of the elements will be used.
190 * @throws IllegalArgumentException if {@code initialCapacity} is less
191 * than 1
192 */
193 public PriorityBlockingQueue(int initialCapacity,
194 Comparator<? super E> comparator) {
195 if (initialCapacity < 1)
196 throw new IllegalArgumentException();
197 this.lock = new ReentrantLock();
198 this.notEmpty = lock.newCondition();
199 this.comparator = comparator;
200 this.queue = new Object[initialCapacity];
201 }
202
203 /**
204 * Creates a {@code PriorityBlockingQueue} containing the elements
205 * in the specified collection. If the specified collection is a
206 * {@link SortedSet} or a {@link PriorityQueue}, this
207 * priority queue will be ordered according to the same ordering.
208 * Otherwise, this priority queue will be ordered according to the
209 * {@linkplain Comparable natural ordering} of its elements.
210 *
211 * @param c the collection whose elements are to be placed
212 * into this priority queue
213 * @throws ClassCastException if elements of the specified collection
214 * cannot be compared to one another according to the priority
215 * queue's ordering
216 * @throws NullPointerException if the specified collection or any
217 * of its elements are null
218 */
219 public PriorityBlockingQueue(Collection<? extends E> c) {
220 this.lock = new ReentrantLock();
221 this.notEmpty = lock.newCondition();
222 boolean heapify = true; // true if not known to be in heap order
223 boolean screen = true; // true if must screen for nulls
224 if (c instanceof SortedSet<?>) {
225 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
226 this.comparator = (Comparator<? super E>) ss.comparator();
227 heapify = false;
228 }
229 else if (c instanceof PriorityBlockingQueue<?>) {
230 PriorityBlockingQueue<? extends E> pq =
231 (PriorityBlockingQueue<? extends E>) c;
232 this.comparator = (Comparator<? super E>) pq.comparator();
233 screen = false;
234 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
235 heapify = false;
236 }
237 Object[] a = c.toArray();
238 int n = a.length;
239 // If c.toArray incorrectly doesn't return Object[], copy it.
240 if (a.getClass() != Object[].class)
241 a = Arrays.copyOf(a, n, Object[].class);
242 if (screen && (n == 1 || this.comparator != null)) {
243 for (int i = 0; i < n; ++i)
244 if (a[i] == null)
245 throw new NullPointerException();
246 }
247 this.queue = a;
248 this.size = n;
249 if (heapify)
250 heapify();
251 }
252
253 /**
254 * Tries to grow array to accommodate at least one more element
255 * (but normally expand by about 50%), giving up (allowing retry)
256 * on contention (which we expect to be rare). Call only while
257 * holding lock.
258 *
259 * @param array the heap array
260 * @param oldCap the length of the array
261 */
262 private void tryGrow(Object[] array, int oldCap) {
263 lock.unlock(); // must release and then re-acquire main lock
264 Object[] newArray = null;
265 if (allocationSpinLock == 0 &&
266 ALLOCATIONSPINLOCK.compareAndSet(this, 0, 1)) {
267 try {
268 int newCap = oldCap + ((oldCap < 64) ?
269 (oldCap + 2) : // grow faster if small
270 (oldCap >> 1));
271 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
272 int minCap = oldCap + 1;
273 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
274 throw new OutOfMemoryError();
275 newCap = MAX_ARRAY_SIZE;
276 }
277 if (newCap > oldCap && queue == array)
278 newArray = new Object[newCap];
279 } finally {
280 allocationSpinLock = 0;
281 }
282 }
283 if (newArray == null) // back off if another thread is allocating
284 Thread.yield();
285 lock.lock();
286 if (newArray != null && queue == array) {
287 queue = newArray;
288 System.arraycopy(array, 0, newArray, 0, oldCap);
289 }
290 }
291
292 /**
293 * Mechanics for poll(). Call only while holding lock.
