ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.80
Committed: Sun Jul 3 06:01:53 2011 UTC (12 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.79: +1 -1 lines
Log Message:
make removeEQ package-private to inhibit bridge method

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.locks.*;
10 import java.util.*;
11
12 /**
13 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
14 * the same ordering rules as class {@link PriorityQueue} and supplies
15 * blocking retrieval operations. While this queue is logically
16 * unbounded, attempted additions may fail due to resource exhaustion
17 * (causing {@code OutOfMemoryError}). This class does not permit
18 * {@code null} elements. A priority queue relying on {@linkplain
19 * Comparable natural ordering} also does not permit insertion of
20 * non-comparable objects (doing so results in
21 * {@code ClassCastException}).
22 *
23 * <p>This class and its iterator implement all of the
24 * <em>optional</em> methods of the {@link Collection} and {@link
25 * Iterator} interfaces. The Iterator provided in method {@link
26 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
27 * the PriorityBlockingQueue in any particular order. If you need
28 * ordered traversal, consider using
29 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo}
30 * can be used to <em>remove</em> some or all elements in priority
31 * order and place them in another collection.
32 *
33 * <p>Operations on this class make no guarantees about the ordering
34 * of elements with equal priority. If you need to enforce an
35 * ordering, you can define custom classes or comparators that use a
36 * secondary key to break ties in primary priority values. For
37 * example, here is a class that applies first-in-first-out
38 * tie-breaking to comparable elements. To use it, you would insert a
39 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
40 *
41 * <pre> {@code
42 * class FIFOEntry<E extends Comparable<? super E>>
43 * implements Comparable<FIFOEntry<E>> {
44 * static final AtomicLong seq = new AtomicLong(0);
45 * final long seqNum;
46 * final E entry;
47 * public FIFOEntry(E entry) {
48 * seqNum = seq.getAndIncrement();
49 * this.entry = entry;
50 * }
51 * public E getEntry() { return entry; }
52 * public int compareTo(FIFOEntry<E> other) {
53 * int res = entry.compareTo(other.entry);
54 * if (res == 0 && other.entry != this.entry)
55 * res = (seqNum < other.seqNum ? -1 : 1);
56 * return res;
57 * }
58 * }}</pre>
59 *
60 * <p>This class is a member of the
61 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
62 * Java Collections Framework</a>.
63 *
64 * @since 1.5
65 * @author Doug Lea
66 * @param <E> the type of elements held in this collection
67 */
68 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
69 implements BlockingQueue<E>, java.io.Serializable {
70 private static final long serialVersionUID = 5595510919245408276L;
71
72 /*
73 * The implementation uses an array-based binary heap, with public
74 * operations protected with a single lock. However, allocation
75 * during resizing uses a simple spinlock (used only while not
76 * holding main lock) in order to allow takes to operate
77 * concurrently with allocation. This avoids repeated
78 * postponement of waiting consumers and consequent element
79 * build-up. The need to back away from lock during allocation
80 * makes it impossible to simply wrap delegated
81 * java.util.PriorityQueue operations within a lock, as was done
82 * in a previous version of this class. To maintain
83 * interoperability, a plain PriorityQueue is still used during
84 * serialization, which maintains compatibility at the expense of
85 * transiently doubling overhead.
86 */
87
88 /**
89 * Default array capacity.
90 */
91 private static final int DEFAULT_INITIAL_CAPACITY = 11;
92
93 /**
94 * The maximum size of array to allocate.
95 * Some VMs reserve some header words in an array.
96 * Attempts to allocate larger arrays may result in
97 * OutOfMemoryError: Requested array size exceeds VM limit
98 */
99 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
100
101 /**
102 * Priority queue represented as a balanced binary heap: the two
103 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
104 * priority queue is ordered by comparator, or by the elements'
105 * natural ordering, if comparator is null: For each node n in the
106 * heap and each descendant d of n, n <= d. The element with the
107 * lowest value is in queue[0], assuming the queue is nonempty.
108 */
109 private transient Object[] queue;
110
111 /**
112 * The number of elements in the priority queue.
