ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.129
Committed: Sun Jan 7 21:26:10 2018 UTC (6 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.128: +2 -2 lines
Log Message:
replace for loop with foreach loop

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Comparator;
15 import java.util.Iterator;
16 import java.util.NoSuchElementException;
17 import java.util.Objects;
18 import java.util.PriorityQueue;
19 import java.util.Queue;
20 import java.util.SortedSet;
21 import java.util.Spliterator;
22 import java.util.concurrent.locks.Condition;
23 import java.util.concurrent.locks.ReentrantLock;
24 import java.util.function.Consumer;
25
26 /**
27 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
28 * the same ordering rules as class {@link PriorityQueue} and supplies
29 * blocking retrieval operations. While this queue is logically
30 * unbounded, attempted additions may fail due to resource exhaustion
31 * (causing {@code OutOfMemoryError}). This class does not permit
32 * {@code null} elements. A priority queue relying on {@linkplain
33 * Comparable natural ordering} also does not permit insertion of
34 * non-comparable objects (doing so results in
35 * {@code ClassCastException}).
36 *
37 * <p>This class and its iterator implement all of the <em>optional</em>
38 * methods of the {@link Collection} and {@link Iterator} interfaces.
39 * The Iterator provided in method {@link #iterator()} and the
40 * Spliterator provided in method {@link #spliterator()} are <em>not</em>
41 * guaranteed to traverse the elements of the PriorityBlockingQueue in
42 * any particular order. If you need ordered traversal, consider using
43 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} can
44 * be used to <em>remove</em> some or all elements in priority order and
45 * place them in another collection.
46 *
47 * <p>Operations on this class make no guarantees about the ordering
48 * of elements with equal priority. If you need to enforce an
49 * ordering, you can define custom classes or comparators that use a
50 * secondary key to break ties in primary priority values. For
51 * example, here is a class that applies first-in-first-out
52 * tie-breaking to comparable elements. To use it, you would insert a
53 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
54 *
55 * <pre> {@code
56 * class FIFOEntry<E extends Comparable<? super E>>
57 * implements Comparable<FIFOEntry<E>> {
58 * static final AtomicLong seq = new AtomicLong(0);
59 * final long seqNum;
60 * final E entry;
61 * public FIFOEntry(E entry) {
62 * seqNum = seq.getAndIncrement();
63 * this.entry = entry;
64 * }
65 * public E getEntry() { return entry; }
66 * public int compareTo(FIFOEntry<E> other) {
67 * int res = entry.compareTo(other.entry);
68 * if (res == 0 && other.entry != this.entry)
69 * res = (seqNum < other.seqNum ? -1 : 1);
70 * return res;
71 * }
72 * }}</pre>
73 *
74 * <p>This class is a member of the
75 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
76 * Java Collections Framework</a>.
77 *
78 * @since 1.5
79 * @author Doug Lea
80 * @param <E> the type of elements held in this queue
81 */
82 @SuppressWarnings("unchecked")
83 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
84 implements BlockingQueue<E>, java.io.Serializable {
85 private static final long serialVersionUID = 5595510919245408276L;
86
87 /*
88 * The implementation uses an array-based binary heap, with public
89 * operations protected with a single lock. However, allocation
90 * during resizing uses a simple spinlock (used only while not
91 * holding main lock) in order to allow takes to operate
92 * concurrently with allocation. This avoids repeated
93 * postponement of waiting consumers and consequent element
94 * build-up. The need to back away from lock during allocation
95 * makes it impossible to simply wrap delegated
96 * java.util.PriorityQueue operations within a lock, as was done
97 * in a previous version of this class. To maintain
98 * interoperability, a plain PriorityQueue is still used during
99 * serialization, which maintains compatibility at the expense of
100 * transiently doubling overhead.
101 */
102
103 /**
104 * Default array capacity.
105 */
106 private static final int DEFAULT_INITIAL_CAPACITY = 11;
107
108 /**
109 * The maximum size of array to allocate.
110 * Some VMs reserve some header words in an array.
111 * Attempts to allocate larger arrays may result in
112 * OutOfMemoryError: Requested array size exceeds VM limit
113 */
114 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
115
116 /**
117 * Priority queue represented as a balanced binary heap: the two
118 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
119 * priority queue is ordered by comparator, or by the elements'
120 * natural ordering, if comparator is null: For each node n in the
121 * heap and each descendant d of n, n <= d. The element with the
122 * lowest value is in queue[0], assuming the queue is nonempty.
