ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.86
Committed: Wed Jan 16 15:04:04 2013 UTC (11 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.85: +87 -1 lines
Log Message:
lambda-lib support

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.locks.Condition;
10 import java.util.concurrent.locks.ReentrantLock;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Comparator;
15 import java.util.Iterator;
16 import java.util.NoSuchElementException;
17 import java.util.PriorityQueue;
18 import java.util.Queue;
19 import java.util.SortedSet;
20 import java.util.Spliterator;
21 import java.util.stream.Stream;
22 import java.util.stream.Streams;
23 import java.util.function.Block;
24
25 /**
26 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
27 * the same ordering rules as class {@link PriorityQueue} and supplies
28 * blocking retrieval operations. While this queue is logically
29 * unbounded, attempted additions may fail due to resource exhaustion
30 * (causing {@code OutOfMemoryError}). This class does not permit
31 * {@code null} elements. A priority queue relying on {@linkplain
32 * Comparable natural ordering} also does not permit insertion of
33 * non-comparable objects (doing so results in
34 * {@code ClassCastException}).
35 *
36 * <p>This class and its iterator implement all of the
37 * <em>optional</em> methods of the {@link Collection} and {@link
38 * Iterator} interfaces. The Iterator provided in method {@link
39 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
40 * the PriorityBlockingQueue in any particular order. If you need
41 * ordered traversal, consider using
42 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo}
43 * can be used to <em>remove</em> some or all elements in priority
44 * order and place them in another collection.
45 *
46 * <p>Operations on this class make no guarantees about the ordering
47 * of elements with equal priority. If you need to enforce an
48 * ordering, you can define custom classes or comparators that use a
49 * secondary key to break ties in primary priority values. For
50 * example, here is a class that applies first-in-first-out
51 * tie-breaking to comparable elements. To use it, you would insert a
52 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
53 *
54 * <pre> {@code
55 * class FIFOEntry<E extends Comparable<? super E>>
56 * implements Comparable<FIFOEntry<E>> {
57 * static final AtomicLong seq = new AtomicLong(0);
58 * final long seqNum;
59 * final E entry;
60 * public FIFOEntry(E entry) {
61 * seqNum = seq.getAndIncrement();
62 * this.entry = entry;
63 * }
64 * public E getEntry() { return entry; }
65 * public int compareTo(FIFOEntry<E> other) {
66 * int res = entry.compareTo(other.entry);
67 * if (res == 0 && other.entry != this.entry)
68 * res = (seqNum < other.seqNum ? -1 : 1);
69 * return res;
70 * }
71 * }}</pre>
72 *
73 * <p>This class is a member of the
74 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
75 * Java Collections Framework</a>.
76 *
77 * @since 1.5
78 * @author Doug Lea
79 * @param <E> the type of elements held in this collection
80 */
81 @SuppressWarnings("unchecked")
82 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
83 implements BlockingQueue<E>, java.io.Serializable {
84 private static final long serialVersionUID = 5595510919245408276L;
85
86 /*
87 * The implementation uses an array-based binary heap, with public
88 * operations protected with a single lock. However, allocation
89 * during resizing uses a simple spinlock (used only while not
90 * holding main lock) in order to allow takes to operate
91 * concurrently with allocation. This avoids repeated
92 * postponement of waiting consumers and consequent element
93 * build-up. The need to back away from lock during allocation
94 * makes it impossible to simply wrap delegated
95 * java.util.PriorityQueue operations within a lock, as was done
96 * in a previous version of this class. To maintain
97 * interoperability, a plain PriorityQueue is still used during
98 * serialization, which maintains compatibility at the expense of
99 * transiently doubling overhead.
100 */
101
102 /**
103 * Default array capacity.
104 */
105 private static final int DEFAULT_INITIAL_CAPACITY = 11;
106
107 /**
108 * The maximum size of array to allocate.
109 * Some VMs reserve some header words in an array.
