ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.133
Committed: Sun May 6 16:26:03 2018 UTC (6 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.132: +12 -12 lines
Log Message:
use common jsr166 idioms

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Comparator;
15 import java.util.Iterator;
16 import java.util.NoSuchElementException;
17 import java.util.Objects;
18 import java.util.PriorityQueue;
19 import java.util.Queue;
20 import java.util.SortedSet;
21 import java.util.Spliterator;
22 import java.util.concurrent.locks.Condition;
23 import java.util.concurrent.locks.ReentrantLock;
24 import java.util.function.Consumer;
25 import jdk.internal.misc.SharedSecrets;
26
27 /**
28 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
29 * the same ordering rules as class {@link PriorityQueue} and supplies
30 * blocking retrieval operations. While this queue is logically
31 * unbounded, attempted additions may fail due to resource exhaustion
32 * (causing {@code OutOfMemoryError}). This class does not permit
33 * {@code null} elements. A priority queue relying on {@linkplain
34 * Comparable natural ordering} also does not permit insertion of
35 * non-comparable objects (doing so results in
36 * {@code ClassCastException}).
37 *
38 * <p>This class and its iterator implement all of the <em>optional</em>
39 * methods of the {@link Collection} and {@link Iterator} interfaces.
40 * The Iterator provided in method {@link #iterator()} and the
41 * Spliterator provided in method {@link #spliterator()} are <em>not</em>
42 * guaranteed to traverse the elements of the PriorityBlockingQueue in
43 * any particular order. If you need ordered traversal, consider using
44 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} can
45 * be used to <em>remove</em> some or all elements in priority order and
46 * place them in another collection.
47 *
48 * <p>Operations on this class make no guarantees about the ordering
49 * of elements with equal priority. If you need to enforce an
50 * ordering, you can define custom classes or comparators that use a
51 * secondary key to break ties in primary priority values. For
52 * example, here is a class that applies first-in-first-out
53 * tie-breaking to comparable elements. To use it, you would insert a
54 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
55 *
56 * <pre> {@code
57 * class FIFOEntry<E extends Comparable<? super E>>
58 * implements Comparable<FIFOEntry<E>> {
59 * static final AtomicLong seq = new AtomicLong(0);
60 * final long seqNum;
61 * final E entry;
62 * public FIFOEntry(E entry) {
63 * seqNum = seq.getAndIncrement();
64 * this.entry = entry;
65 * }
66 * public E getEntry() { return entry; }
67 * public int compareTo(FIFOEntry<E> other) {
68 * int res = entry.compareTo(other.entry);
69 * if (res == 0 && other.entry != this.entry)
70 * res = (seqNum < other.seqNum ? -1 : 1);
71 * return res;
72 * }
73 * }}</pre>
74 *
75 * <p>This class is a member of the
76 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
77 * Java Collections Framework</a>.
78 *
79 * @since 1.5
80 * @author Doug Lea
81 * @param <E> the type of elements held in this queue
82 */
83 @SuppressWarnings("unchecked")
84 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
85 implements BlockingQueue<E>, java.io.Serializable {
86 private static final long serialVersionUID = 5595510919245408276L;
87
88 /*
89 * The implementation uses an array-based binary heap, with public
90 * operations protected with a single lock. However, allocation
91 * during resizing uses a simple spinlock (used only while not
92 * holding main lock) in order to allow takes to operate
93 * concurrently with allocation. This avoids repeated
94 * postponement of waiting consumers and consequent element
95 * build-up. The need to back away from lock during allocation
96 * makes it impossible to simply wrap delegated
97 * java.util.PriorityQueue operations within a lock, as was done
98 * in a previous version of this class. To maintain
99 * interoperability, a plain PriorityQueue is still used during
100 * serialization, which maintains compatibility at the expense of
101 * transiently doubling overhead.
102 */
103
104 /**
105 * Default array capacity.