123 */
124 private transient Object[] queue;
125
126 /**
127 * The number of elements in the priority queue.
128 */
129 private transient int size;
130
131 /**
132 * The comparator, or null if priority queue uses elements'
133 * natural ordering.
134 */
135 private transient Comparator<? super E> comparator;
136
137 /**
138 * Lock used for all public operations.
139 */
140 private final ReentrantLock lock;
141
142 /**
143 * Condition for blocking when empty.
144 */
145 private final Condition notEmpty;
146
147 /**
148 * Spinlock for allocation, acquired via CAS.
149 */
150 private transient volatile int allocationSpinLock;
151
152 /**
153 * A plain PriorityQueue used only for serialization,
154 * to maintain compatibility with previous versions
155 * of this class. Non-null only during serialization/deserialization.
156 */
157 private PriorityQueue<E> q;
158
159 /**
160 * Creates a {@code PriorityBlockingQueue} with the default
161 * initial capacity (11) that orders its elements according to
162 * their {@linkplain Comparable natural ordering}.
163 */
164 public PriorityBlockingQueue() {
165 this(DEFAULT_INITIAL_CAPACITY, null);
166 }
167
168 /**
169 * Creates a {@code PriorityBlockingQueue} with the specified
170 * initial capacity that orders its elements according to their
171 * {@linkplain Comparable natural ordering}.
172 *
173 * @param initialCapacity the initial capacity for this priority queue
174 * @throws IllegalArgumentException if {@code initialCapacity} is less
175 * than 1
176 */
177 public PriorityBlockingQueue(int initialCapacity) {
178 this(initialCapacity, null);
179 }
180
181 /**
182 * Creates a {@code PriorityBlockingQueue} with the specified initial
183 * capacity that orders its elements according to the specified
184 * comparator.
185 *
186 * @param initialCapacity the initial capacity for this priority queue
187 * @param comparator the comparator that will be used to order this
188 * priority queue. If {@code null}, the {@linkplain Comparable
189 * natural ordering} of the elements will be used.
190 * @throws IllegalArgumentException if {@code initialCapacity} is less
191 * than 1
192 */
193 public PriorityBlockingQueue(int initialCapacity,
194 Comparator<? super E> comparator) {
195 if (initialCapacity < 1)
196 throw new IllegalArgumentException();
197 this.lock = new ReentrantLock();
198 this.notEmpty = lock.newCondition();
199 this.comparator = comparator;
200 this.queue = new Object[initialCapacity];
201 }
202
203 /**
204 * Creates a {@code PriorityBlockingQueue} containing the elements
205 * in the specified collection. If the specified collection is a
206 * {@link SortedSet} or a {@link PriorityQueue}, this
207 * priority queue will be ordered according to the same ordering.
208 * Otherwise, this priority queue will be ordered according to the
209 * {@linkplain Comparable natural ordering} of its elements.
210 *
211 * @param c the collection whose elements are to be placed
212 * into this priority queue
213 * @throws ClassCastException if elements of the specified collection
214 * cannot be compared to one another according to the priority
215 * queue's ordering
216 * @throws NullPointerException if the specified collection or any
217 * of its elements are null
218 */
219 public PriorityBlockingQueue(Collection<? extends E> c) {
220 this.lock = new ReentrantLock();
221 this.notEmpty = lock.newCondition();
222 boolean heapify = true; // true if not known to be in heap order
223 boolean screen = true; // true if must screen for nulls
224 if (c instanceof SortedSet<?>) {
225 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
226 this.comparator = (Comparator<? super E>) ss.comparator();
227 heapify = false;
228 }
229 else if (c instanceof PriorityBlockingQueue<?>) {
230 PriorityBlockingQueue<? extends E> pq =
231 (PriorityBlockingQueue<? extends E>) c;
232 this.comparator = (Comparator<? super E>) pq.comparator();
233 screen = false;
234 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
235 heapify = false;
236 }
237 Object[] a = c.toArray();
238 int n = a.length;
239 // If c.toArray incorrectly doesn't return Object[], copy it.