110 * Attempts to allocate larger arrays may result in
111 * OutOfMemoryError: Requested array size exceeds VM limit
112 */
113 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
114
115 /**
116 * Priority queue represented as a balanced binary heap: the two
117 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
118 * priority queue is ordered by comparator, or by the elements'
119 * natural ordering, if comparator is null: For each node n in the
120 * heap and each descendant d of n, n <= d. The element with the
121 * lowest value is in queue[0], assuming the queue is nonempty.
122 */
123 private transient Object[] queue;
124
125 /**
126 * The number of elements in the priority queue.
127 */
128 private transient int size;
129
130 /**
131 * The comparator, or null if priority queue uses elements'
132 * natural ordering.
133 */
134 private transient Comparator<? super E> comparator;
135
136 /**
137 * Lock used for all public operations
138 */
139 private final ReentrantLock lock;
140
141 /**
142 * Condition for blocking when empty
143 */
144 private final Condition notEmpty;
145
146 /**
147 * Spinlock for allocation, acquired via CAS.
148 */
149 private transient volatile int allocationSpinLock;
150
151 /**
152 * A plain PriorityQueue used only for serialization,
153 * to maintain compatibility with previous versions
154 * of this class. Non-null only during serialization/deserialization.
155 */
156 private PriorityQueue<E> q;
157
158 /**
159 * Creates a {@code PriorityBlockingQueue} with the default
160 * initial capacity (11) that orders its elements according to
161 * their {@linkplain Comparable natural ordering}.
162 */
163 public PriorityBlockingQueue() {
164 this(DEFAULT_INITIAL_CAPACITY, null);
165 }
166
167 /**
168 * Creates a {@code PriorityBlockingQueue} with the specified
169 * initial capacity that orders its elements according to their
170 * {@linkplain Comparable natural ordering}.
171 *
172 * @param initialCapacity the initial capacity for this priority queue
173 * @throws IllegalArgumentException if {@code initialCapacity} is less
174 * than 1
175 */
176 public PriorityBlockingQueue(int initialCapacity) {
177 this(initialCapacity, null);
178 }
179
180 /**
181 * Creates a {@code PriorityBlockingQueue} with the specified initial
182 * capacity that orders its elements according to the specified
183 * comparator.
184 *
185 * @param initialCapacity the initial capacity for this priority queue
186 * @param comparator the comparator that will be used to order this
187 * priority queue. If {@code null}, the {@linkplain Comparable
188 * natural ordering} of the elements will be used.
189 * @throws IllegalArgumentException if {@code initialCapacity} is less
190 * than 1
191 */
192 public PriorityBlockingQueue(int initialCapacity,
193 Comparator<? super E> comparator) {
194 if (initialCapacity < 1)
195 throw new IllegalArgumentException();
196 this.lock = new ReentrantLock();
197 this.notEmpty = lock.newCondition();
198 this.comparator = comparator;
199 this.queue = new Object[initialCapacity];
200 }
201
202 /**
203 * Creates a {@code PriorityBlockingQueue} containing the elements
204 * in the specified collection. If the specified collection is a
205 * {@link SortedSet} or a {@link PriorityQueue}, this
206 * priority queue will be ordered according to the same ordering.
207 * Otherwise, this priority queue will be ordered according to the
208 * {@linkplain Comparable natural ordering} of its elements.
209 *
210 * @param c the collection whose elements are to be placed
211 * into this priority queue
212 * @throws ClassCastException if elements of the specified collection
213 * cannot be compared to one another according to the priority
214 * queue's ordering
215 * @throws NullPointerException if the specified collection or any
216 * of its elements are null
217 */
218 public PriorityBlockingQueue(Collection<? extends E> c) {
219 this.lock = new ReentrantLock();
220 this.notEmpty = lock.newCondition();
221 boolean heapify = true; // true if not known to be in heap order
222 boolean screen = true; // true if must screen for nulls
223 if (c instanceof SortedSet<?>) {
224 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
225 this.comparator = (Comparator<? super E>) ss.comparator();
226 heapify = false;
227 }
228 else if (c instanceof PriorityBlockingQueue<?>) {
229 PriorityBlockingQueue<? extends E> pq =
230 (PriorityBlockingQueue<? extends E>) c;
231 this.comparator = (Comparator<? super E>) pq.comparator();
232 screen = false;
233 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
234 heapify = false;
235 }
236 Object[] a = c.toArray();
237 int n = a.length;
238 // If c.toArray incorrectly doesn't return Object[], copy it.