294 */
295 private E dequeue() {
296 int n = size - 1;
297 if (n < 0)
298 return null;
299 else {
300 Object[] array = queue;
301 E result = (E) array[0];
302 E x = (E) array[n];
303 array[n] = null;
304 Comparator<? super E> cmp = comparator;
305 if (cmp == null)
306 siftDownComparable(0, x, array, n);
307 else
308 siftDownUsingComparator(0, x, array, n, cmp);
309 size = n;
310 return result;
311 }
312 }
313
314 /**
315 * Inserts item x at position k, maintaining heap invariant by
316 * promoting x up the tree until it is greater than or equal to
317 * its parent, or is the root.
318 *
319 * To simplify and speed up coercions and comparisons, the
320 * Comparable and Comparator versions are separated into different
321 * methods that are otherwise identical. (Similarly for siftDown.)
322 *
323 * @param k the position to fill
324 * @param x the item to insert
325 * @param array the heap array
326 */
327 private static <T> void siftUpComparable(int k, T x, Object[] array) {
328 Comparable<? super T> key = (Comparable<? super T>) x;
329 while (k > 0) {
330 int parent = (k - 1) >>> 1;
331 Object e = array[parent];
332 if (key.compareTo((T) e) >= 0)
333 break;
334 array[k] = e;
335 k = parent;
336 }
337 array[k] = key;
338 }
339
340 private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
341 Comparator<? super T> cmp) {
342 while (k > 0) {
343 int parent = (k - 1) >>> 1;
344 Object e = array[parent];
345 if (cmp.compare(x, (T) e) >= 0)
346 break;
347 array[k] = e;
348 k = parent;
349 }
350 array[k] = x;
351 }
352
353 /**
354 * Inserts item x at position k, maintaining heap invariant by
355 * demoting x down the tree repeatedly until it is less than or
356 * equal to its children or is a leaf.
357 *
358 * @param k the position to fill
359 * @param x the item to insert
360 * @param array the heap array
361 * @param n heap size
362 */
363 private static <T> void siftDownComparable(int k, T x, Object[] array,
364 int n) {
365 if (n > 0) {
366 Comparable<? super T> key = (Comparable<? super T>)x;
367 int half = n >>> 1; // loop while a non-leaf
368 while (k < half) {
369 int child = (k << 1) + 1; // assume left child is least
370 Object c = array[child];
371 int right = child + 1;
372 if (right < n &&
373 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
374 c = array[child = right];
375 if (key.compareTo((T) c) <= 0)
376 break;
377 array[k] = c;
378 k = child;
379 }
380 array[k] = key;
381 }
382 }
383
384 private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
385 int n,
386 Comparator<? super T> cmp) {
387 if (n > 0) {
388 int half = n >>> 1;
389 while (k < half) {
390 int child = (k << 1) + 1;
391 Object c = array[child];
392 int right = child + 1;
393 if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
394 c = array[child = right];
395 if (cmp.compare(x, (T) c) <= 0)
396 break;
397 array[k] = c;
398 k = child;
399 }
400 array[k] = x;
401 }
402 }
403
404 /**
405 * Establishes the heap invariant (described above) in the entire tree,
406 * assuming nothing about the order of the elements prior to the call.
407 * This classic algorithm due to Floyd (1964) is known to be O(size).
408 */
409 private void heapify() {
410 Object[] array = queue;
411 int n = size;
412 int half = (n >>> 1) - 1;
413 Comparator<? super E> cmp = comparator;
414 if (cmp == null) {
415 for (int i = half; i >= 0; i--)
416 siftDownComparable(i, (E) array[i], array, n);
417 }
418 else {
419 for (int i = half; i >= 0; i--)
420 siftDownUsingComparator(i, (E) array[i], array, n, cmp);
421 }
422 }
423
424 /**
425 * Inserts the specified element into this priority queue.
426 *
427 * @param e the element to add
428 * @return {@code true} (as specified by {@link Collection#add})
429 * @throws ClassCastException if the specified element cannot be compared
430 * with elements currently in the priority queue according to the
431 * priority queue's ordering
432 * @throws NullPointerException if the specified element is null
433 */
434 public boolean add(E e) {
435 return offer(e);
436 }
437
438 /**
439 * Inserts the specified element into this priority queue.
440 * As the queue is unbounded, this method will never return {@code false}.
