ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.137
Committed: Sun May 6 22:53:18 2018 UTC (6 years ago) by jsr166
Branch: MAIN
Changes since 1.136: +13 -0 lines
Log Message:
Implement Itr.forEachRemaining

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.invoke.MethodHandles;
10 import java.lang.invoke.VarHandle;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Comparator;
15 import java.util.Iterator;
16 import java.util.NoSuchElementException;
17 import java.util.Objects;
18 import java.util.PriorityQueue;
19 import java.util.Queue;
20 import java.util.SortedSet;
21 import java.util.Spliterator;
22 import java.util.concurrent.locks.Condition;
23 import java.util.concurrent.locks.ReentrantLock;
24 import java.util.function.Consumer;
25 import jdk.internal.misc.SharedSecrets;
26
27 /**
28 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
29 * the same ordering rules as class {@link PriorityQueue} and supplies
30 * blocking retrieval operations. While this queue is logically
31 * unbounded, attempted additions may fail due to resource exhaustion
32 * (causing {@code OutOfMemoryError}). This class does not permit
33 * {@code null} elements. A priority queue relying on {@linkplain
34 * Comparable natural ordering} also does not permit insertion of
35 * non-comparable objects (doing so results in
36 * {@code ClassCastException}).
37 *
38 * <p>This class and its iterator implement all of the <em>optional</em>
39 * methods of the {@link Collection} and {@link Iterator} interfaces.
40 * The Iterator provided in method {@link #iterator()} and the
41 * Spliterator provided in method {@link #spliterator()} are <em>not</em>
42 * guaranteed to traverse the elements of the PriorityBlockingQueue in
43 * any particular order. If you need ordered traversal, consider using
44 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} can
45 * be used to <em>remove</em> some or all elements in priority order and
46 * place them in another collection.
47 *
48 * <p>Operations on this class make no guarantees about the ordering
49 * of elements with equal priority. If you need to enforce an
50 * ordering, you can define custom classes or comparators that use a
51 * secondary key to break ties in primary priority values. For
52 * example, here is a class that applies first-in-first-out
53 * tie-breaking to comparable elements. To use it, you would insert a
54 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
55 *
56 * <pre> {@code
57 * class FIFOEntry<E extends Comparable<? super E>>
58 * implements Comparable<FIFOEntry<E>> {
59 * static final AtomicLong seq = new AtomicLong(0);
60 * final long seqNum;
61 * final E entry;
62 * public FIFOEntry(E entry) {
63 * seqNum = seq.getAndIncrement();
64 * this.entry = entry;
65 * }
66 * public E getEntry() { return entry; }
67 * public int compareTo(FIFOEntry<E> other) {
68 * int res = entry.compareTo(other.entry);
69 * if (res == 0 && other.entry != this.entry)
70 * res = (seqNum < other.seqNum ? -1 : 1);
71 * return res;
72 * }
73 * }}</pre>
74 *
75 * <p>This class is a member of the
76 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
77 * Java Collections Framework</a>.
78 *
79 * @since 1.5
80 * @author Doug Lea
81 * @param <E> the type of elements held in this queue
82 */
83 @SuppressWarnings("unchecked")
84 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
85 implements BlockingQueue<E>, java.io.Serializable {
86 private static final long serialVersionUID = 5595510919245408276L;
87
88 /*
89 * The implementation uses an array-based binary heap, with public
90 * operations protected with a single lock. However, allocation
91 * during resizing uses a simple spinlock (used only while not
92 * holding main lock) in order to allow takes to operate
93 * concurrently with allocation. This avoids repeated
94 * postponement of waiting consumers and consequent element
95 * build-up. The need to back away from lock during allocation
96 * makes it impossible to simply wrap delegated
97 * java.util.PriorityQueue operations within a lock, as was done
98 * in a previous version of this class. To maintain
99 * interoperability, a plain PriorityQueue is still used during
100 * serialization, which maintains compatibility at the expense of
101 * transiently doubling overhead.
102 */
103
104 /**
105 * Default array capacity.