240 if (a.getClass() != Object[].class)
241 a = Arrays.copyOf(a, n, Object[].class);
242 if (screen && (n == 1 || this.comparator != null)) {
243 for (Object elt : a)
244 if (elt == null)
245 throw new NullPointerException();
246 }
247 this.queue = a;
248 this.size = n;
249 if (heapify)
250 heapify();
251 }
252
253 /**
254 * Tries to grow array to accommodate at least one more element
255 * (but normally expand by about 50%), giving up (allowing retry)
256 * on contention (which we expect to be rare). Call only while
257 * holding lock.
258 *
259 * @param array the heap array
260 * @param oldCap the length of the array
261 */
262 private void tryGrow(Object[] array, int oldCap) {
263 lock.unlock(); // must release and then re-acquire main lock
264 Object[] newArray = null;
265 if (allocationSpinLock == 0 &&
266 ALLOCATIONSPINLOCK.compareAndSet(this, 0, 1)) {
267 try {
268 int newCap = oldCap + ((oldCap < 64) ?
269 (oldCap + 2) : // grow faster if small
270 (oldCap >> 1));
271 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
272 int minCap = oldCap + 1;
273 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
274 throw new OutOfMemoryError();
275 newCap = MAX_ARRAY_SIZE;
276 }
277 if (newCap > oldCap && queue == array)
278 newArray = new Object[newCap];
279 } finally {
280 allocationSpinLock = 0;
281 }
282 }
283 if (newArray == null) // back off if another thread is allocating
284 Thread.yield();
285 lock.lock();
286 if (newArray != null && queue == array) {
287 queue = newArray;
288 System.arraycopy(array, 0, newArray, 0, oldCap);
289 }
290 }
291
292 /**
293 * Mechanics for poll(). Call only while holding lock.
294 */
295 private E dequeue() {
296 int n = size - 1;
297 if (n < 0)
298 return null;
299 else {
300 Object[] array = queue;
301 E result = (E) array[0];
302 E x = (E) array[n];
303 array[n] = null;
304 Comparator<? super E> cmp = comparator;
305 if (cmp == null)
306 siftDownComparable(0, x, array, n);
307 else
308 siftDownUsingComparator(0, x, array, n, cmp);
309 size = n;
310 return result;
311 }
312 }
313
314 /**
315 * Inserts item x at position k, maintaining heap invariant by
316 * promoting x up the tree until it is greater than or equal to
317 * its parent, or is the root.
318 *
319 * To simplify and speed up coercions and comparisons, the
320 * Comparable and Comparator versions are separated into different
321 * methods that are otherwise identical. (Similarly for siftDown.)
322 *
323 * @param k the position to fill
324 * @param x the item to insert
325 * @param array the heap array
326 */
327 private static <T> void siftUpComparable(int k, T x, Object[] array) {
328 Comparable<? super T> key = (Comparable<? super T>) x;
329 while (k > 0) {
330 int parent = (k - 1) >>> 1;
331 Object e = array[parent];
332 if (key.compareTo((T) e) >= 0)
333 break;
334 array[k] = e;
335 k = parent;
336 }
337 array[k] = key;
338 }
339
340 private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
341 Comparator<? super T> cmp) {
342 while (k > 0) {
343 int parent = (k - 1) >>> 1;
344 Object e = array[parent];
345 if (cmp.compare(x, (T) e) >= 0)
346 break;
347 array[k] = e;
348 k = parent;
349 }
350 array[k] = x;
351 }
352
353 /**
354 * Inserts item x at position k, maintaining heap invariant by
355 * demoting x down the tree repeatedly until it is less than or
356 * equal to its children or is a leaf.
357 *
358 * @param k the position to fill
359 * @param x the item to insert
360 * @param array the heap array
361 * @param n heap size
362 */
363 private static <T> void siftDownComparable(int k, T x, Object[] array,
364 int n) {
365 if (n > 0) {
366 Comparable<? super T> key = (Comparable<? super T>)x;
367 int half = n >>> 1; // loop while a non-leaf
368 while (k < half) {
369 int child = (k << 1) + 1; // assume left child is least
370 Object c = array[child];
371 int right = child + 1;
372 if (right < n &&
373 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
374 c = array[child = right];
375 if (key.compareTo((T) c) <= 0)
376 break;
377 array[k] = c;
378 k = child;
379 }
380 array[k] = key;
381 }
382 }
383
384 private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
385 int n,
386 Comparator<? super T> cmp) {
387 if (n > 0) {
388 int half = n >>> 1;
389 while (k < half) {
390 int child = (k << 1) + 1;
391 Object c = array[child];
392 int right = child + 1;
393 if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
394 c = array[child = right];
395 if (cmp.compare(x, (T) c) <= 0)
396 break;
397 array[k] = c;
398 k = child;
399 }
400 array[k] = x;
401 }
402 }
403
404 /**
405 * Establishes the heap invariant (described above) in the entire tree,
406 * assuming nothing about the order of the elements prior to the call.
