ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.90
Committed: Mon Jan 28 21:59:11 2013 UTC (11 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.89: +0 -1 lines
Log Message:
remove bad @param

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.locks.Condition;
10 import java.util.concurrent.locks.ReentrantLock;
11 import java.util.AbstractQueue;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Comparator;
15 import java.util.Iterator;
16 import java.util.NoSuchElementException;
17 import java.util.PriorityQueue;
18 import java.util.Queue;
19 import java.util.SortedSet;
20 import java.util.Spliterator;
21 import java.util.stream.Stream;
22 import java.util.stream.Streams;
23 import java.util.function.Block;
24
25 /**
26 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
27 * the same ordering rules as class {@link PriorityQueue} and supplies
28 * blocking retrieval operations. While this queue is logically
29 * unbounded, attempted additions may fail due to resource exhaustion
30 * (causing {@code OutOfMemoryError}). This class does not permit
31 * {@code null} elements. A priority queue relying on {@linkplain
32 * Comparable natural ordering} also does not permit insertion of
33 * non-comparable objects (doing so results in
34 * {@code ClassCastException}).
35 *
36 * <p>This class and its iterator implement all of the
37 * <em>optional</em> methods of the {@link Collection} and {@link
38 * Iterator} interfaces. The Iterator provided in method {@link
39 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
40 * the PriorityBlockingQueue in any particular order. If you need
41 * ordered traversal, consider using
42 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo}
43 * can be used to <em>remove</em> some or all elements in priority
44 * order and place them in another collection.
45 *
46 * <p>Operations on this class make no guarantees about the ordering
47 * of elements with equal priority. If you need to enforce an
48 * ordering, you can define custom classes or comparators that use a
49 * secondary key to break ties in primary priority values. For
50 * example, here is a class that applies first-in-first-out
51 * tie-breaking to comparable elements. To use it, you would insert a
52 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
53 *
54 * <pre> {@code
55 * class FIFOEntry<E extends Comparable<? super E>>
56 * implements Comparable<FIFOEntry<E>> {
57 * static final AtomicLong seq = new AtomicLong(0);
58 * final long seqNum;
59 * final E entry;
60 * public FIFOEntry(E entry) {
61 * seqNum = seq.getAndIncrement();
62 * this.entry = entry;
63 * }
64 * public E getEntry() { return entry; }
65 * public int compareTo(FIFOEntry<E> other) {
66 * int res = entry.compareTo(other.entry);
67 * if (res == 0 && other.entry != this.entry)
68 * res = (seqNum < other.seqNum ? -1 : 1);
69 * return res;
70 * }
71 * }}</pre>
72 *
73 * <p>This class is a member of the
74 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
75 * Java Collections Framework</a>.
76 *
77 * @since 1.5
78 * @author Doug Lea
79 * @param <E> the type of elements held in this collection
80 */
81 @SuppressWarnings("unchecked")
82 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
83 implements BlockingQueue<E>, java.io.Serializable {
84 private static final long serialVersionUID = 5595510919245408276L;
85
86 /*
87 * The implementation uses an array-based binary heap, with public
88 * operations protected with a single lock. However, allocation
89 * during resizing uses a simple spinlock (used only while not
90 * holding main lock) in order to allow takes to operate
91 * concurrently with allocation. This avoids repeated
92 * postponement of waiting consumers and consequent element
93 * build-up. The need to back away from lock during allocation
94 * makes it impossible to simply wrap delegated
95 * java.util.PriorityQueue operations within a lock, as was done
96 * in a previous version of this class. To maintain
97 * interoperability, a plain PriorityQueue is still used during
98 * serialization, which maintains compatibility at the expense of
99 * transiently doubling overhead.
100 */
101
102 /**
103 * Default array capacity.
104 */
105 private static final int DEFAULT_INITIAL_CAPACITY = 11;
106
107 /**
108 * The maximum size of array to allocate.
109 * Some VMs reserve some header words in an array.