106 */
107 private static final int DEFAULT_INITIAL_CAPACITY = 11;
108
109 /**
110 * The maximum size of array to allocate.
111 * Some VMs reserve some header words in an array.
112 * Attempts to allocate larger arrays may result in
113 * OutOfMemoryError: Requested array size exceeds VM limit
114 */
115 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
116
117 /**
118 * Priority queue represented as a balanced binary heap: the two
119 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
120 * priority queue is ordered by comparator, or by the elements'
121 * natural ordering, if comparator is null: For each node n in the
122 * heap and each descendant d of n, n <= d. The element with the
123 * lowest value is in queue[0], assuming the queue is nonempty.
124 */
125 private transient Object[] queue;
126
127 /**
128 * The number of elements in the priority queue.
129 */
130 private transient int size;
131
132 /**
133 * The comparator, or null if priority queue uses elements'
134 * natural ordering.
135 */
136 private transient Comparator<? super E> comparator;
137
138 /**
139 * Lock used for all public operations.
140 */
141 private final ReentrantLock lock = new ReentrantLock();
142
143 /**
144 * Condition for blocking when empty.
145 */
146 private final Condition notEmpty = lock.newCondition();
147
148 /**
149 * Spinlock for allocation, acquired via CAS.
150 */
151 private transient volatile int allocationSpinLock;
152
153 /**
154 * A plain PriorityQueue used only for serialization,
155 * to maintain compatibility with previous versions
156 * of this class. Non-null only during serialization/deserialization.
157 */
158 private PriorityQueue<E> q;
159
160 /**
161 * Creates a {@code PriorityBlockingQueue} with the default
162 * initial capacity (11) that orders its elements according to
163 * their {@linkplain Comparable natural ordering}.
164 */
165 public PriorityBlockingQueue() {
166 this(DEFAULT_INITIAL_CAPACITY, null);
167 }
168
169 /**
170 * Creates a {@code PriorityBlockingQueue} with the specified
171 * initial capacity that orders its elements according to their
172 * {@linkplain Comparable natural ordering}.
173 *
174 * @param initialCapacity the initial capacity for this priority queue
175 * @throws IllegalArgumentException if {@code initialCapacity} is less
176 * than 1
177 */
178 public PriorityBlockingQueue(int initialCapacity) {
179 this(initialCapacity, null);
180 }
181
182 /**
183 * Creates a {@code PriorityBlockingQueue} with the specified initial
184 * capacity that orders its elements according to the specified
185 * comparator.
186 *
187 * @param initialCapacity the initial capacity for this priority queue
188 * @param comparator the comparator that will be used to order this
189 * priority queue. If {@code null}, the {@linkplain Comparable
190 * natural ordering} of the elements will be used.
191 * @throws IllegalArgumentException if {@code initialCapacity} is less
192 * than 1
193 */
194 public PriorityBlockingQueue(int initialCapacity,
195 Comparator<? super E> comparator) {
196 if (initialCapacity < 1)
197 throw new IllegalArgumentException();
198 this.comparator = comparator;
199 this.queue = new Object[Math.max(1, initialCapacity)];
200 }
201
202 /**
203 * Creates a {@code PriorityBlockingQueue} containing the elements
204 * in the specified collection. If the specified collection is a
205 * {@link SortedSet} or a {@link PriorityQueue}, this
206 * priority queue will be ordered according to the same ordering.
207 * Otherwise, this priority queue will be ordered according to the
208 * {@linkplain Comparable natural ordering} of its elements.