106 */
107 private static final int DEFAULT_INITIAL_CAPACITY = 11;
108
109 /**
110 * The maximum size of array to allocate.
111 * Some VMs reserve some header words in an array.
112 * Attempts to allocate larger arrays may result in
113 * OutOfMemoryError: Requested array size exceeds VM limit
114 */
115 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
116
117 /**
118 * Priority queue represented as a balanced binary heap: the two
119 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
120 * priority queue is ordered by comparator, or by the elements'
121 * natural ordering, if comparator is null: For each node n in the
122 * heap and each descendant d of n, n <= d. The element with the
123 * lowest value is in queue[0], assuming the queue is nonempty.
124 */
125 private transient Object[] queue;
126
127 /**
128 * The number of elements in the priority queue.
129 */
130 private transient int size;
131
132 /**
133 * The comparator, or null if priority queue uses elements'
134 * natural ordering.
135 */
136 private transient Comparator<? super E> comparator;
137
138 /**
139 * Lock used for all public operations.
140 */
141 private final ReentrantLock lock;
142
143 /**
144 * Condition for blocking when empty.
145 */
146 private final Condition notEmpty;
147
148 /**
149 * Spinlock for allocation, acquired via CAS.
150 */
151 private transient volatile int allocationSpinLock;
152
153 /**
154 * A plain PriorityQueue used only for serialization,
155 * to maintain compatibility with previous versions
156 * of this class. Non-null only during serialization/deserialization.
157 */
158 private PriorityQueue<E> q;
159
160 /**
161 * Creates a {@code PriorityBlockingQueue} with the default
162 * initial capacity (11) that orders its elements according to
163 * their {@linkplain Comparable natural ordering}.
164 */
165 public PriorityBlockingQueue() {
166 this(DEFAULT_INITIAL_CAPACITY, null);
167 }
168
169 /**
170 * Creates a {@code PriorityBlockingQueue} with the specified
171 * initial capacity that orders its elements according to their
172 * {@linkplain Comparable natural ordering}.
173 *
174 * @param initialCapacity the initial capacity for this priority queue
175 * @throws IllegalArgumentException if {@code initialCapacity} is less
176 * than 1
177 */
178 public PriorityBlockingQueue(int initialCapacity) {
179 this(initialCapacity, null);
180 }
181
182 /**
183 * Creates a {@code PriorityBlockingQueue} with the specified initial
184 * capacity that orders its elements according to the specified
185 * comparator.
186 *
187 * @param initialCapacity the initial capacity for this priority queue
188 * @param comparator the comparator that will be used to order this
189 * priority queue. If {@code null}, the {@linkplain Comparable
190 * natural ordering} of the elements will be used.
191 * @throws IllegalArgumentException if {@code initialCapacity} is less
192 * than 1
193 */
194 public PriorityBlockingQueue(int initialCapacity,
195 Comparator<? super E> comparator) {
196 if (initialCapacity < 1)
197 throw new IllegalArgumentException();
198 this.lock = new ReentrantLock();
199 this.notEmpty = lock.newCondition();
200 this.comparator = comparator;
201 this.queue = new Object[initialCapacity];
202 }
203
204 /**
205 * Creates a {@code PriorityBlockingQueue} containing the elements
206 * in the specified collection. If the specified collection is a
207 * {@link SortedSet} or a {@link PriorityQueue}, this
208 * priority queue will be ordered according to the same ordering.
209 * Otherwise, this priority queue will be ordered according to the
210 * {@linkplain Comparable natural ordering} of its elements.