110 * Attempts to allocate larger arrays may result in
111 * OutOfMemoryError: Requested array size exceeds VM limit
112 */
113 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
114
115 /**
116 * Priority queue represented as a balanced binary heap: the two
117 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
118 * priority queue is ordered by comparator, or by the elements'
119 * natural ordering, if comparator is null: For each node n in the
120 * heap and each descendant d of n, n <= d. The element with the
121 * lowest value is in queue[0], assuming the queue is nonempty.
122 */
123 private transient Object[] queue;
124
125 /**
126 * The number of elements in the priority queue.
127 */
128 private transient int size;
129
130 /**
131 * The comparator, or null if priority queue uses elements'
132 * natural ordering.
133 */
134 private transient Comparator<? super E> comparator;
135
136 /**
137 * Lock used for all public operations
138 */
139 private final ReentrantLock lock;
140
141 /**
142 * Condition for blocking when empty
143 */
144 private final Condition notEmpty;
145
146 /**
147 * Spinlock for allocation, acquired via CAS.
148 */
149 private transient volatile int allocationSpinLock;
150
151 /**
152 * A plain PriorityQueue used only for serialization,
153 * to maintain compatibility with previous versions
154 * of this class. Non-null only during serialization/deserialization.
155 */
156 private PriorityQueue<E> q;
157
158 /**
159 * Creates a {@code PriorityBlockingQueue} with the default
160 * initial capacity (11) that orders its elements according to
161 * their {@linkplain Comparable natural ordering}.
162 */
163 public PriorityBlockingQueue() {
164 this(DEFAULT_INITIAL_CAPACITY, null);
165 }
166
167 /**
168 * Creates a {@code PriorityBlockingQueue} with the specified
169 * initial capacity that orders its elements according to their
170 * {@linkplain Comparable natural ordering}.
171 *
172 * @param initialCapacity the initial capacity for this priority queue
173 * @throws IllegalArgumentException if {@code initialCapacity} is less
174 * than 1
175 */
176 public PriorityBlockingQueue(int initialCapacity) {
177 this(initialCapacity, null);
178 }
179
180 /**
181 * Creates a {@code PriorityBlockingQueue} with the specified initial
182 * capacity that orders its elements according to the specified
183 * comparator.
184 *
185 * @param initialCapacity the initial capacity for this priority queue
186 * @param comparator the comparator that will be used to order this
187 * priority queue. If {@code null}, the {@linkplain Comparable
188 * natural ordering} of the elements will be used.
189 * @throws IllegalArgumentException if {@code initialCapacity} is less
190 * than 1
191 */
192 public PriorityBlockingQueue(int initialCapacity,
193 Comparator<? super E> comparator) {
194 if (initialCapacity < 1)
195 throw new IllegalArgumentException();
196 this.lock = new ReentrantLock();
197 this.notEmpty = lock.newCondition();
198 this.comparator = comparator;
199 this.queue = new Object[initialCapacity];
200 }
201
202 /**
203 * Creates a {@code PriorityBlockingQueue} containing the elements
204 * in the specified collection. If the specified collection is a
205 * {@link SortedSet} or a {@link PriorityQueue}, this
206 * priority queue will be ordered according to the same ordering.
207 * Otherwise, this priority queue will be ordered according to the
208 * {@linkplain Comparable natural ordering} of its elements.