113 */
114 private transient int size;
115
116 /**
117 * The comparator, or null if priority queue uses elements'
118 * natural ordering.
119 */
120 private transient Comparator<? super E> comparator;
121
122 /**
123 * Lock used for all public operations
124 */
125 private final ReentrantLock lock;
126
127 /**
128 * Condition for blocking when empty
129 */
130 private final Condition notEmpty;
131
132 /**
133 * Spinlock for allocation, acquired via CAS.
134 */
135 private transient volatile int allocationSpinLock;
136
137 /**
138 * A plain PriorityQueue used only for serialization,
139 * to maintain compatibility with previous versions
140 * of this class. Non-null only during serialization/deserialization.
141 */
142 private PriorityQueue<E> q;
143
144 /**
145 * Creates a {@code PriorityBlockingQueue} with the default
146 * initial capacity (11) that orders its elements according to
147 * their {@linkplain Comparable natural ordering}.
148 */
149 public PriorityBlockingQueue() {
150 this(DEFAULT_INITIAL_CAPACITY, null);
151 }
152
153 /**
154 * Creates a {@code PriorityBlockingQueue} with the specified
155 * initial capacity that orders its elements according to their
156 * {@linkplain Comparable natural ordering}.
157 *
158 * @param initialCapacity the initial capacity for this priority queue
159 * @throws IllegalArgumentException if {@code initialCapacity} is less
160 * than 1
161 */
162 public PriorityBlockingQueue(int initialCapacity) {
163 this(initialCapacity, null);
164 }
165
166 /**
167 * Creates a {@code PriorityBlockingQueue} with the specified initial
168 * capacity that orders its elements according to the specified
169 * comparator.
170 *
171 * @param initialCapacity the initial capacity for this priority queue
172 * @param comparator the comparator that will be used to order this
173 * priority queue. If {@code null}, the {@linkplain Comparable
174 * natural ordering} of the elements will be used.
175 * @throws IllegalArgumentException if {@code initialCapacity} is less
176 * than 1
177 */
178 public PriorityBlockingQueue(int initialCapacity,
179 Comparator<? super E> comparator) {
180 if (initialCapacity < 1)
181 throw new IllegalArgumentException();
182 this.lock = new ReentrantLock();
183 this.notEmpty = lock.newCondition();
184 this.comparator = comparator;
185 this.queue = new Object[initialCapacity];
186 }
187
188 /**
189 * Creates a {@code PriorityBlockingQueue} containing the elements
190 * in the specified collection. If the specified collection is a
191 * {@link SortedSet} or a {@link PriorityQueue}, this
192 * priority queue will be ordered according to the same ordering.
193 * Otherwise, this priority queue will be ordered according to the
194 * {@linkplain Comparable natural ordering} of its elements.
195 *
196 * @param c the collection whose elements are to be placed
197 * into this priority queue
198 * @throws ClassCastException if elements of the specified collection
199 * cannot be compared to one another according to the priority
200 * queue's ordering
201 * @throws NullPointerException if the specified collection or any
202 * of its elements are null
203 */
204 public PriorityBlockingQueue(Collection<? extends E> c) {
205 this.lock = new ReentrantLock();
206 this.notEmpty = lock.newCondition();
207 boolean heapify = true; // true if not known to be in heap order
208 boolean screen = true; // true if must screen for nulls
209 if (c instanceof SortedSet<?>) {
210 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
211 this.comparator = (Comparator<? super E>) ss.comparator();
212 heapify = false;
213 }
214 else if (c instanceof PriorityBlockingQueue<?>) {
215 PriorityBlockingQueue<? extends E> pq =
216 (PriorityBlockingQueue<? extends E>) c;
217 this.comparator = (Comparator<? super E>) pq.comparator();
218 screen = false;
219 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
220 heapify = false;
221 }
222 Object[] a = c.toArray();
223 int n = a.length;
224 // If c.toArray incorrectly doesn't return Object[], copy it.