211 *
212 * @param c the collection whose elements are to be placed
213 * into this priority queue
214 * @throws ClassCastException if elements of the specified collection
215 * cannot be compared to one another according to the priority
216 * queue's ordering
217 * @throws NullPointerException if the specified collection or any
218 * of its elements are null
219 */
220 public PriorityBlockingQueue(Collection<? extends E> c) {
221 this.lock = new ReentrantLock();
222 this.notEmpty = lock.newCondition();
223 boolean heapify = true; // true if not known to be in heap order
224 boolean screen = true; // true if must screen for nulls
225 if (c instanceof SortedSet<?>) {
226 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
227 this.comparator = (Comparator<? super E>) ss.comparator();
228 heapify = false;
229 }
230 else if (c instanceof PriorityBlockingQueue<?>) {
231 PriorityBlockingQueue<? extends E> pq =
232 (PriorityBlockingQueue<? extends E>) c;
233 this.comparator = (Comparator<? super E>) pq.comparator();
234 screen = false;
235 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
236 heapify = false;
237 }
238 Object[] a = c.toArray();
239 int n = a.length;
240 // If c.toArray incorrectly doesn't return Object[], copy it.
241 if (a.getClass() != Object[].class)
242 a = Arrays.copyOf(a, n, Object[].class);
243 if (screen && (n == 1 || this.comparator != null)) {
244 for (Object elt : a)
245 if (elt == null)
246 throw new NullPointerException();
247 }
248 this.queue = a;
249 this.size = n;
250 if (heapify)
251 heapify();
252 }
253
254 /**
255 * Tries to grow array to accommodate at least one more element
256 * (but normally expand by about 50%), giving up (allowing retry)
257 * on contention (which we expect to be rare). Call only while
258 * holding lock.
259 *
260 * @param array the heap array
261 * @param oldCap the length of the array
262 */
263 private void tryGrow(Object[] array, int oldCap) {
264 lock.unlock(); // must release and then re-acquire main lock
265 Object[] newArray = null;
266 if (allocationSpinLock == 0 &&
267 ALLOCATIONSPINLOCK.compareAndSet(this, 0, 1)) {
268 try {
269 int newCap = oldCap + ((oldCap < 64) ?
270 (oldCap + 2) : // grow faster if small
271 (oldCap >> 1));
272 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
273 int minCap = oldCap + 1;
274 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
275 throw new OutOfMemoryError();
276 newCap = MAX_ARRAY_SIZE;
277 }
278 if (newCap > oldCap && queue == array)
279 newArray = new Object[newCap];
280 } finally {
281 allocationSpinLock = 0;
282 }
283 }
284 if (newArray == null) // back off if another thread is allocating
285 Thread.yield();
286 lock.lock();
287 if (newArray != null && queue == array) {
288 queue = newArray;
289 System.arraycopy(array, 0, newArray, 0, oldCap);
290 }
291 }
292
293 /**
294 * Mechanics for poll(). Call only while holding lock.
295 */
296 private E dequeue() {
297 int n = size - 1;
298 if (n < 0)
299 return null;
300 else {
301 Object[] array = queue;
302 E result = (E) array[0];
303 E x = (E) array[n];
304 array[n] = null;
305 Comparator<? super E> cmp = comparator;
306 if (cmp == null)
307 siftDownComparable(0, x, array, n);
308 else
309 siftDownUsingComparator(0, x, array, n, cmp);
310 size = n;
311 return result;
312 }
313 }
314
315 /**
316 * Inserts item x at position k, maintaining heap invariant by
317 * promoting x up the tree until it is greater than or equal to
318 * its parent, or is the root.
319 *
320 * To simplify and speed up coercions and comparisons, the
321 * Comparable and Comparator versions are separated into different
322 * methods that are otherwise identical. (Similarly for siftDown.)
323 *
324 * @param k the position to fill
325 * @param x the item to insert
326 * @param array the heap array
327 */
328 private static <T> void siftUpComparable(int k, T x, Object[] array) {
329 Comparable<? super T> key = (Comparable<? super T>) x;
330 while (k > 0) {
331 int parent = (k - 1) >>> 1;
332 Object e = array[parent];
333 if (key.compareTo((T) e) >= 0)
334 break;
335 array[k] = e;
336 k = parent;
337 }
338 array[k] = key;
339 }
340
341 private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
342 Comparator<? super T> cmp) {
343 while (k > 0) {
344 int parent = (k - 1) >>> 1;
345 Object e = array[parent];
346 if (cmp.compare(x, (T) e) >= 0)
347 break;
348 array[k] = e;
349 k = parent;
350 }
351 array[k] = x;
352 }
353
354 /**
355 * Inserts item x at position k, maintaining heap invariant by
356 * demoting x down the tree repeatedly until it is less than or
357 * equal to its children or is a leaf.