209 *
210 * @param c the collection whose elements are to be placed
211 * into this priority queue
212 * @throws ClassCastException if elements of the specified collection
213 * cannot be compared to one another according to the priority
214 * queue's ordering
215 * @throws NullPointerException if the specified collection or any
216 * of its elements are null
217 */
218 public PriorityBlockingQueue(Collection<? extends E> c) {
219 this.lock = new ReentrantLock();
220 this.notEmpty = lock.newCondition();
221 boolean heapify = true; // true if not known to be in heap order
222 boolean screen = true; // true if must screen for nulls
223 if (c instanceof SortedSet<?>) {
224 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
225 this.comparator = (Comparator<? super E>) ss.comparator();
226 heapify = false;
227 }
228 else if (c instanceof PriorityBlockingQueue<?>) {
229 PriorityBlockingQueue<? extends E> pq =
230 (PriorityBlockingQueue<? extends E>) c;
231 this.comparator = (Comparator<? super E>) pq.comparator();
232 screen = false;
233 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
234 heapify = false;
235 }
236 Object[] a = c.toArray();
237 int n = a.length;
238 // If c.toArray incorrectly doesn't return Object[], copy it.
239 if (a.getClass() != Object[].class)
240 a = Arrays.copyOf(a, n, Object[].class);
241 if (screen && (n == 1 || this.comparator != null)) {
242 for (int i = 0; i < n; ++i)
243 if (a[i] == null)
244 throw new NullPointerException();
245 }
246 this.queue = a;
247 this.size = n;
248 if (heapify)
249 heapify();
250 }
251
252 /**
253 * Tries to grow array to accommodate at least one more element
254 * (but normally expand by about 50%), giving up (allowing retry)
255 * on contention (which we expect to be rare). Call only while
256 * holding lock.
257 *
258 * @param array the heap array
259 * @param oldCap the length of the array
260 */
261 private void tryGrow(Object[] array, int oldCap) {
262 lock.unlock(); // must release and then re-acquire main lock
263 Object[] newArray = null;
264 if (allocationSpinLock == 0 &&
265 UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset,
266 0, 1)) {
267 try {
268 int newCap = oldCap + ((oldCap < 64) ?
269 (oldCap + 2) : // grow faster if small
270 (oldCap >> 1));
271 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
272 int minCap = oldCap + 1;
273 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
274 throw new OutOfMemoryError();
275 newCap = MAX_ARRAY_SIZE;
276 }
277 if (newCap > oldCap && queue == array)
278 newArray = new Object[newCap];
279 } finally {
280 allocationSpinLock = 0;
281 }
282 }
283 if (newArray == null) // back off if another thread is allocating
284 Thread.yield();
285 lock.lock();
286 if (newArray != null && queue == array) {
287 queue = newArray;
288 System.arraycopy(array, 0, newArray, 0, oldCap);
289 }
290 }
291
292 /**
293 * Mechanics for poll(). Call only while holding lock.
294 */
295 private E dequeue() {
296 int n = size - 1;
297 if (n < 0)
298 return null;
299 else {
300 Object[] array = queue;
301 E result = (E) array[0];
302 E x = (E) array[n];
303 array[n] = null;
304 Comparator<? super E> cmp = comparator;
305 if (cmp == null)
306 siftDownComparable(0, x, array, n);
307 else
308 siftDownUsingComparator(0, x, array, n, cmp);
309 size = n;
310 return result;
311 }
312 }
313
314 /**
315 * Inserts item x at position k, maintaining heap invariant by
316 * promoting x up the tree until it is greater than or equal to
317 * its parent, or is the root.
318 *
319 * To simplify and speed up coercions and comparisons. the
320 * Comparable and Comparator versions are separated into different
321 * methods that are otherwise identical. (Similarly for siftDown.)
322 * These methods are static, with heap state as arguments, to
323 * simplify use in light of possible comparator exceptions.
324 *
325 * @param k the position to fill
326 * @param x the item to insert
327 * @param array the heap array
328 */
329 private static <T> void siftUpComparable(int k, T x, Object[] array) {
330 Comparable<? super T> key = (Comparable<? super T>) x;
331 while (k > 0) {
332 int parent = (k - 1) >>> 1;
333 Object e = array[parent];
334 if (key.compareTo((T) e) >= 0)
335 break;
336 array[k] = e;
337 k = parent;
338 }
339 array[k] = key;
340 }
341
342 private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
343 Comparator<? super T> cmp) {
344 while (k > 0) {
345 int parent = (k - 1) >>> 1;
346 Object e = array[parent];
347 if (cmp.compare(x, (T) e) >= 0)
348 break;
349 array[k] = e;
350 k = parent;
351 }
352 array[k] = x;
353 }
354
355 /**
356 * Inserts item x at position k, maintaining heap invariant by
357 * demoting x down the tree repeatedly until it is less than or
358 * equal to its children or is a leaf.