239 if (a.getClass() != Object[].class)
240 a = Arrays.copyOf(a, n, Object[].class);
241 if (screen && (n == 1 || this.comparator != null)) {
242 for (int i = 0; i < n; ++i)
243 if (a[i] == null)
244 throw new NullPointerException();
245 }
246 this.queue = a;
247 this.size = n;
248 if (heapify)
249 heapify();
250 }
251
252 /**
253 * Tries to grow array to accommodate at least one more element
254 * (but normally expand by about 50%), giving up (allowing retry)
255 * on contention (which we expect to be rare). Call only while
256 * holding lock.
257 *
258 * @param array the heap array
259 * @param oldCap the length of the array
260 */
261 private void tryGrow(Object[] array, int oldCap) {
262 lock.unlock(); // must release and then re-acquire main lock
263 Object[] newArray = null;
264 if (allocationSpinLock == 0 &&
265 UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
266 0, 1)) {
267 try {
268 int newCap = oldCap + ((oldCap < 64) ?
269 (oldCap + 2) : // grow faster if small
270 (oldCap >> 1));
271 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
272 int minCap = oldCap + 1;
273 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
274 throw new OutOfMemoryError();
275 newCap = MAX_ARRAY_SIZE;
276 }
277 if (newCap > oldCap && queue == array)
278 newArray = new Object[newCap];
279 } finally {
280 allocationSpinLock = 0;
281 }
282 }
283 if (newArray == null) // back off if another thread is allocating
284 Thread.yield();
285 lock.lock();
286 if (newArray != null && queue == array) {
287 queue = newArray;
288 System.arraycopy(array, 0, newArray, 0, oldCap);
289 }
290 }
291
292 /**
293 * Mechanics for poll(). Call only while holding lock.
294 */
295 private E dequeue() {
296 int n = size - 1;
297 if (n < 0)
298 return null;
299 else {
300 Object[] array = queue;
301 E result = (E) array[0];
302 E x = (E) array[n];
303 array[n] = null;
304 Comparator<? super E> cmp = comparator;
305 if (cmp == null)
306 siftDownComparable(0, x, array, n);
307 else
308 siftDownUsingComparator(0, x, array, n, cmp);
309 size = n;
310 return result;
311 }
312 }
313
314 /**
315 * Inserts item x at position k, maintaining heap invariant by
316 * promoting x up the tree until it is greater than or equal to
317 * its parent, or is the root.
318 *
319 * To simplify and speed up coercions and comparisons. the
320 * Comparable and Comparator versions are separated into different
321 * methods that are otherwise identical. (Similarly for siftDown.)
322 * These methods are static, with heap state as arguments, to
323 * simplify use in light of possible comparator exceptions.
324 *
325 * @param k the position to fill
326 * @param x the item to insert
327 * @param array the heap array
328 * @param n heap size
329 */
330 private static <T> void siftUpComparable(int k, T x, Object[] array) {
331 Comparable<? super T> key = (Comparable<? super T>) x;
332 while (k > 0) {
333 int parent = (k - 1) >>> 1;
334 Object e = array[parent];
335 if (key.compareTo((T) e) >= 0)
336 break;
337 array[k] = e;
338 k = parent;
339 }
340 array[k] = key;
341 }
342
343 private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
344 Comparator<? super T> cmp) {
345 while (k > 0) {
346 int parent = (k - 1) >>> 1;
347 Object e = array[parent];
348 if (cmp.compare(x, (T) e) >= 0)
349 break;
350 array[k] = e;
351 k = parent;
352 }
353 array[k] = x;
354 }
355
356 /**
357 * Inserts item x at position k, maintaining heap invariant by
358 * demoting x down the tree repeatedly until it is less than or
359 * equal to its children or is a leaf.