358 *
359 * @param k the position to fill
360 * @param x the item to insert
361 * @param array the heap array
362 * @param n heap size
363 */
364 private static <T> void siftDownComparable(int k, T x, Object[] array,
365 int n) {
366 if (n > 0) {
367 Comparable<? super T> key = (Comparable<? super T>)x;
368 int half = n >>> 1; // loop while a non-leaf
369 while (k < half) {
370 int child = (k << 1) + 1; // assume left child is least
371 Object c = array[child];
372 int right = child + 1;
373 if (right < n &&
374 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
375 c = array[child = right];
376 if (key.compareTo((T) c) <= 0)
377 break;
378 array[k] = c;
379 k = child;
380 }
381 array[k] = key;
382 }
383 }
384
385 private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
386 int n,
387 Comparator<? super T> cmp) {
388 if (n > 0) {
389 int half = n >>> 1;
390 while (k < half) {
391 int child = (k << 1) + 1;
392 Object c = array[child];
393 int right = child + 1;
394 if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
395 c = array[child = right];
396 if (cmp.compare(x, (T) c) <= 0)
397 break;
398 array[k] = c;
399 k = child;
400 }
401 array[k] = x;
402 }
403 }
404
405 /**
406 * Establishes the heap invariant (described above) in the entire tree,
407 * assuming nothing about the order of the elements prior to the call.
408 * This classic algorithm due to Floyd (1964) is known to be O(size).
409 */
410 private void heapify() {
411 Object[] array = queue;
412 int n = size, i = (n >>> 1) - 1;
413 Comparator<? super E> cmp = comparator;
414 if (cmp == null) {
415 for (; i >= 0; i--)
416 siftDownComparable(i, (E) array[i], array, n);
417 }
418 else {
419 for (; i >= 0; i--)
420 siftDownUsingComparator(i, (E) array[i], array, n, cmp);
421 }
422 }
423
424 /**
425 * Inserts the specified element into this priority queue.
426 *
427 * @param e the element to add
428 * @return {@code true} (as specified by {@link Collection#add})
429 * @throws ClassCastException if the specified element cannot be compared
430 * with elements currently in the priority queue according to the
431 * priority queue's ordering
432 * @throws NullPointerException if the specified element is null
433 */
434 public boolean add(E e) {
435 return offer(e);
436 }
437
438 /**
439 * Inserts the specified element into this priority queue.
440 * As the queue is unbounded, this method will never return {@code false}.
441 *
442 * @param e the element to add
443 * @return {@code true} (as specified by {@link Queue#offer})
444 * @throws ClassCastException if the specified element cannot be compared
445 * with elements currently in the priority queue according to the
446 * priority queue's ordering
447 * @throws NullPointerException if the specified element is null
448 */
449 public boolean offer(E e) {
450 if (e == null)
451 throw new NullPointerException();
452 final ReentrantLock lock = this.lock;
453 lock.lock();
454 int n, cap;
455 Object[] array;
456 while ((n = size) >= (cap = (array = queue).length))
457 tryGrow(array, cap);
458 try {
459 Comparator<? super E> cmp = comparator;
460 if (cmp == null)
461 siftUpComparable(n, e, array);
462 else
463 siftUpUsingComparator(n, e, array, cmp);
464 size = n + 1;
465 notEmpty.signal();
466 } finally {
467 lock.unlock();
468 }
469 return true;
470 }
471
472 /**
473 * Inserts the specified element into this priority queue.