441 *
442 * @param e the element to add
443 * @return {@code true} (as specified by {@link Queue#offer})
444 * @throws ClassCastException if the specified element cannot be compared
445 * with elements currently in the priority queue according to the
446 * priority queue's ordering
447 * @throws NullPointerException if the specified element is null
448 */
449 public boolean offer(E e) {
450 if (e == null)
451 throw new NullPointerException();
452 final ReentrantLock lock = this.lock;
453 lock.lock();
454 int n, cap;
455 Object[] array;
456 while ((n = size) >= (cap = (array = queue).length))
457 tryGrow(array, cap);
458 try {
459 Comparator<? super E> cmp = comparator;
460 if (cmp == null)
461 siftUpComparable(n, e, array);
462 else
463 siftUpUsingComparator(n, e, array, cmp);
464 size = n + 1;
465 notEmpty.signal();
466 } finally {
467 lock.unlock();
468 }
469 return true;
470 }
471
472 /**
473 * Inserts the specified element into this priority queue.
474 * As the queue is unbounded, this method will never block.
475 *
476 * @param e the element to add
477 * @throws ClassCastException if the specified element cannot be compared
478 * with elements currently in the priority queue according to the
479 * priority queue's ordering
480 * @throws NullPointerException if the specified element is null
481 */
482 public void put(E e) {
483 offer(e); // never need to block
484 }
485
486 /**
487 * Inserts the specified element into this priority queue.
488 * As the queue is unbounded, this method will never block or
489 * return {@code false}.
490 *
491 * @param e the element to add
492 * @param timeout This parameter is ignored as the method never blocks
493 * @param unit This parameter is ignored as the method never blocks
494 * @return {@code true} (as specified by
495 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
496 * @throws ClassCastException if the specified element cannot be compared
497 * with elements currently in the priority queue according to the
498 * priority queue's ordering
499 * @throws NullPointerException if the specified element is null
500 */
501 public boolean offer(E e, long timeout, TimeUnit unit) {
502 return offer(e); // never need to block
503 }
504
505 public E poll() {
506 final ReentrantLock lock = this.lock;
507 lock.lock();
508 try {
509 return dequeue();
510 } finally {
511 lock.unlock();
512 }
513 }
514
515 public E take() throws InterruptedException {
516 final ReentrantLock lock = this.lock;
517 lock.lockInterruptibly();
518 E result;
519 try {
520 while ( (result = dequeue()) == null)
521 notEmpty.await();
522 } finally {
523 lock.unlock();
524 }
525 return result;
526 }
527
528 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
529 long nanos = unit.toNanos(timeout);
530 final ReentrantLock lock = this.lock;
531 lock.lockInterruptibly();
532 E result;
533 try {
534 while ( (result = dequeue()) == null && nanos > 0)
535 nanos = notEmpty.awaitNanos(nanos);
536 } finally {
537 lock.unlock();
538 }
539 return result;
540 }
541
542 public E peek() {
543 final ReentrantLock lock = this.lock;
544 lock.lock();
545 try {
546 return (size == 0) ? null : (E) queue[0];
547 } finally {
548 lock.unlock();
549 }
550 }
551
552 /**
553 * Returns the comparator used to order the elements in this queue,
554 * or {@code null} if this queue uses the {@linkplain Comparable
555 * natural ordering} of its elements.
556 *
557 * @return the comparator used to order the elements in this queue,
558 * or {@code null} if this queue uses the natural
559 * ordering of its elements
560 */
561 public Comparator<? super E> comparator() {
562 return comparator;
563 }
564
565 public int size() {
566 final ReentrantLock lock = this.lock;
567 lock.lock();
568 try {
569 return size;
570 } finally {
571 lock.unlock();
572 }
573 }
574
575 /**
576 * Always returns {@code Integer.MAX_VALUE} because
577 * a {@code PriorityBlockingQueue} is not capacity constrained.