359 *
360 * @param k the position to fill
361 * @param x the item to insert
362 * @param array the heap array
363 * @param n heap size
364 */
365 private static <T> void siftDownComparable(int k, T x, Object[] array,
366 int n) {
367 if (n > 0) {
368 Comparable<? super T> key = (Comparable<? super T>)x;
369 int half = n >>> 1; // loop while a non-leaf
370 while (k < half) {
371 int child = (k << 1) + 1; // assume left child is least
372 Object c = array[child];
373 int right = child + 1;
374 if (right < n &&
375 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
376 c = array[child = right];
377 if (key.compareTo((T) c) <= 0)
378 break;
379 array[k] = c;
380 k = child;
381 }
382 array[k] = key;
383 }
384 }
385
386 private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
387 int n,
388 Comparator<? super T> cmp) {
389 if (n > 0) {
390 int half = n >>> 1;
391 while (k < half) {
392 int child = (k << 1) + 1;
393 Object c = array[child];
394 int right = child + 1;
395 if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
396 c = array[child = right];
397 if (cmp.compare(x, (T) c) <= 0)
398 break;
399 array[k] = c;
400 k = child;
401 }
402 array[k] = x;
403 }
404 }
405
406 /**
407 * Establishes the heap invariant (described above) in the entire tree,
408 * assuming nothing about the order of the elements prior to the call.
409 */
410 private void heapify() {
411 Object[] array = queue;
412 int n = size;
413 int half = (n >>> 1) - 1;
414 Comparator<? super E> cmp = comparator;
415 if (cmp == null) {
416 for (int i = half; i >= 0; i--)
417 siftDownComparable(i, (E) array[i], array, n);
418 }
419 else {
420 for (int i = half; i >= 0; i--)
421 siftDownUsingComparator(i, (E) array[i], array, n, cmp);
422 }
423 }
424
425 /**
426 * Inserts the specified element into this priority queue.
427 *
428 * @param e the element to add
429 * @return {@code true} (as specified by {@link Collection#add})
430 * @throws ClassCastException if the specified element cannot be compared
431 * with elements currently in the priority queue according to the
432 * priority queue's ordering
433 * @throws NullPointerException if the specified element is null
434 */
435 public boolean add(E e) {
436 return offer(e);
437 }
438
439 /**
440 * Inserts the specified element into this priority queue.
441 * As the queue is unbounded, this method will never return {@code false}.
442 *
443 * @param e the element to add
444 * @return {@code true} (as specified by {@link Queue#offer})
445 * @throws ClassCastException if the specified element cannot be compared
446 * with elements currently in the priority queue according to the
447 * priority queue's ordering
448 * @throws NullPointerException if the specified element is null
449 */
450 public boolean offer(E e) {
451 if (e == null)
452 throw new NullPointerException();
453 final ReentrantLock lock = this.lock;
454 lock.lock();
455 int n, cap;
456 Object[] array;
457 while ((n = size) >= (cap = (array = queue).length))
458 tryGrow(array, cap);
459 try {
460 Comparator<? super E> cmp = comparator;
461 if (cmp == null)
462 siftUpComparable(n, e, array);
463 else
464 siftUpUsingComparator(n, e, array, cmp);
465 size = n + 1;
466 notEmpty.signal();
467 } finally {
468 lock.unlock();
469 }
470 return true;
471 }
472
473 /**
474 * Inserts the specified element into this priority queue.
475 * As the queue is unbounded, this method will never block.