209 *
210 * @param c the collection whose elements are to be placed
211 * into this priority queue
212 * @throws ClassCastException if elements of the specified collection
213 * cannot be compared to one another according to the priority
214 * queue's ordering
215 * @throws NullPointerException if the specified collection or any
216 * of its elements are null
217 */
218 public PriorityBlockingQueue(Collection<? extends E> c) {
219 boolean heapify = true; // true if not known to be in heap order
220 boolean screen = true; // true if must screen for nulls
221 if (c instanceof SortedSet<?>) {
222 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
223 this.comparator = (Comparator<? super E>) ss.comparator();
224 heapify = false;
225 }
226 else if (c instanceof PriorityBlockingQueue<?>) {
227 PriorityBlockingQueue<? extends E> pq =
228 (PriorityBlockingQueue<? extends E>) c;
229 this.comparator = (Comparator<? super E>) pq.comparator();
230 screen = false;
231 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
232 heapify = false;
233 }
234 Object[] es = c.toArray();
235 int n = es.length;
236 // If c.toArray incorrectly doesn't return Object[], copy it.
237 if (es.getClass() != Object[].class)
238 es = Arrays.copyOf(es, n, Object[].class);
239 if (screen && (n == 1 || this.comparator != null)) {
240 for (Object e : es)
241 if (e == null)
242 throw new NullPointerException();
243 }
244 this.queue = ensureNonEmpty(es);
245 this.size = n;
246 if (heapify)
247 heapify();
248 }
249
250 /** Ensures that queue[0] exists, helping peek() and poll(). */
251 private static Object[] ensureNonEmpty(Object[] es) {
252 return (es.length > 0) ? es : new Object[1];
253 }
254
255 /**
256 * Tries to grow array to accommodate at least one more element
257 * (but normally expand by about 50%), giving up (allowing retry)
258 * on contention (which we expect to be rare). Call only while
259 * holding lock.
260 *
261 * @param array the heap array
262 * @param oldCap the length of the array
263 */
264 private void tryGrow(Object[] array, int oldCap) {
265 lock.unlock(); // must release and then re-acquire main lock
266 Object[] newArray = null;
267 if (allocationSpinLock == 0 &&
268 ALLOCATIONSPINLOCK.compareAndSet(this, 0, 1)) {
269 try {
270 int newCap = oldCap + ((oldCap < 64) ?
271 (oldCap + 2) : // grow faster if small
272 (oldCap >> 1));
273 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
274 int minCap = oldCap + 1;
275 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
276 throw new OutOfMemoryError();
277 newCap = MAX_ARRAY_SIZE;
278 }
279 if (newCap > oldCap && queue == array)
280 newArray = new Object[newCap];
281 } finally {
282 allocationSpinLock = 0;
283 }
284 }
285 if (newArray == null) // back off if another thread is allocating
286 Thread.yield();
287 lock.lock();
288 if (newArray != null && queue == array) {
289 queue = newArray;
290 System.arraycopy(array, 0, newArray, 0, oldCap);
291 }
292 }
293
294 /**
295 * Mechanics for poll(). Call only while holding lock.
296 */
297 private E dequeue() {
298 // assert lock.isHeldByCurrentThread();
299 final Object[] es;
300 final E result;
301
302 if ((result = (E) ((es = queue)[0])) != null) {
303 final int n;
304 final E x = (E) es[(n = --size)];
305 es[n] = null;
306 if (n > 0) {
307 final Comparator<? super E> cmp;
308 if ((cmp = comparator) == null)
309 siftDownComparable(0, x, es, n);
310 else
311 siftDownUsingComparator(0, x, es, n, cmp);
312 }
313 }
314 return result;
315 }
316
317 /**
318 * Inserts item x at position k, maintaining heap invariant by
319 * promoting x up the tree until it is greater than or equal to
320 * its parent, or is the root.
321 *
322 * To simplify and speed up coercions and comparisons, the
323 * Comparable and Comparator versions are separated into different
324 * methods that are otherwise identical. (Similarly for siftDown.)