407 * This classic algorithm due to Floyd (1964) is known to be O(size).
408 */
409 private void heapify() {
410 Object[] array = queue;
411 int n = size, i = (n >>> 1) - 1;
412 Comparator<? super E> cmp = comparator;
413 if (cmp == null) {
414 for (; i >= 0; i--)
415 siftDownComparable(i, (E) array[i], array, n);
416 }
417 else {
418 for (; i >= 0; i--)
419 siftDownUsingComparator(i, (E) array[i], array, n, cmp);
420 }
421 }
422
423 /**
424 * Inserts the specified element into this priority queue.
425 *
426 * @param e the element to add
427 * @return {@code true} (as specified by {@link Collection#add})
428 * @throws ClassCastException if the specified element cannot be compared
429 * with elements currently in the priority queue according to the
430 * priority queue's ordering
431 * @throws NullPointerException if the specified element is null
432 */
433 public boolean add(E e) {
434 return offer(e);
435 }
436
437 /**
438 * Inserts the specified element into this priority queue.
439 * As the queue is unbounded, this method will never return {@code false}.
440 *
441 * @param e the element to add
442 * @return {@code true} (as specified by {@link Queue#offer})
443 * @throws ClassCastException if the specified element cannot be compared
444 * with elements currently in the priority queue according to the
445 * priority queue's ordering
446 * @throws NullPointerException if the specified element is null
447 */
448 public boolean offer(E e) {
449 if (e == null)
450 throw new NullPointerException();
451 final ReentrantLock lock = this.lock;
452 lock.lock();
453 int n, cap;
454 Object[] array;
455 while ((n = size) >= (cap = (array = queue).length))
456 tryGrow(array, cap);
457 try {
458 Comparator<? super E> cmp = comparator;
459 if (cmp == null)
460 siftUpComparable(n, e, array);
461 else
462 siftUpUsingComparator(n, e, array, cmp);
463 size = n + 1;
464 notEmpty.signal();
465 } finally {
466 lock.unlock();
467 }
468 return true;
469 }
470
471 /**
472 * Inserts the specified element into this priority queue.
473 * As the queue is unbounded, this method will never block.
474 *
475 * @param e the element to add
476 * @throws ClassCastException if the specified element cannot be compared
477 * with elements currently in the priority queue according to the
478 * priority queue's ordering
479 * @throws NullPointerException if the specified element is null
480 */
481 public void put(E e) {
482 offer(e); // never need to block
483 }
484
485 /**
486 * Inserts the specified element into this priority queue.
487 * As the queue is unbounded, this method will never block or
488 * return {@code false}.
489 *
490 * @param e the element to add
491 * @param timeout This parameter is ignored as the method never blocks
492 * @param unit This parameter is ignored as the method never blocks
493 * @return {@code true} (as specified by
494 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
495 * @throws ClassCastException if the specified element cannot be compared
496 * with elements currently in the priority queue according to the
497 * priority queue's ordering
498 * @throws NullPointerException if the specified element is null
499 */
500 public boolean offer(E e, long timeout, TimeUnit unit) {
501 return offer(e); // never need to block
502 }
503
504 public E poll() {
505 final ReentrantLock lock = this.lock;
506 lock.lock();
507 try {
508 return dequeue();
509 } finally {
510 lock.unlock();
511 }
512 }
513
514 public E take() throws InterruptedException {
515 final ReentrantLock lock = this.lock;
516 lock.lockInterruptibly();
517 E result;
518 try {
519 while ( (result = dequeue()) == null)
520 notEmpty.await();
521 } finally {
522 lock.unlock();
523 }
524 return result;
525 }
526
527 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
528 long nanos = unit.toNanos(timeout);
529 final ReentrantLock lock = this.lock;
530 lock.lockInterruptibly();
531 E result;
532 try {
533 while ( (result = dequeue()) == null && nanos > 0)
534 nanos = notEmpty.awaitNanos(nanos);
535 } finally {
536 lock.unlock();
537 }
538 return result;
539 }
540
541 public E peek() {
542 final ReentrantLock lock = this.lock;
543 lock.lock();
544 try {
545 return (size == 0) ? null : (E) queue[0];
546 } finally {
547 lock.unlock();
548 }
549 }
550
551 /**
552 * Returns the comparator used to order the elements in this queue,
553 * or {@code null} if this queue uses the {@linkplain Comparable
554 * natural ordering} of its elements.