474 * As the queue is unbounded, this method will never block.
475 *
476 * @param e the element to add
477 * @throws ClassCastException if the specified element cannot be compared
478 * with elements currently in the priority queue according to the
479 * priority queue's ordering
480 * @throws NullPointerException if the specified element is null
481 */
482 public void put(E e) {
483 offer(e); // never need to block
484 }
485
486 /**
487 * Inserts the specified element into this priority queue.
488 * As the queue is unbounded, this method will never block or
489 * return {@code false}.
490 *
491 * @param e the element to add
492 * @param timeout This parameter is ignored as the method never blocks
493 * @param unit This parameter is ignored as the method never blocks
494 * @return {@code true} (as specified by
495 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
496 * @throws ClassCastException if the specified element cannot be compared
497 * with elements currently in the priority queue according to the
498 * priority queue's ordering
499 * @throws NullPointerException if the specified element is null
500 */
501 public boolean offer(E e, long timeout, TimeUnit unit) {
502 return offer(e); // never need to block
503 }
504
505 public E poll() {
506 final ReentrantLock lock = this.lock;
507 lock.lock();
508 try {
509 return dequeue();
510 } finally {
511 lock.unlock();
512 }
513 }
514
515 public E take() throws InterruptedException {
516 final ReentrantLock lock = this.lock;
517 lock.lockInterruptibly();
518 E result;
519 try {
520 while ( (result = dequeue()) == null)
521 notEmpty.await();
522 } finally {
523 lock.unlock();
524 }
525 return result;
526 }
527
528 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
529 long nanos = unit.toNanos(timeout);
530 final ReentrantLock lock = this.lock;
531 lock.lockInterruptibly();
532 E result;
533 try {
534 while ( (result = dequeue()) == null && nanos > 0)
535 nanos = notEmpty.awaitNanos(nanos);
536 } finally {
537 lock.unlock();
538 }
539 return result;
540 }
541
542 public E peek() {
543 final ReentrantLock lock = this.lock;
544 lock.lock();
545 try {
546 return (size == 0) ? null : (E) queue[0];
547 } finally {
548 lock.unlock();
549 }
550 }
551
552 /**
553 * Returns the comparator used to order the elements in this queue,
554 * or {@code null} if this queue uses the {@linkplain Comparable
555 * natural ordering} of its elements.
556 *
557 * @return the comparator used to order the elements in this queue,
558 * or {@code null} if this queue uses the natural
559 * ordering of its elements
560 */
561 public Comparator<? super E> comparator() {
562 return comparator;
563 }
564
565 public int size() {
566 final ReentrantLock lock = this.lock;
567 lock.lock();
568 try {
569 return size;
570 } finally {
571 lock.unlock();
572 }
573 }
574
575 /**
576 * Always returns {@code Integer.MAX_VALUE} because
577 * a {@code PriorityBlockingQueue} is not capacity constrained.
578 * @return {@code Integer.MAX_VALUE} always
579 */
580 public int remainingCapacity() {
581 return Integer.MAX_VALUE;
582 }
583
584 private int indexOf(Object o) {
585 if (o != null) {
586 final Object[] es = queue;
587 for (int i = 0, n = size; i < n; i++)
588 if (o.equals(es[i]))
589 return i;
590 }
591 return -1;
592 }
593
594 /**
595 * Removes the ith element from queue.
596 */
597 private void removeAt(int i) {
598 Object[] array = queue;
599 int n = size - 1;
600 if (n == i) // removed last element
601 array[i] = null;
602 else {
603 E moved = (E) array[n];
604 array[n] = null;
605 Comparator<? super E> cmp = comparator;
606 if (cmp == null)
607 siftDownComparable(i, moved, array, n);
608 else
609 siftDownUsingComparator(i, moved, array, n, cmp);
610 if (array[i] == moved) {
611 if (cmp == null)
612 siftUpComparable(i, moved, array);
613 else
614 siftUpUsingComparator(i, moved, array, cmp);
615 }
616 }
617 size = n;
618 }
619
620 /**
621 * Removes a single instance of the specified element from this queue,
622 * if it is present. More formally, removes an element {@code e} such
623 * that {@code o.equals(e)}, if this queue contains one or more such
624 * elements. Returns {@code true} if and only if this queue contained
625 * the specified element (or equivalently, if this queue changed as a
626 * result of the call).