325 *
326 * @param k the position to fill
327 * @param x the item to insert
328 * @param es the heap array
329 */
330 private static <T> void siftUpComparable(int k, T x, Object[] es) {
331 Comparable<? super T> key = (Comparable<? super T>) x;
332 while (k > 0) {
333 int parent = (k - 1) >>> 1;
334 Object e = es[parent];
335 if (key.compareTo((T) e) >= 0)
336 break;
337 es[k] = e;
338 k = parent;
339 }
340 es[k] = key;
341 }
342
343 private static <T> void siftUpUsingComparator(
344 int k, T x, Object[] es, Comparator<? super T> cmp) {
345 while (k > 0) {
346 int parent = (k - 1) >>> 1;
347 Object e = es[parent];
348 if (cmp.compare(x, (T) e) >= 0)
349 break;
350 es[k] = e;
351 k = parent;
352 }
353 es[k] = x;
354 }
355
356 /**
357 * Inserts item x at position k, maintaining heap invariant by
358 * demoting x down the tree repeatedly until it is less than or
359 * equal to its children or is a leaf.
360 *
361 * @param k the position to fill
362 * @param x the item to insert
363 * @param es the heap array
364 * @param n heap size
365 */
366 private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
367 // assert n > 0;
368 Comparable<? super T> key = (Comparable<? super T>)x;
369 int half = n >>> 1; // loop while a non-leaf
370 while (k < half) {
371 int child = (k << 1) + 1; // assume left child is least
372 Object c = es[child];
373 int right = child + 1;
374 if (right < n &&
375 ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
376 c = es[child = right];
377 if (key.compareTo((T) c) <= 0)
378 break;
379 es[k] = c;
380 k = child;
381 }
382 es[k] = key;
383 }
384
385 private static <T> void siftDownUsingComparator(
386 int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
387 // assert n > 0;
388 int half = n >>> 1;
389 while (k < half) {
390 int child = (k << 1) + 1;
391 Object c = es[child];
392 int right = child + 1;
393 if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
394 c = es[child = right];
395 if (cmp.compare(x, (T) c) <= 0)
396 break;
397 es[k] = c;
398 k = child;
399 }
400 es[k] = x;
401 }
402
403 /**
404 * Establishes the heap invariant (described above) in the entire tree,
405 * assuming nothing about the order of the elements prior to the call.
406 * This classic algorithm due to Floyd (1964) is known to be O(size).
407 */
408 private void heapify() {
409 final Object[] es = queue;
410 int n = size, i = (n >>> 1) - 1;
411 final Comparator<? super E> cmp;
412 if ((cmp = comparator) == null)
413 for (; i >= 0; i--)
414 siftDownComparable(i, (E) es[i], es, n);
415 else
416 for (; i >= 0; i--)
417 siftDownUsingComparator(i, (E) es[i], es, n, cmp);
418 }
419
420 /**
421 * Inserts the specified element into this priority queue.
422 *
423 * @param e the element to add
424 * @return {@code true} (as specified by {@link Collection#add})
425 * @throws ClassCastException if the specified element cannot be compared
426 * with elements currently in the priority queue according to the
427 * priority queue's ordering
428 * @throws NullPointerException if the specified element is null
429 */
430 public boolean add(E e) {
431 return offer(e);
432 }
433
434 /**
435 * Inserts the specified element into this priority queue.
436 * As the queue is unbounded, this method will never return {@code false}.
437 *
438 * @param e the element to add
439 * @return {@code true} (as specified by {@link Queue#offer})
440 * @throws ClassCastException if the specified element cannot be compared
441 * with elements currently in the priority queue according to the
442 * priority queue's ordering
443 * @throws NullPointerException if the specified element is null
444 */
445 public boolean offer(E e) {
446 if (e == null)
447 throw new NullPointerException();
448 final ReentrantLock lock = this.lock;
449 lock.lock();
450 int n, cap;
451 Object[] array;
452 while ((n = size) >= (cap = (array = queue).length))
453 tryGrow(array, cap);
454 try {
455 final Comparator<? super E> cmp;
456 if ((cmp = comparator) == null)
457 siftUpComparable(n, e, array);
458 else
459 siftUpUsingComparator(n, e, array, cmp);
460 size = n + 1;
461 notEmpty.signal();
462 } finally {
463 lock.unlock();
464 }
465 return true;
466 }
467
468 /**
469 * Inserts the specified element into this priority queue.
470 * As the queue is unbounded, this method will never block.