360 *
361 * @param k the position to fill
362 * @param x the item to insert
363 * @param array the heap array
364 * @param n heap size
365 */
366 private static <T> void siftDownComparable(int k, T x, Object[] array,
367 int n) {
368 if (n > 0) {
369 Comparable<? super T> key = (Comparable<? super T>)x;
370 int half = n >>> 1; // loop while a non-leaf
371 while (k < half) {
372 int child = (k << 1) + 1; // assume left child is least
373 Object c = array[child];
374 int right = child + 1;
375 if (right < n &&
376 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
377 c = array[child = right];
378 if (key.compareTo((T) c) <= 0)
379 break;
380 array[k] = c;
381 k = child;
382 }
383 array[k] = key;
384 }
385 }
386
387 private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
388 int n,
389 Comparator<? super T> cmp) {
390 if (n > 0) {
391 int half = n >>> 1;
392 while (k < half) {
393 int child = (k << 1) + 1;
394 Object c = array[child];
395 int right = child + 1;
396 if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
397 c = array[child = right];
398 if (cmp.compare(x, (T) c) <= 0)
399 break;
400 array[k] = c;
401 k = child;
402 }
403 array[k] = x;
404 }
405 }
406
407 /**
408 * Establishes the heap invariant (described above) in the entire tree,
409 * assuming nothing about the order of the elements prior to the call.
410 */
411 private void heapify() {
412 Object[] array = queue;
413 int n = size;
414 int half = (n >>> 1) - 1;
415 Comparator<? super E> cmp = comparator;
416 if (cmp == null) {
417 for (int i = half; i >= 0; i--)
418 siftDownComparable(i, (E) array[i], array, n);
419 }
420 else {
421 for (int i = half; i >= 0; i--)
422 siftDownUsingComparator(i, (E) array[i], array, n, cmp);
423 }
424 }
425
426 /**
427 * Inserts the specified element into this priority queue.
428 *
429 * @param e the element to add
430 * @return {@code true} (as specified by {@link Collection#add})
431 * @throws ClassCastException if the specified element cannot be compared
432 * with elements currently in the priority queue according to the
433 * priority queue's ordering
434 * @throws NullPointerException if the specified element is null
435 */
436 public boolean add(E e) {
437 return offer(e);
438 }
439
440 /**
441 * Inserts the specified element into this priority queue.
442 * As the queue is unbounded, this method will never return {@code false}.
443 *
444 * @param e the element to add
445 * @return {@code true} (as specified by {@link Queue#offer})
446 * @throws ClassCastException if the specified element cannot be compared
447 * with elements currently in the priority queue according to the
448 * priority queue's ordering
449 * @throws NullPointerException if the specified element is null
450 */
451 public boolean offer(E e) {
452 if (e == null)
453 throw new NullPointerException();
454 final ReentrantLock lock = this.lock;
455 lock.lock();
456 int n, cap;
457 Object[] array;
458 while ((n = size) >= (cap = (array = queue).length))
459 tryGrow(array, cap);
460 try {
461 Comparator<? super E> cmp = comparator;
462 if (cmp == null)
463 siftUpComparable(n, e, array);
464 else
465 siftUpUsingComparator(n, e, array, cmp);
466 size = n + 1;
467 notEmpty.signal();
468 } finally {
469 lock.unlock();
470 }
471 return true;
472 }
473
474 /**
475 * Inserts the specified element into this priority queue.
476 * As the queue is unbounded, this method will never block.
477 *
478 * @param e the element to add
479 * @throws ClassCastException if the specified element cannot be compared
480 * with elements currently in the priority queue according to the
481 * priority queue's ordering
482 * @throws NullPointerException if the specified element is null
483 */
484 public void put(E e) {
485 offer(e); // never need to block
486 }
487
488 /**
489 * Inserts the specified element into this priority queue.