476 *
477 * @param e the element to add
478 * @throws ClassCastException if the specified element cannot be compared
479 * with elements currently in the priority queue according to the
480 * priority queue's ordering
481 * @throws NullPointerException if the specified element is null
482 */
483 public void put(E e) {
484 offer(e); // never need to block
485 }
486
487 /**
488 * Inserts the specified element into this priority queue.
489 * As the queue is unbounded, this method will never block or
490 * return {@code false}.
491 *
492 * @param e the element to add
493 * @param timeout This parameter is ignored as the method never blocks
494 * @param unit This parameter is ignored as the method never blocks
495 * @return {@code true} (as specified by
496 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
497 * @throws ClassCastException if the specified element cannot be compared
498 * with elements currently in the priority queue according to the
499 * priority queue's ordering
500 * @throws NullPointerException if the specified element is null
501 */
502 public boolean offer(E e, long timeout, TimeUnit unit) {
503 return offer(e); // never need to block
504 }
505
506 public E poll() {
507 final ReentrantLock lock = this.lock;
508 lock.lock();
509 try {
510 return dequeue();
511 } finally {
512 lock.unlock();
513 }
514 }
515
516 public E take() throws InterruptedException {
517 final ReentrantLock lock = this.lock;
518 lock.lockInterruptibly();
519 E result;
520 try {
521 while ( (result = dequeue()) == null)
522 notEmpty.await();
523 } finally {
524 lock.unlock();
525 }
526 return result;
527 }
528
529 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
530 long nanos = unit.toNanos(timeout);
531 final ReentrantLock lock = this.lock;
532 lock.lockInterruptibly();
533 E result;
534 try {
535 while ( (result = dequeue()) == null && nanos > 0)
536 nanos = notEmpty.awaitNanos(nanos);
537 } finally {
538 lock.unlock();
539 }
540 return result;
541 }
542
543 public E peek() {
544 final ReentrantLock lock = this.lock;
545 lock.lock();
546 try {
547 return (size == 0) ? null : (E) queue[0];
548 } finally {
549 lock.unlock();
550 }
551 }
552
553 /**
554 * Returns the comparator used to order the elements in this queue,
555 * or {@code null} if this queue uses the {@linkplain Comparable
556 * natural ordering} of its elements.
557 *
558 * @return the comparator used to order the elements in this queue,
559 * or {@code null} if this queue uses the natural
560 * ordering of its elements
561 */
562 public Comparator<? super E> comparator() {
563 return comparator;
564 }
565
566 public int size() {
567 final ReentrantLock lock = this.lock;
568 lock.lock();
569 try {
570 return size;
571 } finally {
572 lock.unlock();
573 }
574 }
575
576 /**
577 * Always returns {@code Integer.MAX_VALUE} because
578 * a {@code PriorityBlockingQueue} is not capacity constrained.
579 * @return {@code Integer.MAX_VALUE} always
580 */
581 public int remainingCapacity() {
582 return Integer.MAX_VALUE;
583 }
584
585 private int indexOf(Object o) {
586 if (o != null) {
587 Object[] array = queue;
588 int n = size;
589 for (int i = 0; i < n; i++)
590 if (o.equals(array[i]))
591 return i;
592 }
593 return -1;
594 }
595
596 /**
597 * Removes the ith element from queue.
598 */
599 private void removeAt(int i) {
600 Object[] array = queue;
601 int n = size - 1;
602 if (n == i) // removed last element
603 array[i] = null;
604 else {
605 E moved = (E) array[n];
606 array[n] = null;
607 Comparator<? super E> cmp = comparator;
608 if (cmp == null)
609 siftDownComparable(i, moved, array, n);
610 else
611 siftDownUsingComparator(i, moved, array, n, cmp);
612 if (array[i] == moved) {
613 if (cmp == null)
614 siftUpComparable(i, moved, array);
615 else
616 siftUpUsingComparator(i, moved, array, cmp);
617 }
618 }
619 size = n;
620 }
621
622 /**
623 * Removes a single instance of the specified element from this queue,
624 * if it is present. More formally, removes an element {@code e} such
625 * that {@code o.equals(e)}, if this queue contains one or more such
626 * elements. Returns {@code true} if and only if this queue contained
627 * the specified element (or equivalently, if this queue changed as a
628 * result of the call).