627 *
628 * @param o element to be removed from this queue, if present
629 * @return {@code true} if this queue changed as a result of the call
630 */
631 public boolean remove(Object o) {
632 final ReentrantLock lock = this.lock;
633 lock.lock();
634 try {
635 int i = indexOf(o);
636 if (i == -1)
637 return false;
638 removeAt(i);
639 return true;
640 } finally {
641 lock.unlock();
642 }
643 }
644
645 /**
646 * Identity-based version for use in Itr.remove.
647 *
648 * @param o element to be removed from this queue, if present
649 */
650 void removeEq(Object o) {
651 final ReentrantLock lock = this.lock;
652 lock.lock();
653 try {
654 final Object[] es = queue;
655 for (int i = 0, n = size; i < n; i++) {
656 if (o == es[i]) {
657 removeAt(i);
658 break;
659 }
660 }
661 } finally {
662 lock.unlock();
663 }
664 }
665
666 /**
667 * Returns {@code true} if this queue contains the specified element.
668 * More formally, returns {@code true} if and only if this queue contains
669 * at least one element {@code e} such that {@code o.equals(e)}.
670 *
671 * @param o object to be checked for containment in this queue
672 * @return {@code true} if this queue contains the specified element
673 */
674 public boolean contains(Object o) {
675 final ReentrantLock lock = this.lock;
676 lock.lock();
677 try {
678 return indexOf(o) != -1;
679 } finally {
680 lock.unlock();
681 }
682 }
683
684 public String toString() {
685 return Helpers.collectionToString(this);
686 }
687
688 /**
689 * @throws UnsupportedOperationException {@inheritDoc}
690 * @throws ClassCastException {@inheritDoc}
691 * @throws NullPointerException {@inheritDoc}
692 * @throws IllegalArgumentException {@inheritDoc}
693 */
694 public int drainTo(Collection<? super E> c) {
695 return drainTo(c, Integer.MAX_VALUE);
696 }
697
698 /**
699 * @throws UnsupportedOperationException {@inheritDoc}
700 * @throws ClassCastException {@inheritDoc}
701 * @throws NullPointerException {@inheritDoc}
702 * @throws IllegalArgumentException {@inheritDoc}
703 */
704 public int drainTo(Collection<? super E> c, int maxElements) {
705 Objects.requireNonNull(c);
706 if (c == this)
707 throw new IllegalArgumentException();
708 if (maxElements <= 0)
709 return 0;
710 final ReentrantLock lock = this.lock;
711 lock.lock();
712 try {
713 int n = Math.min(size, maxElements);
714 for (int i = 0; i < n; i++) {
715 c.add((E) queue[0]); // In this order, in case add() throws.
716 dequeue();
717 }
718 return n;
719 } finally {
720 lock.unlock();
721 }
722 }
723
724 /**
725 * Atomically removes all of the elements from this queue.
726 * The queue will be empty after this call returns.
727 */
728 public void clear() {
729 final ReentrantLock lock = this.lock;
730 lock.lock();
731 try {
732 final Object[] es = queue;
733 for (int i = 0, n = size; i < n; i++)
734 es[i] = null;
735 size = 0;
736 } finally {
737 lock.unlock();
738 }
739 }
740
741 /**
742 * Returns an array containing all of the elements in this queue.
743 * The returned array elements are in no particular order.
744 *
745 * <p>The returned array will be "safe" in that no references to it are
746 * maintained by this queue. (In other words, this method must allocate
747 * a new array). The caller is thus free to modify the returned array.