578 * @return {@code Integer.MAX_VALUE} always
579 */
580 public int remainingCapacity() {
581 return Integer.MAX_VALUE;
582 }
583
584 private int indexOf(Object o) {
585 if (o != null) {
586 Object[] array = queue;
587 int n = size;
588 for (int i = 0; i < n; i++)
589 if (o.equals(array[i]))
590 return i;
591 }
592 return -1;
593 }
594
595 /**
596 * Removes the ith element from queue.
597 */
598 private void removeAt(int i) {
599 Object[] array = queue;
600 int n = size - 1;
601 if (n == i) // removed last element
602 array[i] = null;
603 else {
604 E moved = (E) array[n];
605 array[n] = null;
606 Comparator<? super E> cmp = comparator;
607 if (cmp == null)
608 siftDownComparable(i, moved, array, n);
609 else
610 siftDownUsingComparator(i, moved, array, n, cmp);
611 if (array[i] == moved) {
612 if (cmp == null)
613 siftUpComparable(i, moved, array);
614 else
615 siftUpUsingComparator(i, moved, array, cmp);
616 }
617 }
618 size = n;
619 }
620
621 /**
622 * Removes a single instance of the specified element from this queue,
623 * if it is present. More formally, removes an element {@code e} such
624 * that {@code o.equals(e)}, if this queue contains one or more such
625 * elements. Returns {@code true} if and only if this queue contained
626 * the specified element (or equivalently, if this queue changed as a
627 * result of the call).
628 *
629 * @param o element to be removed from this queue, if present
630 * @return {@code true} if this queue changed as a result of the call
631 */
632 public boolean remove(Object o) {
633 final ReentrantLock lock = this.lock;
634 lock.lock();
635 try {
636 int i = indexOf(o);
637 if (i == -1)
638 return false;
639 removeAt(i);
640 return true;
641 } finally {
642 lock.unlock();
643 }
644 }
645
646 /**
647 * Identity-based version for use in Itr.remove.
648 */
649 void removeEQ(Object o) {
650 final ReentrantLock lock = this.lock;
651 lock.lock();
652 try {
653 Object[] array = queue;
654 for (int i = 0, n = size; i < n; i++) {
655 if (o == array[i]) {
656 removeAt(i);
657 break;
658 }
659 }
660 } finally {
661 lock.unlock();
662 }
663 }
664
665 /**
666 * Returns {@code true} if this queue contains the specified element.
667 * More formally, returns {@code true} if and only if this queue contains
668 * at least one element {@code e} such that {@code o.equals(e)}.
669 *
670 * @param o object to be checked for containment in this queue
671 * @return {@code true} if this queue contains the specified element
672 */
673 public boolean contains(Object o) {
674 final ReentrantLock lock = this.lock;
675 lock.lock();
676 try {
677 return indexOf(o) != -1;
678 } finally {
679 lock.unlock();
680 }
681 }
682
683 public String toString() {
684 return Helpers.collectionToString(this);
685 }
686
687 /**
688 * @throws UnsupportedOperationException {@inheritDoc}
689 * @throws ClassCastException {@inheritDoc}
690 * @throws NullPointerException {@inheritDoc}
691 * @throws IllegalArgumentException {@inheritDoc}
692 */
693 public int drainTo(Collection<? super E> c) {
694 return drainTo(c, Integer.MAX_VALUE);
695 }
696
697 /**
698 * @throws UnsupportedOperationException {@inheritDoc}
699 * @throws ClassCastException {@inheritDoc}
700 * @throws NullPointerException {@inheritDoc}
701 * @throws IllegalArgumentException {@inheritDoc}
702 */
703 public int drainTo(Collection<? super E> c, int maxElements) {
704 if (c == null)
705 throw new NullPointerException();
706 if (c == this)
707 throw new IllegalArgumentException();
708 if (maxElements <= 0)
709 return 0;
710 final ReentrantLock lock = this.lock;
711 lock.lock();
712 try {
713 int n = Math.min(size, maxElements);
714 for (int i = 0; i < n; i++) {
715 c.add((E) queue[0]); // In this order, in case add() throws.
716 dequeue();
717 }
718 return n;
719 } finally {
720 lock.unlock();
721 }
722 }
723
724 /**
725 * Atomically removes all of the elements from this queue.