471 *
472 * @param e the element to add
473 * @throws ClassCastException if the specified element cannot be compared
474 * with elements currently in the priority queue according to the
475 * priority queue's ordering
476 * @throws NullPointerException if the specified element is null
477 */
478 public void put(E e) {
479 offer(e); // never need to block
480 }
481
482 /**
483 * Inserts the specified element into this priority queue.
484 * As the queue is unbounded, this method will never block or
485 * return {@code false}.
486 *
487 * @param e the element to add
488 * @param timeout This parameter is ignored as the method never blocks
489 * @param unit This parameter is ignored as the method never blocks
490 * @return {@code true} (as specified by
491 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
492 * @throws ClassCastException if the specified element cannot be compared
493 * with elements currently in the priority queue according to the
494 * priority queue's ordering
495 * @throws NullPointerException if the specified element is null
496 */
497 public boolean offer(E e, long timeout, TimeUnit unit) {
498 return offer(e); // never need to block
499 }
500
501 public E poll() {
502 final ReentrantLock lock = this.lock;
503 lock.lock();
504 try {
505 return dequeue();
506 } finally {
507 lock.unlock();
508 }
509 }
510
511 public E take() throws InterruptedException {
512 final ReentrantLock lock = this.lock;
513 lock.lockInterruptibly();
514 E result;
515 try {
516 while ( (result = dequeue()) == null)
517 notEmpty.await();
518 } finally {
519 lock.unlock();
520 }
521 return result;
522 }
523
524 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
525 long nanos = unit.toNanos(timeout);
526 final ReentrantLock lock = this.lock;
527 lock.lockInterruptibly();
528 E result;
529 try {
530 while ( (result = dequeue()) == null && nanos > 0)
531 nanos = notEmpty.awaitNanos(nanos);
532 } finally {
533 lock.unlock();
534 }
535 return result;
536 }
537
538 public E peek() {
539 final ReentrantLock lock = this.lock;
540 lock.lock();
541 try {
542 return (E) queue[0];
543 } finally {
544 lock.unlock();
545 }
546 }
547
548 /**
549 * Returns the comparator used to order the elements in this queue,
550 * or {@code null} if this queue uses the {@linkplain Comparable
551 * natural ordering} of its elements.
552 *
553 * @return the comparator used to order the elements in this queue,
554 * or {@code null} if this queue uses the natural
555 * ordering of its elements
556 */
557 public Comparator<? super E> comparator() {
558 return comparator;
559 }
560
561 public int size() {
562 final ReentrantLock lock = this.lock;
563 lock.lock();
564 try {
565 return size;
566 } finally {
567 lock.unlock();
568 }
569 }
570
571 /**
572 * Always returns {@code Integer.MAX_VALUE} because
573 * a {@code PriorityBlockingQueue} is not capacity constrained.
574 * @return {@code Integer.MAX_VALUE} always
575 */
576 public int remainingCapacity() {
577 return Integer.MAX_VALUE;
578 }
579
580 private int indexOf(Object o) {
581 if (o != null) {
582 final Object[] es = queue;
583 for (int i = 0, n = size; i < n; i++)
584 if (o.equals(es[i]))
585 return i;
586 }
587 return -1;
588 }
589
590 /**
591 * Removes the ith element from queue.
592 */
593 private void removeAt(int i) {
594 final Object[] es = queue;
595 final int n = size - 1;
596 if (n == i) // removed last element
597 es[i] = null;
598 else {
599 E moved = (E) es[n];
600 es[n] = null;
601 final Comparator<? super E> cmp;
602 if ((cmp = comparator) == null)
603 siftDownComparable(i, moved, es, n);
604 else
605 siftDownUsingComparator(i, moved, es, n, cmp);
606 if (es[i] == moved) {
607 if (cmp == null)
608 siftUpComparable(i, moved, es);
609 else
610 siftUpUsingComparator(i, moved, es, cmp);
611 }
612 }
613 size = n;
614 }
615
616 /**
617 * Removes a single instance of the specified element from this queue,
618 * if it is present. More formally, removes an element {@code e} such
619 * that {@code o.equals(e)}, if this queue contains one or more such
620 * elements. Returns {@code true} if and only if this queue contained
621 * the specified element (or equivalently, if this queue changed as a
622 * result of the call).
