/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ package java.util.concurrent; import java.util.concurrent.locks.*; import java.util.*; /** * An unbounded {@linkplain BlockingQueue blocking queue} that uses * the same ordering rules as class {@link PriorityQueue} and supplies * blocking retrieval operations. While this queue is logically * unbounded, attempted additions may fail due to resource exhaustion * (causing {@code OutOfMemoryError}). This class does not permit * {@code null} elements. A priority queue relying on {@linkplain * Comparable natural ordering} also does not permit insertion of * non-comparable objects (doing so results in * {@code ClassCastException}). * *

This class and its iterator implement all of the * optional methods of the {@link Collection} and {@link * Iterator} interfaces. The Iterator provided in method {@link * #iterator()} is not guaranteed to traverse the elements of * the PriorityBlockingQueue in any particular order. If you need * ordered traversal, consider using * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} * can be used to remove some or all elements in priority * order and place them in another collection. * *

Operations on this class make no guarantees about the ordering * of elements with equal priority. If you need to enforce an * ordering, you can define custom classes or comparators that use a * secondary key to break ties in primary priority values. For * example, here is a class that applies first-in-first-out * tie-breaking to comparable elements. To use it, you would insert a * {@code new FIFOEntry(anEntry)} instead of a plain entry object. * *

 {@code
 * class FIFOEntry>
 *     implements Comparable> {
 *   static final AtomicLong seq = new AtomicLong(0);
 *   final long seqNum;
 *   final E entry;
 *   public FIFOEntry(E entry) {
 *     seqNum = seq.getAndIncrement();
 *     this.entry = entry;
 *   }
 *   public E getEntry() { return entry; }
 *   public int compareTo(FIFOEntry other) {
 *     int res = entry.compareTo(other.entry);
 *     if (res == 0 && other.entry != this.entry)
 *       res = (seqNum < other.seqNum ? -1 : 1);
 *     return res;
 *   }
 * }}
* *