225 if (a.getClass() != Object[].class)
226 a = Arrays.copyOf(a, n, Object[].class);
227 if (screen && (n == 1 || this.comparator != null)) {
228 for (int i = 0; i < n; ++i)
229 if (a[i] == null)
230 throw new NullPointerException();
231 }
232 this.queue = a;
233 this.size = n;
234 if (heapify)
235 heapify();
236 }
237
238 /**
239 * Tries to grow array to accommodate at least one more element
240 * (but normally expand by about 50%), giving up (allowing retry)
241 * on contention (which we expect to be rare). Call only while
242 * holding lock.
243 *
244 * @param array the heap array
245 * @param oldCap the length of the array
246 */
247 private void tryGrow(Object[] array, int oldCap) {
248 lock.unlock(); // must release and then re-acquire main lock
249 Object[] newArray = null;
250 if (allocationSpinLock == 0 &&
251 UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
252 0, 1)) {
253 try {
254 int newCap = oldCap + ((oldCap < 64) ?
255 (oldCap + 2) : // grow faster if small
256 (oldCap >> 1));
257 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
258 int minCap = oldCap + 1;
259 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
260 throw new OutOfMemoryError();
261 newCap = MAX_ARRAY_SIZE;
262 }
263 if (newCap > oldCap && queue == array)
264 newArray = new Object[newCap];
265 } finally {
266 allocationSpinLock = 0;
267 }
268 }
269 if (newArray == null) // back off if another thread is allocating
270 Thread.yield();
271 lock.lock();
272 if (newArray != null && queue == array) {
273 queue = newArray;
274 System.arraycopy(array, 0, newArray, 0, oldCap);
275 }
276 }
277
278 /**
279 * Mechanics for poll(). Call only while holding lock.
280 */
281 private E dequeue() {
282 int n = size - 1;
283 if (n < 0)
284 return null;
285 else {
286 Object[] array = queue;
287 E result = (E) array[0];
288 E x = (E) array[n];
289 array[n] = null;
290 Comparator<? super E> cmp = comparator;
291 if (cmp == null)
292 siftDownComparable(0, x, array, n);
293 else
294 siftDownUsingComparator(0, x, array, n, cmp);
295 size = n;
296 return result;
297 }
298 }
299
300 /**
301 * Inserts item x at position k, maintaining heap invariant by
302 * promoting x up the tree until it is greater than or equal to
303 * its parent, or is the root.
304 *
305 * To simplify and speed up coercions and comparisons. the
306 * Comparable and Comparator versions are separated into different
307 * methods that are otherwise identical. (Similarly for siftDown.)
308 * These methods are static, with heap state as arguments, to
309 * simplify use in light of possible comparator exceptions.
310 *
311 * @param k the position to fill
312 * @param x the item to insert
313 * @param array the heap array
314 * @param n heap size
315 */
316 private static <T> void siftUpComparable(int k, T x, Object[] array) {
317 Comparable<? super T> key = (Comparable<? super T>) x;
318 while (k > 0) {
319 int parent = (k - 1) >>> 1;
320 Object e = array[parent];
321 if (key.compareTo((T) e) >= 0)
322 break;
323 array[k] = e;
324 k = parent;
325 }
326 array[k] = key;
327 }
328
329 private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
330 Comparator<? super T> cmp) {
331 while (k > 0) {
332 int parent = (k - 1) >>> 1;
333 Object e = array[parent];
334 if (cmp.compare(x, (T) e) >= 0)
335 break;
336 array[k] = e;
337 k = parent;
338 }
339 array[k] = x;
340 }
341
342 /**
343 * Inserts item x at position k, maintaining heap invariant by
344 * demoting x down the tree repeatedly until it is less than or
345 * equal to its children or is a leaf.