726 * The queue will be empty after this call returns.
727 */
728 public void clear() {
729 final ReentrantLock lock = this.lock;
730 lock.lock();
731 try {
732 Object[] array = queue;
733 int n = size;
734 size = 0;
735 for (int i = 0; i < n; i++)
736 array[i] = null;
737 } finally {
738 lock.unlock();
739 }
740 }
741
742 /**
743 * Returns an array containing all of the elements in this queue.
744 * The returned array elements are in no particular order.
745 *
746 * <p>The returned array will be "safe" in that no references to it are
747 * maintained by this queue. (In other words, this method must allocate
748 * a new array). The caller is thus free to modify the returned array.
749 *
750 * <p>This method acts as bridge between array-based and collection-based
751 * APIs.
752 *
753 * @return an array containing all of the elements in this queue
754 */
755 public Object[] toArray() {
756 final ReentrantLock lock = this.lock;
757 lock.lock();
758 try {
759 return Arrays.copyOf(queue, size);
760 } finally {
761 lock.unlock();
762 }
763 }
764
765 /**
766 * Returns an array containing all of the elements in this queue; the
767 * runtime type of the returned array is that of the specified array.
768 * The returned array elements are in no particular order.
769 * If the queue fits in the specified array, it is returned therein.
770 * Otherwise, a new array is allocated with the runtime type of the
771 * specified array and the size of this queue.
772 *
773 * <p>If this queue fits in the specified array with room to spare
774 * (i.e., the array has more elements than this queue), the element in
775 * the array immediately following the end of the queue is set to
776 * {@code null}.
777 *
778 * <p>Like the {@link #toArray()} method, this method acts as bridge between
779 * array-based and collection-based APIs. Further, this method allows
780 * precise control over the runtime type of the output array, and may,
781 * under certain circumstances, be used to save allocation costs.
782 *
783 * <p>Suppose {@code x} is a queue known to contain only strings.
784 * The following code can be used to dump the queue into a newly
785 * allocated array of {@code String}:
786 *
787 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
788 *
789 * Note that {@code toArray(new Object[0])} is identical in function to
790 * {@code toArray()}.
791 *
792 * @param a the array into which the elements of the queue are to
793 * be stored, if it is big enough; otherwise, a new array of the
794 * same runtime type is allocated for this purpose
795 * @return an array containing all of the elements in this queue
796 * @throws ArrayStoreException if the runtime type of the specified array
797 * is not a supertype of the runtime type of every element in
798 * this queue
799 * @throws NullPointerException if the specified array is null
800 */
801 public <T> T[] toArray(T[] a) {
802 final ReentrantLock lock = this.lock;
803 lock.lock();
804 try {
805 int n = size;
806 if (a.length < n)
807 // Make a new array of a's runtime type, but my contents:
808 return (T[]) Arrays.copyOf(queue, size, a.getClass());
809 System.arraycopy(queue, 0, a, 0, n);
810 if (a.length > n)
811 a[n] = null;
812 return a;
813 } finally {
814 lock.unlock();
815 }
816 }
817
818 /**
819 * Returns an iterator over the elements in this queue. The
820 * iterator does not return the elements in any particular order.
821 *
822 * <p>The returned iterator is
823 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
824 *
825 * @return an iterator over the elements in this queue
826 */
827 public Iterator<E> iterator() {
828 return new Itr(toArray());
829 }
830
831 /**
832 * Snapshot iterator that works off copy of underlying q array.
833 */
834 final class Itr implements Iterator<E> {
835 final Object[] array; // Array of all elements
836 int cursor; // index of next element to return
837 int lastRet; // index of last element, or -1 if no such
838
839 Itr(Object[] array) {
840 lastRet = -1;
841 this.array = array;
842 }
843
844 public boolean hasNext() {
845 return cursor < array.length;
846 }
847
848 public E next() {
849 if (cursor >= array.length)
850 throw new NoSuchElementException();
851 return (E)array[lastRet = cursor++];
852 }
853
854 public void remove() {
855 if (lastRet < 0)
856 throw new IllegalStateException();
857 removeEQ(array[lastRet]);
858 lastRet = -1;
859 }
860 }
861
862 /**
863 * Saves this queue to a stream (that is, serializes it).