490 * As the queue is unbounded, this method will never block or
491 * return {@code false}.
492 *
493 * @param e the element to add
494 * @param timeout This parameter is ignored as the method never blocks
495 * @param unit This parameter is ignored as the method never blocks
496 * @return {@code true} (as specified by
497 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
498 * @throws ClassCastException if the specified element cannot be compared
499 * with elements currently in the priority queue according to the
500 * priority queue's ordering
501 * @throws NullPointerException if the specified element is null
502 */
503 public boolean offer(E e, long timeout, TimeUnit unit) {
504 return offer(e); // never need to block
505 }
506
507 public E poll() {
508 final ReentrantLock lock = this.lock;
509 lock.lock();
510 try {
511 return dequeue();
512 } finally {
513 lock.unlock();
514 }
515 }
516
517 public E take() throws InterruptedException {
518 final ReentrantLock lock = this.lock;
519 lock.lockInterruptibly();
520 E result;
521 try {
522 while ( (result = dequeue()) == null)
523 notEmpty.await();
524 } finally {
525 lock.unlock();
526 }
527 return result;
528 }
529
530 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
531 long nanos = unit.toNanos(timeout);
532 final ReentrantLock lock = this.lock;
533 lock.lockInterruptibly();
534 E result;
535 try {
536 while ( (result = dequeue()) == null && nanos > 0)
537 nanos = notEmpty.awaitNanos(nanos);
538 } finally {
539 lock.unlock();
540 }
541 return result;
542 }
543
544 public E peek() {
545 final ReentrantLock lock = this.lock;
546 lock.lock();
547 try {
548 return (size == 0) ? null : (E) queue[0];
549 } finally {
550 lock.unlock();
551 }
552 }
553
554 /**
555 * Returns the comparator used to order the elements in this queue,
556 * or {@code null} if this queue uses the {@linkplain Comparable
557 * natural ordering} of its elements.
558 *
559 * @return the comparator used to order the elements in this queue,
560 * or {@code null} if this queue uses the natural
561 * ordering of its elements
562 */
563 public Comparator<? super E> comparator() {
564 return comparator;
565 }
566
567 public int size() {
568 final ReentrantLock lock = this.lock;
569 lock.lock();
570 try {
571 return size;
572 } finally {
573 lock.unlock();
574 }
575 }
576
577 /**
578 * Always returns {@code Integer.MAX_VALUE} because
579 * a {@code PriorityBlockingQueue} is not capacity constrained.
580 * @return {@code Integer.MAX_VALUE} always
581 */
582 public int remainingCapacity() {
583 return Integer.MAX_VALUE;
584 }
585
586 private int indexOf(Object o) {
587 if (o != null) {
588 Object[] array = queue;
589 int n = size;
590 for (int i = 0; i < n; i++)
591 if (o.equals(array[i]))
592 return i;
593 }
594 return -1;
595 }
596
597 /**
598 * Removes the ith element from queue.
599 */
600 private void removeAt(int i) {
601 Object[] array = queue;
602 int n = size - 1;
603 if (n == i) // removed last element
604 array[i] = null;
605 else {
606 E moved = (E) array[n];
607 array[n] = null;
608 Comparator<? super E> cmp = comparator;
609 if (cmp == null)
610 siftDownComparable(i, moved, array, n);
611 else
612 siftDownUsingComparator(i, moved, array, n, cmp);
613 if (array[i] == moved) {
614 if (cmp == null)
615 siftUpComparable(i, moved, array);
616 else
617 siftUpUsingComparator(i, moved, array, cmp);
618 }
619 }
620 size = n;
621 }
622
623 /**
624 * Removes a single instance of the specified element from this queue,
625 * if it is present. More formally, removes an element {@code e} such
626 * that {@code o.equals(e)}, if this queue contains one or more such
627 * elements. Returns {@code true} if and only if this queue contained
628 * the specified element (or equivalently, if this queue changed as a
629 * result of the call).