346 *
347 * @param k the position to fill
348 * @param x the item to insert
349 * @param array the heap array
350 * @param n heap size
351 */
352 private static <T> void siftDownComparable(int k, T x, Object[] array,
353 int n) {
354 Comparable<? super T> key = (Comparable<? super T>)x;
355 int half = n >>> 1; // loop while a non-leaf
356 while (k < half) {
357 int child = (k << 1) + 1; // assume left child is least
358 Object c = array[child];
359 int right = child + 1;
360 if (right < n &&
361 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
362 c = array[child = right];
363 if (key.compareTo((T) c) <= 0)
364 break;
365 array[k] = c;
366 k = child;
367 }
368 array[k] = key;
369 }
370
371 private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
372 int n,
373 Comparator<? super T> cmp) {
374 int half = n >>> 1;
375 while (k < half) {
376 int child = (k << 1) + 1;
377 Object c = array[child];
378 int right = child + 1;
379 if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
380 c = array[child = right];
381 if (cmp.compare(x, (T) c) <= 0)
382 break;
383 array[k] = c;
384 k = child;
385 }
386 array[k] = x;
387 }
388
389 /**
390 * Establishes the heap invariant (described above) in the entire tree,
391 * assuming nothing about the order of the elements prior to the call.
392 */
393 private void heapify() {
394 Object[] array = queue;
395 int n = size;
396 int half = (n >>> 1) - 1;
397 Comparator<? super E> cmp = comparator;
398 if (cmp == null) {
399 for (int i = half; i >= 0; i--)
400 siftDownComparable(i, (E) array[i], array, n);
401 }
402 else {
403 for (int i = half; i >= 0; i--)
404 siftDownUsingComparator(i, (E) array[i], array, n, cmp);
405 }
406 }
407
408 /**
409 * Inserts the specified element into this priority queue.
410 *
411 * @param e the element to add
412 * @return {@code true} (as specified by {@link Collection#add})
413 * @throws ClassCastException if the specified element cannot be compared
414 * with elements currently in the priority queue according to the
415 * priority queue's ordering
416 * @throws NullPointerException if the specified element is null
417 */
418 public boolean add(E e) {
419 return offer(e);
420 }
421
422 /**
423 * Inserts the specified element into this priority queue.
424 * As the queue is unbounded, this method will never return {@code false}.
425 *
426 * @param e the element to add
427 * @return {@code true} (as specified by {@link Queue#offer})
428 * @throws ClassCastException if the specified element cannot be compared
429 * with elements currently in the priority queue according to the
430 * priority queue's ordering
431 * @throws NullPointerException if the specified element is null
432 */
433 public boolean offer(E e) {
434 if (e == null)
435 throw new NullPointerException();
436 final ReentrantLock lock = this.lock;
437 lock.lock();
438 int n, cap;
439 Object[] array;
440 while ((n = size) >= (cap = (array = queue).length))
441 tryGrow(array, cap);
442 try {
443 Comparator<? super E> cmp = comparator;
444 if (cmp == null)
445 siftUpComparable(n, e, array);
446 else
447 siftUpUsingComparator(n, e, array, cmp);
448 size = n + 1;
449 notEmpty.signal();
450 } finally {
451 lock.unlock();
452 }
453 return true;
454 }
455
456 /**
457 * Inserts the specified element into this priority queue.
458 * As the queue is unbounded, this method will never block.
459 *
460 * @param e the element to add
461 * @throws ClassCastException if the specified element cannot be compared
462 * with elements currently in the priority queue according to the
463 * priority queue's ordering
464 * @throws NullPointerException if the specified element is null
465 */
466 public void put(E e) {
467 offer(e); // never need to block
468 }
469
470 /**
471 * Inserts the specified element into this priority queue.
472 * As the queue is unbounded, this method will never block or
473 * return {@code false}.