623 *
624 * @param o element to be removed from this queue, if present
625 * @return {@code true} if this queue changed as a result of the call
626 */
627 public boolean remove(Object o) {
628 final ReentrantLock lock = this.lock;
629 lock.lock();
630 try {
631 int i = indexOf(o);
632 if (i == -1)
633 return false;
634 removeAt(i);
635 return true;
636 } finally {
637 lock.unlock();
638 }
639 }
640
641 /**
642 * Identity-based version for use in Itr.remove.
643 *
644 * @param o element to be removed from this queue, if present
645 */
646 void removeEq(Object o) {
647 final ReentrantLock lock = this.lock;
648 lock.lock();
649 try {
650 final Object[] es = queue;
651 for (int i = 0, n = size; i < n; i++) {
652 if (o == es[i]) {
653 removeAt(i);
654 break;
655 }
656 }
657 } finally {
658 lock.unlock();
659 }
660 }
661
662 /**
663 * Returns {@code true} if this queue contains the specified element.
664 * More formally, returns {@code true} if and only if this queue contains
665 * at least one element {@code e} such that {@code o.equals(e)}.
666 *
667 * @param o object to be checked for containment in this queue
668 * @return {@code true} if this queue contains the specified element
669 */
670 public boolean contains(Object o) {
671 final ReentrantLock lock = this.lock;
672 lock.lock();
673 try {
674 return indexOf(o) != -1;
675 } finally {
676 lock.unlock();
677 }
678 }
679
680 public String toString() {
681 return Helpers.collectionToString(this);
682 }
683
684 /**
685 * @throws UnsupportedOperationException {@inheritDoc}
686 * @throws ClassCastException {@inheritDoc}
687 * @throws NullPointerException {@inheritDoc}
688 * @throws IllegalArgumentException {@inheritDoc}
689 */
690 public int drainTo(Collection<? super E> c) {
691 return drainTo(c, Integer.MAX_VALUE);
692 }
693
694 /**
695 * @throws UnsupportedOperationException {@inheritDoc}
696 * @throws ClassCastException {@inheritDoc}
697 * @throws NullPointerException {@inheritDoc}
698 * @throws IllegalArgumentException {@inheritDoc}
699 */
700 public int drainTo(Collection<? super E> c, int maxElements) {
701 Objects.requireNonNull(c);
702 if (c == this)
703 throw new IllegalArgumentException();
704 if (maxElements <= 0)
705 return 0;
706 final ReentrantLock lock = this.lock;
707 lock.lock();
708 try {
709 int n = Math.min(size, maxElements);
710 for (int i = 0; i < n; i++) {
711 c.add((E) queue[0]); // In this order, in case add() throws.
712 dequeue();
713 }
714 return n;
715 } finally {
716 lock.unlock();
717 }
718 }
719
720 /**
721 * Atomically removes all of the elements from this queue.
722 * The queue will be empty after this call returns.
723 */
724 public void clear() {
725 final ReentrantLock lock = this.lock;
726 lock.lock();
727 try {
728 final Object[] es = queue;
729 for (int i = 0, n = size; i < n; i++)
730 es[i] = null;
731 size = 0;
732 } finally {
733 lock.unlock();
734 }
735 }
736
737 /**
738 * Returns an array containing all of the elements in this queue.
739 * The returned array elements are in no particular order.
740 *
741 * <p>The returned array will be "safe" in that no references to it are
742 * maintained by this queue. (In other words, this method must allocate
743 * a new array). The caller is thus free to modify the returned array.
744 *
745 * <p>This method acts as bridge between array-based and collection-based
746 * APIs.