630 *
631 * @param o element to be removed from this queue, if present
632 * @return {@code true} if this queue changed as a result of the call
633 */
634 public boolean remove(Object o) {
635 final ReentrantLock lock = this.lock;
636 lock.lock();
637 try {
638 int i = indexOf(o);
639 if (i == -1)
640 return false;
641 removeAt(i);
642 return true;
643 } finally {
644 lock.unlock();
645 }
646 }
647
648 /**
649 * Identity-based version for use in Itr.remove
650 */
651 void removeEQ(Object o) {
652 final ReentrantLock lock = this.lock;
653 lock.lock();
654 try {
655 Object[] array = queue;
656 for (int i = 0, n = size; i < n; i++) {
657 if (o == array[i]) {
658 removeAt(i);
659 break;
660 }
661 }
662 } finally {
663 lock.unlock();
664 }
665 }
666
667 /**
668 * Returns {@code true} if this queue contains the specified element.
669 * More formally, returns {@code true} if and only if this queue contains
670 * at least one element {@code e} such that {@code o.equals(e)}.
671 *
672 * @param o object to be checked for containment in this queue
673 * @return {@code true} if this queue contains the specified element
674 */
675 public boolean contains(Object o) {
676 final ReentrantLock lock = this.lock;
677 lock.lock();
678 try {
679 return indexOf(o) != -1;
680 } finally {
681 lock.unlock();
682 }
683 }
684
685 /**
686 * Returns an array containing all of the elements in this queue.
687 * The returned array elements are in no particular order.
688 *
689 * <p>The returned array will be "safe" in that no references to it are
690 * maintained by this queue. (In other words, this method must allocate
691 * a new array). The caller is thus free to modify the returned array.
692 *
693 * <p>This method acts as bridge between array-based and collection-based
694 * APIs.
695 *
696 * @return an array containing all of the elements in this queue
697 */
698 public Object[] toArray() {
699 final ReentrantLock lock = this.lock;
700 lock.lock();
701 try {
702 return Arrays.copyOf(queue, size);
703 } finally {
704 lock.unlock();
705 }
706 }
707
708 public String toString() {
709 final ReentrantLock lock = this.lock;
710 lock.lock();
711 try {
712 int n = size;
713 if (n == 0)
714 return "[]";
715 StringBuilder sb = new StringBuilder();
716 sb.append('[');
717 for (int i = 0; i < n; ++i) {
718 Object e = queue[i];
719 sb.append(e == this ? "(this Collection)" : e);
720 if (i != n - 1)
721 sb.append(',').append(' ');
722 }
723 return sb.append(']').toString();
724 } finally {
725 lock.unlock();
726 }
727 }
728
729 /**
730 * @throws UnsupportedOperationException {@inheritDoc}
731 * @throws ClassCastException {@inheritDoc}
732 * @throws NullPointerException {@inheritDoc}
733 * @throws IllegalArgumentException {@inheritDoc}
734 */
735 public int drainTo(Collection<? super E> c) {
736 return drainTo(c, Integer.MAX_VALUE);
737 }
738
739 /**
740 * @throws UnsupportedOperationException {@inheritDoc}
741 * @throws ClassCastException {@inheritDoc}
742 * @throws NullPointerException {@inheritDoc}
743 * @throws IllegalArgumentException {@inheritDoc}
744 */
745 public int drainTo(Collection<? super E> c, int maxElements) {
746 if (c == null)
747 throw new NullPointerException();
748 if (c == this)
749 throw new IllegalArgumentException();
750 if (maxElements <= 0)
751 return 0;
752 final ReentrantLock lock = this.lock;
753 lock.lock();
754 try {
755 int n = Math.min(size, maxElements);
756 for (int i = 0; i < n; i++) {
757 c.add((E) queue[0]); // In this order, in case add() throws.
758 dequeue();
759 }
760 return n;
761 } finally {
762 lock.unlock();
763 }
764 }
765
766 /**
767 * Atomically removes all of the elements from this queue.