555 *
556 * @return the comparator used to order the elements in this queue,
557 * or {@code null} if this queue uses the natural
558 * ordering of its elements
559 */
560 public Comparator<? super E> comparator() {
561 return comparator;
562 }
563
564 public int size() {
565 final ReentrantLock lock = this.lock;
566 lock.lock();
567 try {
568 return size;
569 } finally {
570 lock.unlock();
571 }
572 }
573
574 /**
575 * Always returns {@code Integer.MAX_VALUE} because
576 * a {@code PriorityBlockingQueue} is not capacity constrained.
577 * @return {@code Integer.MAX_VALUE} always
578 */
579 public int remainingCapacity() {
580 return Integer.MAX_VALUE;
581 }
582
583 private int indexOf(Object o) {
584 if (o != null) {
585 Object[] array = queue;
586 int n = size;
587 for (int i = 0; i < n; i++)
588 if (o.equals(array[i]))
589 return i;
590 }
591 return -1;
592 }
593
594 /**
595 * Removes the ith element from queue.
596 */
597 private void removeAt(int i) {
598 Object[] array = queue;
599 int n = size - 1;
600 if (n == i) // removed last element
601 array[i] = null;
602 else {
603 E moved = (E) array[n];
604 array[n] = null;
605 Comparator<? super E> cmp = comparator;
606 if (cmp == null)
607 siftDownComparable(i, moved, array, n);
608 else
609 siftDownUsingComparator(i, moved, array, n, cmp);
610 if (array[i] == moved) {
611 if (cmp == null)
612 siftUpComparable(i, moved, array);
613 else
614 siftUpUsingComparator(i, moved, array, cmp);
615 }
616 }
617 size = n;
618 }
619
620 /**
621 * Removes a single instance of the specified element from this queue,
622 * if it is present. More formally, removes an element {@code e} such
623 * that {@code o.equals(e)}, if this queue contains one or more such
624 * elements. Returns {@code true} if and only if this queue contained
625 * the specified element (or equivalently, if this queue changed as a
626 * result of the call).
627 *
628 * @param o element to be removed from this queue, if present
629 * @return {@code true} if this queue changed as a result of the call
630 */
631 public boolean remove(Object o) {
632 final ReentrantLock lock = this.lock;
633 lock.lock();
634 try {
635 int i = indexOf(o);
636 if (i == -1)
637 return false;
638 removeAt(i);
639 return true;
640 } finally {
641 lock.unlock();
642 }
643 }
644
645 /**
646 * Identity-based version for use in Itr.remove.
647 */
648 void removeEQ(Object o) {
649 final ReentrantLock lock = this.lock;
650 lock.lock();
651 try {
652 Object[] array = queue;
653 for (int i = 0, n = size; i < n; i++) {
654 if (o == array[i]) {
655 removeAt(i);
656 break;
657 }
658 }
659 } finally {
660 lock.unlock();
661 }
662 }
663
664 /**
665 * Returns {@code true} if this queue contains the specified element.
666 * More formally, returns {@code true} if and only if this queue contains
667 * at least one element {@code e} such that {@code o.equals(e)}.
668 *
669 * @param o object to be checked for containment in this queue
670 * @return {@code true} if this queue contains the specified element
671 */
672 public boolean contains(Object o) {
673 final ReentrantLock lock = this.lock;
674 lock.lock();
675 try {
676 return indexOf(o) != -1;
677 } finally {
678 lock.unlock();
679 }
680 }
681
682 public String toString() {
683 return Helpers.collectionToString(this);
684 }
685
686 /**
687 * @throws UnsupportedOperationException {@inheritDoc}
688 * @throws ClassCastException {@inheritDoc}
689 * @throws NullPointerException {@inheritDoc}
690 * @throws IllegalArgumentException {@inheritDoc}
691 */
692 public int drainTo(Collection<? super E> c) {
693 return drainTo(c, Integer.MAX_VALUE);
694 }
695
696 /**
697 * @throws UnsupportedOperationException {@inheritDoc}
698 * @throws ClassCastException {@inheritDoc}
699 * @throws NullPointerException {@inheritDoc}
700 * @throws IllegalArgumentException {@inheritDoc}
701 */
702 public int drainTo(Collection<? super E> c, int maxElements) {
703 Objects.requireNonNull(c);
704 if (c == this)
705 throw new IllegalArgumentException();
706 if (maxElements <= 0)
707 return 0;
708 final ReentrantLock lock = this.lock;
709 lock.lock();
710 try {
711 int n = Math.min(size, maxElements);
712 for (int i = 0; i < n; i++) {
713 c.add((E) queue[0]); // In this order, in case add() throws.