474 *
475 * @param e the element to add
476 * @param timeout This parameter is ignored as the method never blocks
477 * @param unit This parameter is ignored as the method never blocks
478 * @return {@code true} (as specified by
479 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
480 * @throws ClassCastException if the specified element cannot be compared
481 * with elements currently in the priority queue according to the
482 * priority queue's ordering
483 * @throws NullPointerException if the specified element is null
484 */
485 public boolean offer(E e, long timeout, TimeUnit unit) {
486 return offer(e); // never need to block
487 }
488
489 public E poll() {
490 final ReentrantLock lock = this.lock;
491 lock.lock();
492 try {
493 return dequeue();
494 } finally {
495 lock.unlock();
496 }
497 }
498
499 public E take() throws InterruptedException {
500 final ReentrantLock lock = this.lock;
501 lock.lockInterruptibly();
502 E result;
503 try {
504 while ( (result = dequeue()) == null)
505 notEmpty.await();
506 } finally {
507 lock.unlock();
508 }
509 return result;
510 }
511
512 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
513 long nanos = unit.toNanos(timeout);
514 final ReentrantLock lock = this.lock;
515 lock.lockInterruptibly();
516 E result;
517 try {
518 while ( (result = dequeue()) == null && nanos > 0)
519 nanos = notEmpty.awaitNanos(nanos);
520 } finally {
521 lock.unlock();
522 }
523 return result;
524 }
525
526 public E peek() {
527 final ReentrantLock lock = this.lock;
528 lock.lock();
529 try {
530 return (size == 0) ? null : (E) queue[0];
531 } finally {
532 lock.unlock();
533 }
534 }
535
536 /**
537 * Returns the comparator used to order the elements in this queue,
538 * or {@code null} if this queue uses the {@linkplain Comparable
539 * natural ordering} of its elements.
540 *
541 * @return the comparator used to order the elements in this queue,
542 * or {@code null} if this queue uses the natural
543 * ordering of its elements
544 */
545 public Comparator<? super E> comparator() {
546 return comparator;
547 }
548
549 public int size() {
550 final ReentrantLock lock = this.lock;
551 lock.lock();
552 try {
553 return size;
554 } finally {
555 lock.unlock();
556 }
557 }
558
559 /**
560 * Always returns {@code Integer.MAX_VALUE} because
561 * a {@code PriorityBlockingQueue} is not capacity constrained.
562 * @return {@code Integer.MAX_VALUE} always
563 */
564 public int remainingCapacity() {
565 return Integer.MAX_VALUE;
566 }
567
568 private int indexOf(Object o) {
569 if (o != null) {
570 Object[] array = queue;
571 int n = size;
572 for (int i = 0; i < n; i++)
573 if (o.equals(array[i]))
574 return i;
575 }
576 return -1;
577 }
578
579 /**
580 * Removes the ith element from queue.
581 */
582 private void removeAt(int i) {
583 Object[] array = queue;
584 int n = size - 1;
585 if (n == i) // removed last element
586 array[i] = null;
587 else {
588 E moved = (E) array[n];
589 array[n] = null;
590 Comparator<? super E> cmp = comparator;
591 if (cmp == null)
592 siftDownComparable(i, moved, array, n);
593 else
594 siftDownUsingComparator(i, moved, array, n, cmp);
595 if (array[i] == moved) {
596 if (cmp == null)
597 siftUpComparable(i, moved, array);
598 else
599 siftUpUsingComparator(i, moved, array, cmp);
600 }
601 }
602 size = n;
603 }
604
605 /**
606 * Removes a single instance of the specified element from this queue,
607 * if it is present. More formally, removes an element {@code e} such
608 * that {@code o.equals(e)}, if this queue contains one or more such
609 * elements. Returns {@code true} if and only if this queue contained
610 * the specified element (or equivalently, if this queue changed as a
611 * result of the call).
612 *
613 * @param o element to be removed from this queue, if present
614 * @return {@code true} if this queue changed as a result of the call
615 */
616 public boolean remove(Object o) {
617 final ReentrantLock lock = this.lock;
618 lock.lock();
619 try {
620 int i = indexOf(o);
621 if (i == -1)
622 return false;
623 removeAt(i);
624 return true;
625 } finally {
626 lock.unlock();
627 }
628 }
629
630 /**
631 * Identity-based version for use in Itr.remove
632 */
633 void removeEQ(Object o) {
634 final ReentrantLock lock = this.lock;
635 lock.lock();
636 try {
637 Object[] array = queue;
638 for (int i = 0, n = size; i < n; i++) {
639 if (o == array[i]) {
640 removeAt(i);
641 break;
642 }
643 }
644 } finally {
645 lock.unlock();
646 }
647 }
648
649 /**
650 * Returns {@code true} if this queue contains the specified element.
651 * More formally, returns {@code true} if and only if this queue contains
652 * at least one element {@code e} such that {@code o.equals(e)}.