768 * The queue will be empty after this call returns.
769 */
770 public void clear() {
771 final ReentrantLock lock = this.lock;
772 lock.lock();
773 try {
774 Object[] array = queue;
775 int n = size;
776 size = 0;
777 for (int i = 0; i < n; i++)
778 array[i] = null;
779 } finally {
780 lock.unlock();
781 }
782 }
783
784 /**
785 * Returns an array containing all of the elements in this queue; the
786 * runtime type of the returned array is that of the specified array.
787 * The returned array elements are in no particular order.
788 * If the queue fits in the specified array, it is returned therein.
789 * Otherwise, a new array is allocated with the runtime type of the
790 * specified array and the size of this queue.
791 *
792 * <p>If this queue fits in the specified array with room to spare
793 * (i.e., the array has more elements than this queue), the element in
794 * the array immediately following the end of the queue is set to
795 * {@code null}.
796 *
797 * <p>Like the {@link #toArray()} method, this method acts as bridge between
798 * array-based and collection-based APIs. Further, this method allows
799 * precise control over the runtime type of the output array, and may,
800 * under certain circumstances, be used to save allocation costs.
801 *
802 * <p>Suppose {@code x} is a queue known to contain only strings.
803 * The following code can be used to dump the queue into a newly
804 * allocated array of {@code String}:
805 *
806 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
807 *
808 * Note that {@code toArray(new Object[0])} is identical in function to
809 * {@code toArray()}.
810 *
811 * @param a the array into which the elements of the queue are to
812 * be stored, if it is big enough; otherwise, a new array of the
813 * same runtime type is allocated for this purpose
814 * @return an array containing all of the elements in this queue
815 * @throws ArrayStoreException if the runtime type of the specified array
816 * is not a supertype of the runtime type of every element in
817 * this queue
818 * @throws NullPointerException if the specified array is null
819 */
820 public <T> T[] toArray(T[] a) {
821 final ReentrantLock lock = this.lock;
822 lock.lock();
823 try {
824 int n = size;
825 if (a.length < n)
826 // Make a new array of a's runtime type, but my contents:
827 return (T[]) Arrays.copyOf(queue, size, a.getClass());
828 System.arraycopy(queue, 0, a, 0, n);
829 if (a.length > n)
830 a[n] = null;
831 return a;
832 } finally {
833 lock.unlock();
834 }
835 }
836
837 /**
838 * Returns an iterator over the elements in this queue. The
839 * iterator does not return the elements in any particular order.
840 *
841 * <p>The returned iterator is a "weakly consistent" iterator that
842 * will never throw {@link java.util.ConcurrentModificationException
843 * ConcurrentModificationException}, and guarantees to traverse
844 * elements as they existed upon construction of the iterator, and
845 * may (but is not guaranteed to) reflect any modifications
846 * subsequent to construction.
847 *
848 * @return an iterator over the elements in this queue
849 */
850 public Iterator<E> iterator() {
851 return new Itr(toArray());
852 }
853
854 /**
855 * Snapshot iterator that works off copy of underlying q array.
856 */
857 final class Itr implements Iterator<E> {
858 final Object[] array; // Array of all elements
859 int cursor; // index of next element to return
860 int lastRet; // index of last element, or -1 if no such
861
862 Itr(Object[] array) {
863 lastRet = -1;
864 this.array = array;
865 }
866
867 public boolean hasNext() {
868 return cursor < array.length;
869 }
870
871 public E next() {
872 if (cursor >= array.length)
873 throw new NoSuchElementException();
874 lastRet = cursor;
875 return (E)array[cursor++];
876 }
877
878 public void remove() {
879 if (lastRet < 0)
880 throw new IllegalStateException();
881 removeEQ(array[lastRet]);
882 lastRet = -1;
883 }
884 }
885
886 /**
887 * Saves this queue to a stream (that is, serializes it).
888 *
889 * For compatibility with previous version of this class, elements
890 * are first copied to a java.util.PriorityQueue, which is then
891 * serialized.