714 dequeue();
715 }
716 return n;
717 } finally {
718 lock.unlock();
719 }
720 }
721
722 /**
723 * Atomically removes all of the elements from this queue.
724 * The queue will be empty after this call returns.
725 */
726 public void clear() {
727 final ReentrantLock lock = this.lock;
728 lock.lock();
729 try {
730 Object[] array = queue;
731 int n = size;
732 size = 0;
733 for (int i = 0; i < n; i++)
734 array[i] = null;
735 } finally {
736 lock.unlock();
737 }
738 }
739
740 /**
741 * Returns an array containing all of the elements in this queue.
742 * The returned array elements are in no particular order.
743 *
744 * <p>The returned array will be "safe" in that no references to it are
745 * maintained by this queue. (In other words, this method must allocate
746 * a new array). The caller is thus free to modify the returned array.
747 *
748 * <p>This method acts as bridge between array-based and collection-based
749 * APIs.
750 *
751 * @return an array containing all of the elements in this queue
752 */
753 public Object[] toArray() {
754 final ReentrantLock lock = this.lock;
755 lock.lock();
756 try {
757 return Arrays.copyOf(queue, size);
758 } finally {
759 lock.unlock();
760 }
761 }
762
763 /**
764 * Returns an array containing all of the elements in this queue; the
765 * runtime type of the returned array is that of the specified array.
766 * The returned array elements are in no particular order.
767 * If the queue fits in the specified array, it is returned therein.
768 * Otherwise, a new array is allocated with the runtime type of the
769 * specified array and the size of this queue.
770 *
771 * <p>If this queue fits in the specified array with room to spare
772 * (i.e., the array has more elements than this queue), the element in
773 * the array immediately following the end of the queue is set to
774 * {@code null}.
775 *
776 * <p>Like the {@link #toArray()} method, this method acts as bridge between
777 * array-based and collection-based APIs. Further, this method allows
778 * precise control over the runtime type of the output array, and may,
779 * under certain circumstances, be used to save allocation costs.
780 *
781 * <p>Suppose {@code x} is a queue known to contain only strings.
782 * The following code can be used to dump the queue into a newly
783 * allocated array of {@code String}:
784 *
785 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
786 *
787 * Note that {@code toArray(new Object[0])} is identical in function to
788 * {@code toArray()}.
789 *
790 * @param a the array into which the elements of the queue are to
791 * be stored, if it is big enough; otherwise, a new array of the
792 * same runtime type is allocated for this purpose
793 * @return an array containing all of the elements in this queue
794 * @throws ArrayStoreException if the runtime type of the specified array
795 * is not a supertype of the runtime type of every element in
796 * this queue
797 * @throws NullPointerException if the specified array is null
798 */
799 public <T> T[] toArray(T[] a) {
800 final ReentrantLock lock = this.lock;
801 lock.lock();
802 try {
803 int n = size;
804 if (a.length < n)
805 // Make a new array of a's runtime type, but my contents:
806 return (T[]) Arrays.copyOf(queue, size, a.getClass());
807 System.arraycopy(queue, 0, a, 0, n);
808 if (a.length > n)
809 a[n] = null;
810 return a;
811 } finally {
812 lock.unlock();
813 }
814 }
815
816 /**
817 * Returns an iterator over the elements in this queue. The
818 * iterator does not return the elements in any particular order.
819 *
820 * <p>The returned iterator is
821 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
822 *
823 * @return an iterator over the elements in this queue
824 */
825 public Iterator<E> iterator() {
826 return new Itr(toArray());
827 }
828
829 /**
830 * Snapshot iterator that works off copy of underlying q array.