747 *
748 * @return an array containing all of the elements in this queue
749 */
750 public Object[] toArray() {
751 final ReentrantLock lock = this.lock;
752 lock.lock();
753 try {
754 return Arrays.copyOf(queue, size);
755 } finally {
756 lock.unlock();
757 }
758 }
759
760 /**
761 * Returns an array containing all of the elements in this queue; the
762 * runtime type of the returned array is that of the specified array.
763 * The returned array elements are in no particular order.
764 * If the queue fits in the specified array, it is returned therein.
765 * Otherwise, a new array is allocated with the runtime type of the
766 * specified array and the size of this queue.
767 *
768 * <p>If this queue fits in the specified array with room to spare
769 * (i.e., the array has more elements than this queue), the element in
770 * the array immediately following the end of the queue is set to
771 * {@code null}.
772 *
773 * <p>Like the {@link #toArray()} method, this method acts as bridge between
774 * array-based and collection-based APIs. Further, this method allows
775 * precise control over the runtime type of the output array, and may,
776 * under certain circumstances, be used to save allocation costs.
777 *
778 * <p>Suppose {@code x} is a queue known to contain only strings.
779 * The following code can be used to dump the queue into a newly
780 * allocated array of {@code String}:
781 *
782 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
783 *
784 * Note that {@code toArray(new Object[0])} is identical in function to
785 * {@code toArray()}.
786 *
787 * @param a the array into which the elements of the queue are to
788 * be stored, if it is big enough; otherwise, a new array of the
789 * same runtime type is allocated for this purpose
790 * @return an array containing all of the elements in this queue
791 * @throws ArrayStoreException if the runtime type of the specified array
792 * is not a supertype of the runtime type of every element in
793 * this queue
794 * @throws NullPointerException if the specified array is null
795 */
796 public <T> T[] toArray(T[] a) {
797 final ReentrantLock lock = this.lock;
798 lock.lock();
799 try {
800 int n = size;
801 if (a.length < n)
802 // Make a new array of a's runtime type, but my contents:
803 return (T[]) Arrays.copyOf(queue, size, a.getClass());
804 System.arraycopy(queue, 0, a, 0, n);
805 if (a.length > n)
806 a[n] = null;
807 return a;
808 } finally {
809 lock.unlock();
810 }
811 }
812
813 /**
814 * Returns an iterator over the elements in this queue. The
815 * iterator does not return the elements in any particular order.
816 *
817 * <p>The returned iterator is
818 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
819 *
820 * @return an iterator over the elements in this queue
821 */
822 public Iterator<E> iterator() {
823 return new Itr(toArray());
824 }
825
826 /**
827 * Snapshot iterator that works off copy of underlying q array.
828 */
829 final class Itr implements Iterator<E> {
830 final Object[] array; // Array of all elements
831 int cursor; // index of next element to return
832 int lastRet = -1; // index of last element, or -1 if no such
833
834 Itr(Object[] array) {
835 this.array = array;
836 }
837
838 public boolean hasNext() {
839 return cursor < array.length;
840 }
841
842 public E next() {
843 if (cursor >= array.length)
844 throw new NoSuchElementException();
845 return (E)array[lastRet = cursor++];
846 }
847
848 public void remove() {
849 if (lastRet < 0)
850 throw new IllegalStateException();
851 removeEq(array[lastRet]);
852 lastRet = -1;
853 }
854
855 public void forEachRemaining(Consumer<? super E> action) {
856 Objects.requireNonNull(action);
857 final Object[] es = array;
858 int i;
859 if ((i = cursor) < es.length) {
860 lastRet = -1;
861 cursor = es.length;
862 for (; i < es.length; i++)
863 action.accept((E) es[i]);
864 lastRet = es.length - 1;
865 }
866 }
867 }
868
869 /**
870 * Saves this queue to a stream (that is, serializes it).
871 *
872 * For compatibility with previous version of this class, elements
873 * are first copied to a java.util.PriorityQueue, which is then
874 * serialized.