892 */
893 private void writeObject(java.io.ObjectOutputStream s)
894 throws java.io.IOException {
895 lock.lock();
896 try {
897 // avoid zero capacity argument
898 q = new PriorityQueue<E>(Math.max(size, 1), comparator);
899 q.addAll(this);
900 s.defaultWriteObject();
901 } finally {
902 q = null;
903 lock.unlock();
904 }
905 }
906
907 /**
908 * Reconstitutes this queue from a stream (that is, deserializes it).
909 */
910 private void readObject(java.io.ObjectInputStream s)
911 throws java.io.IOException, ClassNotFoundException {
912 try {
913 s.defaultReadObject();
914 this.queue = new Object[q.size()];
915 comparator = q.comparator();
916 addAll(q);
917 } finally {
918 q = null;
919 }
920 }
921
922 // wrapping constructor in method avoids transient javac problems
923 final PBQSpliterator<E> spliterator() {
924 Object[] a = toArray();
925 return new PBQSpliterator(a, 0, a.length);
926 }
927
928 public Stream<E> stream() {
929 int flags = Streams.STREAM_IS_SIZED;
930 return Streams.stream
931 (() -> spliterator(), flags);
932 }
933 public Stream<E> parallelStream() {
934 int flags = Streams.STREAM_IS_SIZED;
935 return Streams.parallelStream
936 (() -> spliterator(), flags);
937 }
938
939 /** Index-based split-by-two Spliterator */
940 static final class PBQSpliterator<E> implements Spliterator<E>, Iterator<E> {
941 private final Object[] array;
942 private int index; // current index, modified on advance/split
943 private final int fence; // one past last index
944
945 /** Create new spliterator covering the given array and range */
946 PBQSpliterator(Object[] array, int origin, int fence) {
947 this.array = array; this.index = origin; this.fence = fence;
948 }
949
950 public PBQSpliterator<E> trySplit() {
951 int lo = index, mid = (lo + fence) >>> 1;
952 return (lo >= mid)? null :
953 new PBQSpliterator<E>(array, lo, index = mid);
954 }
955
956 public void forEach(Block<? super E> block) {
957 Object[] a; int i, hi; // hoist accesses and checks from loop
958 if (block == null)
959 throw new NullPointerException();
960 if ((a = array).length >= (hi = fence) &&
961 (i = index) >= 0 && i < hi) {
962 index = hi;
963 do {
964 @SuppressWarnings("unchecked") E e = (E) a[i];
965 block.accept(e);
966 } while (++i < hi);
967 }
968 }
969
970 public boolean tryAdvance(Block<? super E> block) {
971 if (index >= 0 && index < fence) {
972 @SuppressWarnings("unchecked") E e = (E) array[index++];
973 block.accept(e);
974 return true;
975 }
976 return false;
977 }
978
979 public long estimateSize() { return (long)(fence - index); }
980 public boolean hasExactSize() { return true; }
981 public boolean hasExactSplits() { return true; }
982
983 // Iterator support
984 public Iterator<E> iterator() { return this; }
985 public void remove() { throw new UnsupportedOperationException(); }
986 public boolean hasNext() { return index >= 0 && index < fence; }
987
988 public E next() {
989 if (index < 0 || index >= fence)
990 throw new NoSuchElementException();
991 @SuppressWarnings("unchecked") E e = (E) array[index++];
992 return e;
993 }
994 }
995
996 // Unsafe mechanics
997 private static final sun.misc.Unsafe UNSAFE;
998 private static final long allocationSpinLockOffset;
999 static {
1000 try {
1001 UNSAFE = sun.misc.Unsafe.getUnsafe();
1002 Class<?> k = PriorityBlockingQueue.class;
1003 allocationSpinLockOffset = UNSAFE.objectFieldOffset
1004 (k.getDeclaredField("allocationSpinLock"));
1005 } catch (Exception e) {
1006 throw new Error(e);
1007 }
1008 }
1009 }