831 */
832 final class Itr implements Iterator<E> {
833 final Object[] array; // Array of all elements
834 int cursor; // index of next element to return
835 int lastRet; // index of last element, or -1 if no such
836
837 Itr(Object[] array) {
838 lastRet = -1;
839 this.array = array;
840 }
841
842 public boolean hasNext() {
843 return cursor < array.length;
844 }
845
846 public E next() {
847 if (cursor >= array.length)
848 throw new NoSuchElementException();
849 return (E)array[lastRet = cursor++];
850 }
851
852 public void remove() {
853 if (lastRet < 0)
854 throw new IllegalStateException();
855 removeEQ(array[lastRet]);
856 lastRet = -1;
857 }
858 }
859
860 /**
861 * Saves this queue to a stream (that is, serializes it).
862 *
863 * For compatibility with previous version of this class, elements
864 * are first copied to a java.util.PriorityQueue, which is then
865 * serialized.
866 *
867 * @param s the stream
868 * @throws java.io.IOException if an I/O error occurs
869 */
870 private void writeObject(java.io.ObjectOutputStream s)
871 throws java.io.IOException {
872 lock.lock();
873 try {
874 // avoid zero capacity argument
875 q = new PriorityQueue<E>(Math.max(size, 1), comparator);
876 q.addAll(this);
877 s.defaultWriteObject();
878 } finally {
879 q = null;
880 lock.unlock();
881 }
882 }
883
884 /**
885 * Reconstitutes this queue from a stream (that is, deserializes it).
886 * @param s the stream
887 * @throws ClassNotFoundException if the class of a serialized object
888 * could not be found
889 * @throws java.io.IOException if an I/O error occurs
890 */
891 private void readObject(java.io.ObjectInputStream s)
892 throws java.io.IOException, ClassNotFoundException {
893 try {
894 s.defaultReadObject();
895 this.queue = new Object[q.size()];
896 comparator = q.comparator();
897 addAll(q);
898 } finally {
899 q = null;
900 }
901 }
902
903 /**
904 * Immutable snapshot spliterator that binds to elements "late".
905 */
906 final class PBQSpliterator implements Spliterator<E> {
907 Object[] array; // null until late-bound-initialized
908 int index;
909 int fence;
910
911 PBQSpliterator() {}
912
913 PBQSpliterator(Object[] array, int index, int fence) {
914 this.array = array;
915 this.index = index;
916 this.fence = fence;
917 }
918
919 private int getFence() {
920 if (array == null)
921 fence = (array = toArray()).length;
922 return fence;
923 }
924
925 public PBQSpliterator trySplit() {
926 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
927 return (lo >= mid) ? null :
928 new PBQSpliterator(array, lo, index = mid);
929 }
930
931 public void forEachRemaining(Consumer<? super E> action) {
932 Objects.requireNonNull(action);
933 final int hi = getFence(), lo = index;
934 final Object[] a = array;
935 index = hi; // ensure exhaustion
936 for (int i = lo; i < hi; i++)
937 action.accept((E) a[i]);
938 }
939
940 public boolean tryAdvance(Consumer<? super E> action) {
941 Objects.requireNonNull(action);
942 if (getFence() > index && index >= 0) {
943 action.accept((E) array[index++]);
944 return true;
945 }
946 return false;
947 }
948
949 public long estimateSize() { return getFence() - index; }
950
951 public int characteristics() {
952 return (Spliterator.NONNULL |
953 Spliterator.SIZED |
954 Spliterator.SUBSIZED);
955 }
956 }
957
958 /**
959 * Returns a {@link Spliterator} over the elements in this queue.
960 * The spliterator does not traverse elements in any particular order
961 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
962 *
963 * <p>The returned spliterator is
964 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
965 *
966 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
967 * {@link Spliterator#NONNULL}.
968 *
969 * @implNote
970 * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}.
971 *
972 * @return a {@code Spliterator} over the elements in this queue
973 * @since 1.8
974 */
975 public Spliterator<E> spliterator() {
976 return new PBQSpliterator();
977 }
978
979 // VarHandle mechanics
980 private static final VarHandle ALLOCATIONSPINLOCK;
981 static {
982 try {
983 MethodHandles.Lookup l = MethodHandles.lookup();
984 ALLOCATIONSPINLOCK = l.findVarHandle(PriorityBlockingQueue.class,
985 "allocationSpinLock",
986 int.class);
987 } catch (ReflectiveOperationException e) {
988 throw new Error(e);
989 }
990 }
991 }