629 *
630 * @param o element to be removed from this queue, if present
631 * @return {@code true} if this queue changed as a result of the call
632 */
633 public boolean remove(Object o) {
634 final ReentrantLock lock = this.lock;
635 lock.lock();
636 try {
637 int i = indexOf(o);
638 if (i == -1)
639 return false;
640 removeAt(i);
641 return true;
642 } finally {
643 lock.unlock();
644 }
645 }
646
647 /**
648 * Identity-based version for use in Itr.remove
649 */
650 void removeEQ(Object o) {
651 final ReentrantLock lock = this.lock;
652 lock.lock();
653 try {
654 Object[] array = queue;
655 for (int i = 0, n = size; i < n; i++) {
656 if (o == array[i]) {
657 removeAt(i);
658 break;
659 }
660 }
661 } finally {
662 lock.unlock();
663 }
664 }
665
666 /**
667 * Returns {@code true} if this queue contains the specified element.
668 * More formally, returns {@code true} if and only if this queue contains
669 * at least one element {@code e} such that {@code o.equals(e)}.
670 *
671 * @param o object to be checked for containment in this queue
672 * @return {@code true} if this queue contains the specified element
673 */
674 public boolean contains(Object o) {
675 final ReentrantLock lock = this.lock;
676 lock.lock();
677 try {
678 return indexOf(o) != -1;
679 } finally {
680 lock.unlock();
681 }
682 }
683
684 /**
685 * Returns an array containing all of the elements in this queue.
686 * The returned array elements are in no particular order.
687 *
688 * <p>The returned array will be "safe" in that no references to it are
689 * maintained by this queue. (In other words, this method must allocate
690 * a new array). The caller is thus free to modify the returned array.
691 *
692 * <p>This method acts as bridge between array-based and collection-based
693 * APIs.
694 *
695 * @return an array containing all of the elements in this queue
696 */
697 public Object[] toArray() {
698 final ReentrantLock lock = this.lock;
699 lock.lock();
700 try {
701 return Arrays.copyOf(queue, size);
702 } finally {
703 lock.unlock();
704 }
705 }
706
707 public String toString() {
708 final ReentrantLock lock = this.lock;
709 lock.lock();
710 try {
711 int n = size;
712 if (n == 0)
713 return "[]";
714 StringBuilder sb = new StringBuilder();
715 sb.append('[');
716 for (int i = 0; i < n; ++i) {
717 Object e = queue[i];
718 sb.append(e == this ? "(this Collection)" : e);
719 if (i != n - 1)
720 sb.append(',').append(' ');
721 }
722 return sb.append(']').toString();
723 } finally {
724 lock.unlock();
725 }
726 }
727
728 /**
729 * @throws UnsupportedOperationException {@inheritDoc}
730 * @throws ClassCastException {@inheritDoc}
731 * @throws NullPointerException {@inheritDoc}
732 * @throws IllegalArgumentException {@inheritDoc}
733 */
734 public int drainTo(Collection<? super E> c) {
735 return drainTo(c, Integer.MAX_VALUE);
736 }
737
738 /**
739 * @throws UnsupportedOperationException {@inheritDoc}
740 * @throws ClassCastException {@inheritDoc}
741 * @throws NullPointerException {@inheritDoc}
742 * @throws IllegalArgumentException {@inheritDoc}
743 */
744 public int drainTo(Collection<? super E> c, int maxElements) {
745 if (c == null)
746 throw new NullPointerException();
747 if (c == this)
748 throw new IllegalArgumentException();
749 if (maxElements <= 0)
750 return 0;
751 final ReentrantLock lock = this.lock;
752 lock.lock();
753 try {
754 int n = Math.min(size, maxElements);
755 for (int i = 0; i < n; i++) {
756 c.add((E) queue[0]); // In this order, in case add() throws.