748 *
749 * <p>This method acts as bridge between array-based and collection-based
750 * APIs.
751 *
752 * @return an array containing all of the elements in this queue
753 */
754 public Object[] toArray() {
755 final ReentrantLock lock = this.lock;
756 lock.lock();
757 try {
758 return Arrays.copyOf(queue, size);
759 } finally {
760 lock.unlock();
761 }
762 }
763
764 /**
765 * Returns an array containing all of the elements in this queue; the
766 * runtime type of the returned array is that of the specified array.
767 * The returned array elements are in no particular order.
768 * If the queue fits in the specified array, it is returned therein.
769 * Otherwise, a new array is allocated with the runtime type of the
770 * specified array and the size of this queue.
771 *
772 * <p>If this queue fits in the specified array with room to spare
773 * (i.e., the array has more elements than this queue), the element in
774 * the array immediately following the end of the queue is set to
775 * {@code null}.
776 *
777 * <p>Like the {@link #toArray()} method, this method acts as bridge between
778 * array-based and collection-based APIs. Further, this method allows
779 * precise control over the runtime type of the output array, and may,
780 * under certain circumstances, be used to save allocation costs.
781 *
782 * <p>Suppose {@code x} is a queue known to contain only strings.
783 * The following code can be used to dump the queue into a newly
784 * allocated array of {@code String}:
785 *
786 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
787 *
788 * Note that {@code toArray(new Object[0])} is identical in function to
789 * {@code toArray()}.
790 *
791 * @param a the array into which the elements of the queue are to
792 * be stored, if it is big enough; otherwise, a new array of the
793 * same runtime type is allocated for this purpose
794 * @return an array containing all of the elements in this queue
795 * @throws ArrayStoreException if the runtime type of the specified array
796 * is not a supertype of the runtime type of every element in
797 * this queue
798 * @throws NullPointerException if the specified array is null
799 */
800 public <T> T[] toArray(T[] a) {
801 final ReentrantLock lock = this.lock;
802 lock.lock();
803 try {
804 int n = size;
805 if (a.length < n)
806 // Make a new array of a's runtime type, but my contents:
807 return (T[]) Arrays.copyOf(queue, size, a.getClass());
808 System.arraycopy(queue, 0, a, 0, n);
809 if (a.length > n)
810 a[n] = null;
811 return a;
812 } finally {
813 lock.unlock();
814 }
815 }
816
817 /**
818 * Returns an iterator over the elements in this queue. The
819 * iterator does not return the elements in any particular order.
820 *
821 * <p>The returned iterator is
822 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
823 *
824 * @return an iterator over the elements in this queue
825 */
826 public Iterator<E> iterator() {
827 return new Itr(toArray());
828 }
829
830 /**
831 * Snapshot iterator that works off copy of underlying q array.
832 */
833 final class Itr implements Iterator<E> {
834 final Object[] array; // Array of all elements
835 int cursor; // index of next element to return
836 int lastRet; // index of last element, or -1 if no such
837
838 Itr(Object[] array) {
839 lastRet = -1;
840 this.array = array;
841 }
842
843 public boolean hasNext() {
844 return cursor < array.length;
845 }
846
847 public E next() {
848 if (cursor >= array.length)
849 throw new NoSuchElementException();
850 return (E)array[lastRet = cursor++];
851 }
852
853 public void remove() {
854 if (lastRet < 0)
855 throw new IllegalStateException();
856 removeEq(array[lastRet]);
857 lastRet = -1;
858 }
859 }
860
861 /**
862 * Saves this queue to a stream (that is, serializes it).
863 *
864 * For compatibility with previous version of this class, elements
865 * are first copied to a java.util.PriorityQueue, which is then
866 * serialized.