653 *
654 * @param o object to be checked for containment in this queue
655 * @return {@code true} if this queue contains the specified element
656 */
657 public boolean contains(Object o) {
658 final ReentrantLock lock = this.lock;
659 lock.lock();
660 try {
661 return indexOf(o) != -1;
662 } finally {
663 lock.unlock();
664 }
665 }
666
667 /**
668 * Returns an array containing all of the elements in this queue.
669 * The returned array elements are in no particular order.
670 *
671 * <p>The returned array will be "safe" in that no references to it are
672 * maintained by this queue. (In other words, this method must allocate
673 * a new array). The caller is thus free to modify the returned array.
674 *
675 * <p>This method acts as bridge between array-based and collection-based
676 * APIs.
677 *
678 * @return an array containing all of the elements in this queue
679 */
680 public Object[] toArray() {
681 final ReentrantLock lock = this.lock;
682 lock.lock();
683 try {
684 return Arrays.copyOf(queue, size);
685 } finally {
686 lock.unlock();
687 }
688 }
689
690 public String toString() {
691 final ReentrantLock lock = this.lock;
692 lock.lock();
693 try {
694 int n = size;
695 if (n == 0)
696 return "[]";
697 StringBuilder sb = new StringBuilder();
698 sb.append('[');
699 for (int i = 0; i < n; ++i) {
700 Object e = queue[i];
701 sb.append(e == this ? "(this Collection)" : e);
702 if (i != n - 1)
703 sb.append(',').append(' ');
704 }
705 return sb.append(']').toString();
706 } finally {
707 lock.unlock();
708 }
709 }
710
711 /**
712 * @throws UnsupportedOperationException {@inheritDoc}
713 * @throws ClassCastException {@inheritDoc}
714 * @throws NullPointerException {@inheritDoc}
715 * @throws IllegalArgumentException {@inheritDoc}
716 */
717 public int drainTo(Collection<? super E> c) {
718 return drainTo(c, Integer.MAX_VALUE);
719 }
720
721 /**
722 * @throws UnsupportedOperationException {@inheritDoc}
723 * @throws ClassCastException {@inheritDoc}
724 * @throws NullPointerException {@inheritDoc}
725 * @throws IllegalArgumentException {@inheritDoc}
726 */
727 public int drainTo(Collection<? super E> c, int maxElements) {
728 if (c == null)
729 throw new NullPointerException();
730 if (c == this)
731 throw new IllegalArgumentException();
732 if (maxElements <= 0)
733 return 0;
734 final ReentrantLock lock = this.lock;
735 lock.lock();
736 try {
737 int n = Math.min(size, maxElements);
738 for (int i = 0; i < n; i++) {
739 c.add((E) queue[0]); // In this order, in case add() throws.
740 dequeue();
741 }
742 return n;
743 } finally {
744 lock.unlock();
745 }
746 }
747
748 /**
749 * Atomically removes all of the elements from this queue.
750 * The queue will be empty after this call returns.
751 */
752 public void clear() {
753 final ReentrantLock lock = this.lock;
754 lock.lock();
755 try {
756 Object[] array = queue;
757 int n = size;
758 size = 0;
759 for (int i = 0; i < n; i++)
760 array[i] = null;
761 } finally {
762 lock.unlock();
763 }
764 }
765
766 /**
767 * Returns an array containing all of the elements in this queue; the
768 * runtime type of the returned array is that of the specified array.
769 * The returned array elements are in no particular order.
770 * If the queue fits in the specified array, it is returned therein.
771 * Otherwise, a new array is allocated with the runtime type of the
772 * specified array and the size of this queue.
773 *
774 * <p>If this queue fits in the specified array with room to spare
775 * (i.e., the array has more elements than this queue), the element in
776 * the array immediately following the end of the queue is set to
777 * {@code null}.
778 *
779 * <p>Like the {@link #toArray()} method, this method acts as bridge between
780 * array-based and collection-based APIs. Further, this method allows
781 * precise control over the runtime type of the output array, and may,
782 * under certain circumstances, be used to save allocation costs.
783 *
784 * <p>Suppose {@code x} is a queue known to contain only strings.