757 dequeue();
758 }
759 return n;
760 } finally {
761 lock.unlock();
762 }
763 }
764
765 /**
766 * Atomically removes all of the elements from this queue.
767 * The queue will be empty after this call returns.
768 */
769 public void clear() {
770 final ReentrantLock lock = this.lock;
771 lock.lock();
772 try {
773 Object[] array = queue;
774 int n = size;
775 size = 0;
776 for (int i = 0; i < n; i++)
777 array[i] = null;
778 } finally {
779 lock.unlock();
780 }
781 }
782
783 /**
784 * Returns an array containing all of the elements in this queue; the
785 * runtime type of the returned array is that of the specified array.
786 * The returned array elements are in no particular order.
787 * If the queue fits in the specified array, it is returned therein.
788 * Otherwise, a new array is allocated with the runtime type of the
789 * specified array and the size of this queue.
790 *
791 * <p>If this queue fits in the specified array with room to spare
792 * (i.e., the array has more elements than this queue), the element in
793 * the array immediately following the end of the queue is set to
794 * {@code null}.
795 *
796 * <p>Like the {@link #toArray()} method, this method acts as bridge between
797 * array-based and collection-based APIs. Further, this method allows
798 * precise control over the runtime type of the output array, and may,
799 * under certain circumstances, be used to save allocation costs.
800 *
801 * <p>Suppose {@code x} is a queue known to contain only strings.
802 * The following code can be used to dump the queue into a newly
803 * allocated array of {@code String}:
804 *
805 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
806 *
807 * Note that {@code toArray(new Object[0])} is identical in function to
808 * {@code toArray()}.
809 *
810 * @param a the array into which the elements of the queue are to
811 * be stored, if it is big enough; otherwise, a new array of the
812 * same runtime type is allocated for this purpose
813 * @return an array containing all of the elements in this queue
814 * @throws ArrayStoreException if the runtime type of the specified array
815 * is not a supertype of the runtime type of every element in
816 * this queue
817 * @throws NullPointerException if the specified array is null
818 */
819 public <T> T[] toArray(T[] a) {
820 final ReentrantLock lock = this.lock;
821 lock.lock();
822 try {
823 int n = size;
824 if (a.length < n)
825 // Make a new array of a's runtime type, but my contents:
826 return (T[]) Arrays.copyOf(queue, size, a.getClass());
827 System.arraycopy(queue, 0, a, 0, n);
828 if (a.length > n)
829 a[n] = null;
830 return a;
831 } finally {
832 lock.unlock();
833 }
834 }
835
836 /**
837 * Returns an iterator over the elements in this queue. The
838 * iterator does not return the elements in any particular order.
839 *
840 * <p>The returned iterator is a "weakly consistent" iterator that
841 * will never throw {@link java.util.ConcurrentModificationException
842 * ConcurrentModificationException}, and guarantees to traverse
843 * elements as they existed upon construction of the iterator, and
844 * may (but is not guaranteed to) reflect any modifications
845 * subsequent to construction.
846 *
847 * @return an iterator over the elements in this queue
848 */
849 public Iterator<E> iterator() {
850 return new Itr(toArray());
851 }
852
853 /**
854 * Snapshot iterator that works off copy of underlying q array.
855 */
856 final class Itr implements Iterator<E> {
857 final Object[] array; // Array of all elements
858 int cursor; // index of next element to return
859 int lastRet; // index of last element, or -1 if no such
860
861 Itr(Object[] array) {
862 lastRet = -1;
863 this.array = array;
864 }
865
866 public boolean hasNext() {
867 return cursor < array.length;
868 }
869
870 public E next() {
871 if (cursor >= array.length)
872 throw new NoSuchElementException();
873 lastRet = cursor;
874 return (E)array[cursor++];
875 }
876
877 public void remove() {
878 if (lastRet < 0)
879 throw new IllegalStateException();
880 removeEQ(array[lastRet]);
881 lastRet = -1;
882 }
883 }
884
885 /**
886 * Saves this queue to a stream (that is, serializes it).