This class is a member of the * * Java Collections Framework. * * @since 1.5 * @author Doug Lea * @param the type of elements held in this collection */ public class PriorityBlockingQueue extends AbstractQueue implements BlockingQueue, java.io.Serializable { private static final long serialVersionUID = 5595510919245408276L; /* * This implementation is a variant of the one in * java.util.PriorityQueue, with public operations protected with * a single lock. However, allocation during resizing uses a * simple spinlock (used only while not holding main lock) in * order to allow takes to operate concurrently with allocation. * This avoids repeated postponement of waiting consumers and * consequent build-up. The need to back away from lock during * allocation makes it impossible to simply wrap delegated * java.util.PriorityQueue operations within a lock; hence code * duplication. */ /** * Default array capacity. */ private static final int DEFAULT_INITIAL_CAPACITY = 11; /** * Priority queue represented as a balanced binary heap: the two * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The * priority queue is ordered by comparator, or by the elements' * natural ordering, if comparator is null: For each node n in the * heap and each descendant d of n, n <= d. The element with the * lowest value is in queue[0], assuming the queue is nonempty. */ private transient Object[] queue; /** * The number of elements in the priority queue. */ private transient int size = 0; /** * The comparator, or null if priority queue uses elements' * natural ordering. */ private transient Comparator comparator; /** * A plain PriorityQueue used only for serialization, * to maintain compatibility with previous versions * of this class. Non-null only during serialization/deserialization. */ private PriorityQueue q; /** * Lock used for all public operations */ final ReentrantLock lock = new ReentrantLock(); private final Condition notEmpty = lock.newCondition(); /** * Spinlock for allocation, acquired via CAS. */ private transient volatile int allocationSpinLock; /** * Creates a {@code PriorityBlockingQueue} with the default * initial capacity (11) that orders its elements according to * their {@linkplain Comparable natural ordering}. */ public PriorityBlockingQueue() { this(DEFAULT_INITIAL_CAPACITY, null); } /** * Creates a {@code PriorityBlockingQueue} with the specified * initial capacity that orders its elements according to their * {@linkplain Comparable natural ordering}. * * @param initialCapacity the initial capacity for this priority queue * @throws IllegalArgumentException if {@code initialCapacity} is less * than 1 */ public PriorityBlockingQueue(int initialCapacity) { this(initialCapacity, null); } /** * Creates a {@code PriorityBlockingQueue} with the specified initial * capacity that orders its elements according to the specified * comparator. * * @param initialCapacity the initial capacity for this priority queue * @param comparator the comparator that will be used to order this * priority queue. If {@code null}, the {@linkplain Comparable * natural ordering} of the elements will be used. * @throws IllegalArgumentException if {@code initialCapacity} is less * than 1 */ public PriorityBlockingQueue(int initialCapacity, Comparator comparator) { if (initialCapacity < 1) throw new IllegalArgumentException(); this.queue = new Object[initialCapacity]; this.comparator = comparator; } /** * Creates a {@code PriorityBlockingQueue} containing the elements * in the specified collection. If the specified collection is a * {@link SortedSet} or a {@link PriorityQueue}, this * priority queue will be ordered according to the same ordering. * Otherwise, this priority queue will be ordered according to the * {@linkplain Comparable natural ordering} of its elements. * * @param c the collection whose elements are to be placed * into this priority queue * @throws ClassCastException if elements of the specified collection * cannot be compared to one another according to the priority * queue's ordering * @throws NullPointerException if the specified collection or any * of its elements are null */ public PriorityBlockingQueue(Collection c) { if (c instanceof SortedSet) { SortedSet ss = (SortedSet) c; this.comparator = (Comparator) ss.comparator(); initElementsFromCollection(ss); } else if (c instanceof PriorityBlockingQueue) { PriorityBlockingQueue pq = (PriorityBlockingQueue) c; this.comparator = (Comparator) pq.comparator(); initFromPriorityBlockingQueue(pq); } else { this.comparator = null; initFromCollection(c); } } private void initFromPriorityBlockingQueue(PriorityBlockingQueue c) { if (c.getClass() == PriorityBlockingQueue.class) { this.queue = c.toArray(); this.size = c.size(); } else { initFromCollection(c); } } private void initElementsFromCollection(Collection c) { Object[] a = c.toArray(); // If c.toArray incorrectly doesn't return Object[], copy it. if (a.getClass() != Object[].class) a = Arrays.copyOf(a, a.length, Object[].class); int len = a.length; if (len == 1 || this.comparator != null) for (int i = 0; i < len; i++) if (a[i] == null) throw new NullPointerException(); this.queue = a; this.size = a.length; } /** * Initializes queue array with elements from the given Collection. * * @param c the collection */ private void initFromCollection(Collection c) { initElementsFromCollection(c); heapify(); } /** * Tries to grow array to at least minCap, giving up (allowing * retry) on contention. Call only while holding lock. */ private void tryGrow(int minCap, Object[] array, int oldCap) { lock.unlock(); // must release and then re-acquire main lock Object[] newArray = null; if (allocationSpinLock == 0 && UNSAFE.compareAndSwapInt(this, allocationSpinLockOffset, 0, 1)) { try { int newCap = oldCap + ((oldCap < 64) ? (oldCap + 2) : (oldCap >> 1)); if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow if (minCap < 0 || minCap > MAX_ARRAY_SIZE) throw new OutOfMemoryError(); newCap = MAX_ARRAY_SIZE; } if (queue == array && newCap > array.length) newArray = new Object[newCap]; } finally { allocationSpinLock = 0; } } else Thread.yield(); lock.lock(); if (newArray != null && queue == array) { System.arraycopy(array, 0, newArray, 0, minCap); queue = newArray; } } /** * Mechanics for poll(). Call only while holding lock. */ private E internalPoll() { int s = size - 1; if (s >= 0) { size = s; E result = (E) queue[0]; E x = (E) queue[s]; queue[s] = null; if (s != 0) siftDown(0, x); return result; } else return null; } /** * Inserts item x at position k, maintaining heap invariant by * promoting x up the tree until it is greater than or equal to * its parent, or is the root. * * To simplify and speed up coercions and comparisons. the * Comparable and Comparator versions are separated into different * methods that are otherwise identical. (Similarly for siftDown.) * * @param k the position to fill * @param x the item to insert */ private void siftUp(int k, E x) { if (comparator != null) siftUpUsingComparator(k, x); else siftUpComparable(k, x); } private void siftUpComparable(int k, E x) { Comparable key = (Comparable) x; while (k > 0) { int parent = (k - 1) >>> 1; Object e = queue[parent]; if (key.compareTo((E) e) >= 0) break; queue[k] = e; k = parent; } queue[k] = key; } private void siftUpUsingComparator(int k, E x) { while (k > 0) { int parent = (k - 1) >>> 1; Object e = queue[parent]; if (comparator.compare(x, (E) e) >= 0) break; queue[k] = e; k = parent; } queue[k] = x; } /** * Inserts item x at position k, maintaining heap invariant by * demoting x down the tree repeatedly until it is less than or * equal to its children or is a leaf. * * @param k the position to fill * @param x the item to insert */ private void siftDown(int k, E x) { if (comparator != null) siftDownUsingComparator(k, x); else siftDownComparable(k, x); } private void siftDownComparable(int k, E x) { Comparable key = (Comparable)x; int half = size >>> 1; // loop while a non-leaf while (k < half) { int child = (k << 1) + 1; // assume left child is least Object c = queue[child]; int right = child + 1; if (right < size && ((Comparable) c).compareTo((E) queue[right]) > 0) c = queue[child = right]; if (key.compareTo((E) c) <= 0) break; queue[k] = c; k = child; } queue[k] = key; } private void siftDownUsingComparator(int k, E x) { int half = size >>> 1; while (k < half) { int child = (k << 1) + 1; Object c = queue[child]; int right = child + 1; if (right < size && comparator.compare((E) c, (E) queue[right]) > 0) c = queue[child = right]; if (comparator.compare(x, (E) c) <= 0) break; queue[k] = c; k = child; } queue[k] = x; } /** * Establishes the heap invariant (described above) in the entire tree, * assuming nothing about the order of the elements prior to the call. */ private void heapify() { for (int i = (size >>> 1) - 1; i >= 0; i--) siftDown(i, (E) queue[i]); } /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * Inserts the specified element into this priority queue. * * @param e the element to add * @return {@code true} (as specified by {@link Collection#add}) * @throws ClassCastException if the specified element cannot be compared * with elements currently in the priority queue according to the * priority queue's ordering * @throws NullPointerException if the specified element is null */ public boolean add(E e) { return offer(e); } /** * Inserts the specified element into this priority queue. * As the queue is unbounded, this method will never return {@code false}. * * @param e the element to add * @return {@code true} (as specified by {@link Queue#offer}) * @throws ClassCastException if the specified element cannot be compared * with elements currently in the priority queue according to the * priority queue's ordering * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { if (e == null) throw new NullPointerException(); final ReentrantLock lock = this.lock; lock.lock(); int len, cap; Object[] array; while ((len = size) >= (cap = (array = queue).length)) tryGrow(len, array, cap); try { size = len + 1; if (len == 0) array[0] = e; else siftUp(len, e); notEmpty.signal(); } finally { lock.unlock(); } return true; } /** * Inserts the specified element into this priority queue. * As the queue is unbounded, this method will never block. * * @param e the element to add * @throws ClassCastException if the specified element cannot be compared * with elements currently in the priority queue according to the * priority queue's ordering * @throws NullPointerException if the specified element is null */ public void put(E e) { offer(e); // never need to block } /** * Inserts the specified element into this priority queue. * As the queue is unbounded, this method will never block or * return {@code false}. * * @param e the element to add * @param timeout This parameter is ignored as the method never blocks * @param unit This parameter is ignored as the method never blocks * @return {@code true} always * @throws ClassCastException if the specified element cannot be compared * with elements currently in the priority queue according to the * priority queue's ordering * @throws NullPointerException if the specified element is null */ public boolean offer(E e, long timeout, TimeUnit unit) { return offer(e); // never need to block } public E poll() { final ReentrantLock lock = this.lock; lock.lock(); try { return internalPoll(); } finally { lock.unlock(); } } public E take() throws InterruptedException { E result = null; final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while ( (result = internalPoll()) == null) notEmpty.await(); } finally { lock.unlock(); } return result; } public E poll(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); E result = null; final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { while ( (result = internalPoll()) == null && nanos > 0) nanos = notEmpty.awaitNanos(nanos); } finally { lock.unlock(); } return result; } public E peek() { E result = null; final ReentrantLock lock = this.lock; lock.lock(); try { if (size >= 0) result = (E) queue[0]; } finally { lock.unlock(); } return result; } /** * Returns the comparator used to order the elements in this queue, * or {@code null} if this queue uses the {@linkplain Comparable * natural ordering} of its elements. * * @return the comparator used to order the elements in this queue, * or {@code null} if this queue uses the natural * ordering of its elements */ public Comparator comparator() { return comparator; } public int size() { int n; final ReentrantLock lock = this.lock; lock.lock(); try { n = size; } finally { lock.unlock(); } return n; } /** * Always returns {@code Integer.MAX_VALUE} because * a {@code PriorityBlockingQueue} is not capacity constrained. * @return {@code Integer.MAX_VALUE} always */ public int remainingCapacity() { return Integer.MAX_VALUE; } private int indexOf(Object o) { if (o != null) { for (int i = 0; i < size; i++) if (o.equals(queue[i])) return i; } return -1; } /** * Removes the ith element from queue. */ private void removeAt(int i) { int s = --size; if (s == i) // removed last element queue[i] = null; else { E moved = (E) queue[s]; queue[s] = null; siftDown(i, moved); if (queue[i] == moved) siftUp(i, moved); } } /** * Removes a single instance of the specified element from this queue, * if it is present. More formally, removes an element {@code e} such * that {@code o.equals(e)}, if this queue contains one or more such * elements. Returns {@code true} if and only if this queue contained * the specified element (or equivalently, if this queue changed as a * result of the call). * * @param o element to be removed from this queue, if present * @return {@code true} if this queue changed as a result of the call */ public boolean remove(Object o) { boolean removed = false; final ReentrantLock lock = this.lock; lock.lock(); try { int i = indexOf(o); if (i != -1) { removeAt(i); removed = true; } } finally { lock.unlock(); } return removed; } /** * Identity-based version for use in Itr.remove */ private void removeEQ(Object o) { final ReentrantLock lock = this.lock; lock.lock(); try { for (int i = 0; i < size; i++) { if (o == queue[i]) { removeAt(i); break; } } } finally { lock.unlock(); } } /** * Returns {@code true} if this queue contains the specified element. * More formally, returns {@code true} if and only if this queue contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this queue * @return {@code true} if this queue contains the specified element */ public boolean contains(Object o) { int index; final ReentrantLock lock = this.lock; lock.lock(); try { index = indexOf(o); } finally { lock.unlock(); } return index != -1; } /** * Returns an array containing all of the elements in this queue. * The returned array elements are in no particular order. * *