867 *
868 * @param s the stream
869 * @throws java.io.IOException if an I/O error occurs
870 */
871 private void writeObject(java.io.ObjectOutputStream s)
872 throws java.io.IOException {
873 lock.lock();
874 try {
875 // avoid zero capacity argument
876 q = new PriorityQueue<E>(Math.max(size, 1), comparator);
877 q.addAll(this);
878 s.defaultWriteObject();
879 } finally {
880 q = null;
881 lock.unlock();
882 }
883 }
884
885 /**
886 * Reconstitutes this queue from a stream (that is, deserializes it).
887 * @param s the stream
888 * @throws ClassNotFoundException if the class of a serialized object
889 * could not be found
890 * @throws java.io.IOException if an I/O error occurs
891 */
892 private void readObject(java.io.ObjectInputStream s)
893 throws java.io.IOException, ClassNotFoundException {
894 try {
895 s.defaultReadObject();
896 int sz = q.size();
897 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, sz);
898 this.queue = new Object[sz];
899 comparator = q.comparator();
900 addAll(q);
901 } finally {
902 q = null;
903 }
904 }
905
906 /**
907 * Immutable snapshot spliterator that binds to elements "late".
908 */
909 final class PBQSpliterator implements Spliterator<E> {
910 Object[] array; // null until late-bound-initialized
911 int index;
912 int fence;
913
914 PBQSpliterator() {}
915
916 PBQSpliterator(Object[] array, int index, int fence) {
917 this.array = array;
918 this.index = index;
919 this.fence = fence;
920 }
921
922 private int getFence() {
923 if (array == null)
924 fence = (array = toArray()).length;
925 return fence;
926 }
927
928 public PBQSpliterator trySplit() {
929 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
930 return (lo >= mid) ? null :
931 new PBQSpliterator(array, lo, index = mid);
932 }
933
934 public void forEachRemaining(Consumer<? super E> action) {
935 Objects.requireNonNull(action);
936 final int hi = getFence(), lo = index;
937 final Object[] a = array;
938 index = hi; // ensure exhaustion
939 for (int i = lo; i < hi; i++)
940 action.accept((E) a[i]);
941 }
942
943 public boolean tryAdvance(Consumer<? super E> action) {
944 Objects.requireNonNull(action);
945 if (getFence() > index && index >= 0) {
946 action.accept((E) array[index++]);
947 return true;
948 }
949 return false;
950 }
951
952 public long estimateSize() { return getFence() - index; }
953
954 public int characteristics() {
955 return (Spliterator.NONNULL |
956 Spliterator.SIZED |
957 Spliterator.SUBSIZED);
958 }
959 }
960
961 /**
962 * Returns a {@link Spliterator} over the elements in this queue.
963 * The spliterator does not traverse elements in any particular order
964 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
965 *
966 * <p>The returned spliterator is
967 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
968 *
969 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
970 * {@link Spliterator#NONNULL}.
971 *
972 * @implNote
973 * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}.
974 *
975 * @return a {@code Spliterator} over the elements in this queue
976 * @since 1.8
977 */
978 public Spliterator<E> spliterator() {
979 return new PBQSpliterator();
980 }
981
982 /**
983 * @throws NullPointerException {@inheritDoc}
984 */
985 public void forEach(Consumer<? super E> action) {
986 Objects.requireNonNull(action);
987 final ReentrantLock lock = this.lock;
988 lock.lock();
989 try {
990 final Object[] es = queue;
991 for (int i = 0, n = size; i < n; i++)
992 action.accept((E) es[i]);
993 } finally {
994 lock.unlock();
995 }
996 }
997
998 // VarHandle mechanics
999 private static final VarHandle ALLOCATIONSPINLOCK;
1000 static {
1001 try {
1002 MethodHandles.Lookup l = MethodHandles.lookup();
1003 ALLOCATIONSPINLOCK = l.findVarHandle(PriorityBlockingQueue.class,
1004 "allocationSpinLock",
1005 int.class);
1006 } catch (ReflectiveOperationException e) {
1007 throw new ExceptionInInitializerError(e);
1008 }
1009 }
1010 }