887 *
888 * For compatibility with previous version of this class, elements
889 * are first copied to a java.util.PriorityQueue, which is then
890 * serialized.
891 */
892 private void writeObject(java.io.ObjectOutputStream s)
893 throws java.io.IOException {
894 lock.lock();
895 try {
896 // avoid zero capacity argument
897 q = new PriorityQueue<E>(Math.max(size, 1), comparator);
898 q.addAll(this);
899 s.defaultWriteObject();
900 } finally {
901 q = null;
902 lock.unlock();
903 }
904 }
905
906 /**
907 * Reconstitutes this queue from a stream (that is, deserializes it).
908 */
909 private void readObject(java.io.ObjectInputStream s)
910 throws java.io.IOException, ClassNotFoundException {
911 try {
912 s.defaultReadObject();
913 this.queue = new Object[q.size()];
914 comparator = q.comparator();
915 addAll(q);
916 } finally {
917 q = null;
918 }
919 }
920
921 // wrapping constructor in method avoids transient javac problems
922 final PBQSpliterator<E> spliterator() {
923 Object[] a = toArray();
924 return new PBQSpliterator<E>(a, 0, a.length);
925 }
926
927 public Stream<E> stream() {
928 int flags = Streams.STREAM_IS_SIZED;
929 return Streams.stream
930 (() -> spliterator(), flags);
931 }
932 public Stream<E> parallelStream() {
933 int flags = Streams.STREAM_IS_SIZED;
934 return Streams.parallelStream
935 (() -> spliterator(), flags);
936 }
937
938 /** Index-based split-by-two Spliterator */
939 static final class PBQSpliterator<E> implements Spliterator<E> {
940 private final Object[] array;
941 private int index; // current index, modified on advance/split
942 private final int fence; // one past last index
943
944 /** Create new spliterator covering the given array and range */
945 PBQSpliterator(Object[] array, int origin, int fence) {
946 this.array = array; this.index = origin; this.fence = fence;
947 }
948
949 public PBQSpliterator<E> trySplit() {
950 int lo = index, mid = (lo + fence) >>> 1;
951 return (lo >= mid) ? null :
952 new PBQSpliterator<E>(array, lo, index = mid);
953 }
954
955 public void forEach(Block<? super E> block) {
956 Object[] a; int i, hi; // hoist accesses and checks from loop
957 if (block == null)
958 throw new NullPointerException();
959 if ((a = array).length >= (hi = fence) &&
960 (i = index) >= 0 && i < hi) {
961 index = hi;
962 do {
963 @SuppressWarnings("unchecked") E e = (E) a[i];
964 block.accept(e);
965 } while (++i < hi);
966 }
967 }
968
969 public boolean tryAdvance(Block<? super E> block) {
970 if (index >= 0 && index < fence) {
971 @SuppressWarnings("unchecked") E e = (E) array[index++];
972 block.accept(e);
973 return true;
974 }
975 return false;
976 }
977
978 public long estimateSize() { return (long)(fence - index); }
979 public boolean hasExactSize() { return true; }
980 public boolean hasExactSplits() { return true; }
981 }
982
983 // Unsafe mechanics
984 private static final sun.misc.Unsafe UNSAFE;
985 private static final long allocationSpinLockOffset;
986 static {
987 try {
988 UNSAFE = sun.misc.Unsafe.getUnsafe();
989 Class<?> k = PriorityBlockingQueue.class;
990 allocationSpinLockOffset = UNSAFE.objectFieldOffset
991 (k.getDeclaredField("allocationSpinLock"));
992 } catch (Exception e) {
993 throw new Error(e);
994 }
995 }
996 }