785 * The following code can be used to dump the queue into a newly
786 * allocated array of {@code String}:
787 *
788 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
789 *
790 * Note that {@code toArray(new Object[0])} is identical in function to
791 * {@code toArray()}.
792 *
793 * @param a the array into which the elements of the queue are to
794 * be stored, if it is big enough; otherwise, a new array of the
795 * same runtime type is allocated for this purpose
796 * @return an array containing all of the elements in this queue
797 * @throws ArrayStoreException if the runtime type of the specified array
798 * is not a supertype of the runtime type of every element in
799 * this queue
800 * @throws NullPointerException if the specified array is null
801 */
802 public <T> T[] toArray(T[] a) {
803 final ReentrantLock lock = this.lock;
804 lock.lock();
805 try {
806 int n = size;
807 if (a.length < n)
808 // Make a new array of a's runtime type, but my contents:
809 return (T[]) Arrays.copyOf(queue, size, a.getClass());
810 System.arraycopy(queue, 0, a, 0, n);
811 if (a.length > n)
812 a[n] = null;
813 return a;
814 } finally {
815 lock.unlock();
816 }
817 }
818
819 /**
820 * Returns an iterator over the elements in this queue. The
821 * iterator does not return the elements in any particular order.
822 *
823 * <p>The returned iterator is a "weakly consistent" iterator that
824 * will never throw {@link java.util.ConcurrentModificationException
825 * ConcurrentModificationException}, and guarantees to traverse
826 * elements as they existed upon construction of the iterator, and
827 * may (but is not guaranteed to) reflect any modifications
828 * subsequent to construction.
829 *
830 * @return an iterator over the elements in this queue
831 */
832 public Iterator<E> iterator() {
833 return new Itr(toArray());
834 }
835
836 /**
837 * Snapshot iterator that works off copy of underlying q array.
838 */
839 final class Itr implements Iterator<E> {
840 final Object[] array; // Array of all elements
841 int cursor; // index of next element to return;
842 int lastRet; // index of last element, or -1 if no such
843
844 Itr(Object[] array) {
845 lastRet = -1;
846 this.array = array;
847 }
848
849 public boolean hasNext() {
850 return cursor < array.length;
851 }
852
853 public E next() {
854 if (cursor >= array.length)
855 throw new NoSuchElementException();
856 lastRet = cursor;
857 return (E)array[cursor++];
858 }
859
860 public void remove() {
861 if (lastRet < 0)
862 throw new IllegalStateException();
863 removeEQ(array[lastRet]);
864 lastRet = -1;
865 }
866 }
867
868 /**
869 * Saves the state to a stream (that is, serializes it). For
870 * compatibility with previous version of this class,
871 * elements are first copied to a java.util.PriorityQueue,
872 * which is then serialized.
873 */
874 private void writeObject(java.io.ObjectOutputStream s)
875 throws java.io.IOException {
876 lock.lock();
877 try {
878 // avoid zero capacity argument
879 q = new PriorityQueue<E>(Math.max(size, 1), comparator);
880 q.addAll(this);
881 s.defaultWriteObject();
882 } finally {
883 q = null;
884 lock.unlock();
885 }
886 }
887
888 /**
889 * Reconstitutes the {@code PriorityBlockingQueue} instance from a stream
890 * (that is, deserializes it).
891 *
892 * @param s the stream
893 */
894 private void readObject(java.io.ObjectInputStream s)
895 throws java.io.IOException, ClassNotFoundException {
896 try {
897 s.defaultReadObject();
898 this.queue = new Object[q.size()];
899 comparator = q.comparator();
900 addAll(q);
901 } finally {
902 q = null;
903 }
904 }
905
906 // Unsafe mechanics
907 private static final sun.misc.Unsafe UNSAFE;
908 private static final long allocationSpinLockOffset;
909 static {
910 try {
911 UNSAFE = sun.misc.Unsafe.getUnsafe();
912 Class<?> k = PriorityBlockingQueue.class;
913 allocationSpinLockOffset = UNSAFE.objectFieldOffset
914 (k.getDeclaredField("allocationSpinLock"));
915 } catch (Exception e) {
916 throw new Error(e);
917 }
918 }
919 }