875 *
876 * @param s the stream
877 * @throws java.io.IOException if an I/O error occurs
878 */
879 private void writeObject(java.io.ObjectOutputStream s)
880 throws java.io.IOException {
881 lock.lock();
882 try {
883 // avoid zero capacity argument
884 q = new PriorityQueue<E>(Math.max(size, 1), comparator);
885 q.addAll(this);
886 s.defaultWriteObject();
887 } finally {
888 q = null;
889 lock.unlock();
890 }
891 }
892
893 /**
894 * Reconstitutes this queue from a stream (that is, deserializes it).
895 * @param s the stream
896 * @throws ClassNotFoundException if the class of a serialized object
897 * could not be found
898 * @throws java.io.IOException if an I/O error occurs
899 */
900 private void readObject(java.io.ObjectInputStream s)
901 throws java.io.IOException, ClassNotFoundException {
902 try {
903 s.defaultReadObject();
904 int sz = q.size();
905 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, sz);
906 this.queue = new Object[Math.max(1, sz)];
907 comparator = q.comparator();
908 addAll(q);
909 } finally {
910 q = null;
911 }
912 }
913
914 /**
915 * Immutable snapshot spliterator that binds to elements "late".
916 */
917 final class PBQSpliterator implements Spliterator<E> {
918 Object[] array; // null until late-bound-initialized
919 int index;
920 int fence;
921
922 PBQSpliterator() {}
923
924 PBQSpliterator(Object[] array, int index, int fence) {
925 this.array = array;
926 this.index = index;
927 this.fence = fence;
928 }
929
930 private int getFence() {
931 if (array == null)
932 fence = (array = toArray()).length;
933 return fence;
934 }
935
936 public PBQSpliterator trySplit() {
937 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
938 return (lo >= mid) ? null :
939 new PBQSpliterator(array, lo, index = mid);
940 }
941
942 public void forEachRemaining(Consumer<? super E> action) {
943 Objects.requireNonNull(action);
944 final int hi = getFence(), lo = index;
945 final Object[] es = array;
946 index = hi; // ensure exhaustion
947 for (int i = lo; i < hi; i++)
948 action.accept((E) es[i]);
949 }
950
951 public boolean tryAdvance(Consumer<? super E> action) {
952 Objects.requireNonNull(action);
953 if (getFence() > index && index >= 0) {
954 action.accept((E) array[index++]);
955 return true;
956 }
957 return false;
958 }
959
960 public long estimateSize() { return getFence() - index; }
961
962 public int characteristics() {
963 return (Spliterator.NONNULL |
964 Spliterator.SIZED |
965 Spliterator.SUBSIZED);
966 }
967 }
968
969 /**
970 * Returns a {@link Spliterator} over the elements in this queue.
971 * The spliterator does not traverse elements in any particular order
972 * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
973 *
974 * <p>The returned spliterator is
975 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
976 *
977 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
978 * {@link Spliterator#NONNULL}.
979 *
980 * @implNote
981 * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}.
982 *
983 * @return a {@code Spliterator} over the elements in this queue
984 * @since 1.8
985 */
986 public Spliterator<E> spliterator() {
987 return new PBQSpliterator();
988 }
989
990 /**
991 * @throws NullPointerException {@inheritDoc}
992 */
993 public void forEach(Consumer<? super E> action) {
994 Objects.requireNonNull(action);
995 final ReentrantLock lock = this.lock;
996 lock.lock();
997 try {
998 final Object[] es = queue;
999 for (int i = 0, n = size; i < n; i++)
1000 action.accept((E) es[i]);
1001 } finally {
1002 lock.unlock();
1003 }
1004 }
1005
1006 // VarHandle mechanics
1007 private static final VarHandle ALLOCATIONSPINLOCK;
1008 static {
1009 try {
1010 MethodHandles.Lookup l = MethodHandles.lookup();
1011 ALLOCATIONSPINLOCK = l.findVarHandle(PriorityBlockingQueue.class,
1012 "allocationSpinLock",
1013 int.class);
1014 } catch (ReflectiveOperationException e) {
1015 throw new ExceptionInInitializerError(e);
1016 }
1017 }
1018 }