The returned array will be "safe" in that no references to it are * maintained by this queue. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this queue */ public Object[] toArray() { final ReentrantLock lock = this.lock; lock.lock(); try { return Arrays.copyOf(queue, size); } finally { lock.unlock(); } } public String toString() { final ReentrantLock lock = this.lock; lock.lock(); try { int n = size; if (n == 0) return "[]"; StringBuilder sb = new StringBuilder(); sb.append('['); for (int i = 0; i < n; ++i) { E e = (E)queue[i]; sb.append(e == this ? "(this Collection)" : e); if (i != n - 1) sb.append(',').append(' '); } return sb.append(']').toString(); } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); final ReentrantLock lock = this.lock; lock.lock(); try { int n = 0; E e; while ( (e = internalPoll()) != null) { c.add(e); ++n; } return n; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; final ReentrantLock lock = this.lock; lock.lock(); try { int n = 0; E e; while (n < maxElements && (e = internalPoll()) != null) { c.add(e); ++n; } return n; } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this queue. * The queue will be empty after this call returns. */ public void clear() { final ReentrantLock lock = this.lock; lock.lock(); try { for (int i = 0; i < size; i++) queue[i] = null; size = 0; } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this queue; the * runtime type of the returned array is that of the specified array. * The returned array elements are in no particular order. * If the queue fits in the specified array, it is returned therein. * Otherwise, a new array is allocated with the runtime type of the * specified array and the size of this queue. * *