864 *
865 * For compatibility with previous version of this class, elements
866 * are first copied to a java.util.PriorityQueue, which is then
867 * serialized.
868 *
869 * @param s the stream
870 * @throws java.io.IOException if an I/O error occurs
871 */
872 private void writeObject(java.io.ObjectOutputStream s)
873 throws java.io.IOException {
874 lock.lock();
875 try {
876 // avoid zero capacity argument
877 q = new PriorityQueue<E>(Math.max(size, 1), comparator);
878 q.addAll(this);
879 s.defaultWriteObject();
880 } finally {
881 q = null;
882 lock.unlock();
883 }
884 }
885
886 /**
887 * Reconstitutes this queue from a stream (that is, deserializes it).
888 * @param s the stream
889 * @throws ClassNotFoundException if the class of a serialized object
890 * could not be found
891 * @throws java.io.IOException if an I/O error occurs
892 */
893 private void readObject(java.io.ObjectInputStream s)
894 throws java.io.IOException, ClassNotFoundException {
895 try {
896 s.defaultReadObject();
897 this.queue = new Object[q.size()];
898 comparator = q.comparator();
899 addAll(q);
900 } finally {
901 q = null;
902 }
903 }
904
905 /**
906 * Immutable snapshot spliterator that binds to elements "late".
907 */
908 final class PBQSpliterator implements Spliterator<E> {
909 Object[] array;
910 int index;
911 int fence;
912
913 PBQSpliterator(Object[] array, int index, int fence) {
914 this.array = array;
915 this.index = index;
916 this.fence = fence;
917 }
918
919 final int getFence() {
920 int hi;
921 if ((hi = fence) < 0)
922 hi = fence = (array = toArray()).length;
923 return hi;
924 }
925
926 public PBQSpliterator trySplit() {
927 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
928 return (lo >= mid) ? null :
929 new PBQSpliterator(array, lo, index = mid);
930 }
931
932 @SuppressWarnings("unchecked")
933 public void forEachRemaining(Consumer<? super E> action) {
934 Object[] a; int i, hi; // hoist accesses and checks from loop
935 if (action == null)
936 throw new NullPointerException();
937 if ((a = array) == null)
938 fence = (a = toArray()).length;
939 if ((hi = fence) <= a.length &&
940 (i = index) >= 0 && i < (index = hi)) {
941 do { action.accept((E)a[i]); } while (++i < hi);
942 }
943 }
944
945 public boolean tryAdvance(Consumer<? super E> action) {
946 if (action == null)
947 throw new NullPointerException();
948 if (getFence() > index && index >= 0) {
949 @SuppressWarnings("unchecked") E e = (E) array[index++];
950 action.accept(e);
951 return true;
952 }
953 return false;
954 }
955
956 public long estimateSize() { return getFence() - index; }
957
958 public int characteristics() {
959 return (Spliterator.NONNULL |
960 Spliterator.SIZED |
961 Spliterator.SUBSIZED);
962 }
963 }
964
965 /**
966 * Returns a {@link Spliterator} over the elements in this queue.
967 * The spliterator does not traverse elements in any particular order
968 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
969 *
970 * <p>The returned spliterator is
971 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
972 *
973 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
974 * {@link Spliterator#NONNULL}.
975 *
976 * @implNote
977 * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}.
978 *
979 * @return a {@code Spliterator} over the elements in this queue
980 * @since 1.8
981 */
982 public Spliterator<E> spliterator() {
983 return new PBQSpliterator(null, 0, -1);
984 }
985
986 // VarHandle mechanics
987 private static final VarHandle ALLOCATIONSPINLOCK;
988 static {
989 try {
990 MethodHandles.Lookup l = MethodHandles.lookup();
991 ALLOCATIONSPINLOCK = l.findVarHandle(PriorityBlockingQueue.class,
992 "allocationSpinLock",
993 int.class);
994 } catch (ReflectiveOperationException e) {
995 throw new Error(e);
996 }
997 }
998 }