If this queue fits in the specified array with room to spare * (i.e., the array has more elements than this queue), the element in * the array immediately following the end of the queue is set to * {@code null}. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose {@code x} is a queue known to contain only strings. * The following code can be used to dump the queue into a newly * allocated array of {@code String}: * *

     *     String[] y = x.toArray(new String[0]);
* * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the queue are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this queue * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this queue * @throws NullPointerException if the specified array is null */ public T[] toArray(T[] a) { final ReentrantLock lock = this.lock; lock.lock(); try { if (a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(queue, size, a.getClass()); System.arraycopy(queue, 0, a, 0, size); if (a.length > size) a[size] = null; return a; } finally { lock.unlock(); } } /** * Returns an iterator over the elements in this queue. The * iterator does not return the elements in any particular order. * The returned {@code Iterator} is a "weakly consistent" * iterator that will never throw {@link * ConcurrentModificationException}, and guarantees to traverse * elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications * subsequent to construction. * * @return an iterator over the elements in this queue */ public Iterator iterator() { return new Itr(toArray()); } /** * Snapshot iterator that works off copy of underlying q array. */ final class Itr implements Iterator { final Object[] array; // Array of all elements int cursor; // index of next element to return; int lastRet; // index of last element, or -1 if no such Itr(Object[] array) { lastRet = -1; this.array = array; } public boolean hasNext() { return cursor < array.length; } public E next() { if (cursor >= array.length) throw new NoSuchElementException(); lastRet = cursor; return (E)array[cursor++]; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); removeEQ(array[lastRet]); lastRet = -1; } } /** * Saves the state to a stream (that is, serializes it). For * compatibility with previous version of this class, * elements are first copied to a java.util.PriorityQueue, * which is then serialized. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { lock.lock(); try { int n = size; // avoid zero capacity argument q = new PriorityQueue(n == 0 ? 1 : n, comparator); q.addAll(this); s.defaultWriteObject(); q = null; } finally { lock.unlock(); } } /** * Reconstitutes the {@code PriorityBlockingQueue} instance from a stream * (that is, deserializes it). * * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); this.queue = new Object[q.size()]; comparator = q.comparator(); addAll(q); q = null; } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe(); private static final long allocationSpinLockOffset = objectFieldOffset(UNSAFE, "allocationSpinLock", PriorityBlockingQueue.class); static long objectFieldOffset(sun.misc.Unsafe UNSAFE, String field, Class klazz) { try { return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field)); } catch (NoSuchFieldException e) { // Convert Exception to corresponding Error NoSuchFieldError error = new NoSuchFieldError(field); error.initCause(e); throw error; } } }