ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ScheduledThreadPoolExecutor.java
Revision: 1.10
Committed: Mon Dec 22 16:25:20 2003 UTC (20 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.9: +3 -37 lines
Log Message:
Simplify FutureTask and AbstractExecutorService internals; improve docs

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5     */
6    
7     package java.util.concurrent;
8     import java.util.concurrent.atomic.*;
9     import java.util.*;
10    
11     /**
12 dl 1.7 * A {@link ThreadPoolExecutor} that can additionally schedule
13     * commands to run after a given delay, or to execute
14     * periodically. This class is preferable to {@link java.util.Timer}
15     * when multiple worker threads are needed, or when the additional
16     * flexibility or capabilities of {@link ThreadPoolExecutor} (which
17     * this class extends) are required.
18 dl 1.1 *
19     * <p> Delayed tasks execute no sooner than they are enabled, but
20     * without any real-time guarantees about when, after they are enabled,
21     * they will commence. Tasks tied for the same execution time are
22     * enabled in first-in-first-out (FIFO) order of submission.
23     *
24     * <p>While this class inherits from {@link ThreadPoolExecutor}, a few
25 dl 1.8 * of the inherited tuning methods are not useful for it. In
26     * particular, because it acts as a fixed-sized pool using
27     * <tt>corePoolSize</tt> threads and an unbounded queue, adjustments
28     * to <tt>maximumPoolSize</tt> have no useful effect.
29 dl 1.1 *
30     * @since 1.5
31     * @author Doug Lea
32     */
33 tim 1.3 public class ScheduledThreadPoolExecutor
34     extends ThreadPoolExecutor
35     implements ScheduledExecutorService {
36 dl 1.1
37     /**
38     * False if should cancel/suppress periodic tasks on shutdown.
39     */
40     private volatile boolean continueExistingPeriodicTasksAfterShutdown;
41    
42     /**
43     * False if should cancel non-periodic tasks on shutdown.
44     */
45     private volatile boolean executeExistingDelayedTasksAfterShutdown = true;
46    
47    
48     /**
49     * Sequence number to break scheduling ties, and in turn to
50     * guarantee FIFO order among tied entries.
51     */
52     private static final AtomicLong sequencer = new AtomicLong(0);
53    
54 dl 1.5 private class ScheduledFutureTask<V>
55 dl 1.1 extends FutureTask<V> implements ScheduledFuture<V> {
56    
57     /** Sequence number to break ties FIFO */
58     private final long sequenceNumber;
59     /** The time the task is enabled to execute in nanoTime units */
60     private long time;
61     /** The delay following next time, or <= 0 if non-periodic */
62     private final long period;
63     /** true if at fixed rate; false if fixed delay */
64     private final boolean rateBased;
65    
66     /**
67     * Creates a one-shot action with given nanoTime-based trigger time
68     */
69     ScheduledFutureTask(Runnable r, V result, long ns) {
70     super(r, result);
71     this.time = ns;
72     this.period = 0;
73     rateBased = false;
74     this.sequenceNumber = sequencer.getAndIncrement();
75     }
76    
77     /**
78     * Creates a periodic action with given nano time and period
79     */
80     ScheduledFutureTask(Runnable r, V result, long ns, long period, boolean rateBased) {
81     super(r, result);
82     this.time = ns;
83     this.period = period;
84     this.rateBased = rateBased;
85     this.sequenceNumber = sequencer.getAndIncrement();
86     }
87    
88     /**
89     * Creates a one-shot action with given nanoTime-based trigger
90     */
91     ScheduledFutureTask(Callable<V> callable, long ns) {
92     super(callable);
93     this.time = ns;
94     this.period = 0;
95     rateBased = false;
96     this.sequenceNumber = sequencer.getAndIncrement();
97     }
98    
99    
100     public long getDelay(TimeUnit unit) {
101     long d = unit.convert(time - System.nanoTime(),
102     TimeUnit.NANOSECONDS);
103     return d;
104     }
105    
106     public int compareTo(Object other) {
107     if (other == this) // compare zero ONLY if same object
108     return 0;
109     ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
110     long diff = time - x.time;
111     if (diff < 0)
112     return -1;
113     else if (diff > 0)
114     return 1;
115     else if (sequenceNumber < x.sequenceNumber)
116     return -1;
117     else
118     return 1;
119     }
120    
121     /**
122     * Return true if this is a periodic (not a one-shot) action.
123     * @return true if periodic
124     */
125 dl 1.10 boolean isPeriodic() {
126 dl 1.1 return period > 0;
127     }
128    
129     /**
130     * Returns the period, or zero if non-periodic.
131     *
132     * @return the period
133     */
134 dl 1.10 long getPeriod(TimeUnit unit) {
135 dl 1.1 return unit.convert(period, TimeUnit.NANOSECONDS);
136     }
137    
138     /**
139 dl 1.5 * Overrides FutureTask version so as to reset/requeue if periodic.
140 dl 1.1 */
141     public void run() {
142 dl 1.5 if (!isPeriodic())
143     ScheduledFutureTask.super.run();
144     else {
145 dl 1.10 if (!ScheduledFutureTask.super.runAndReset())
146 dl 1.5 return;
147     boolean down = isShutdown();
148     if (!down ||
149     (getContinueExistingPeriodicTasksAfterShutdownPolicy() &&
150     !isTerminating())) {
151     time = period + (rateBased ? time : System.nanoTime());
152     ScheduledThreadPoolExecutor.super.getQueue().add(this);
153     }
154     // This might have been the final executed delayed
155     // task. Wake up threads to check.
156     else if (down)
157     interruptIdleWorkers();
158     }
159 dl 1.1 }
160     }
161    
162     /**
163     * An annoying wrapper class to convince generics compiler to
164     * use a DelayQueue<ScheduledFutureTask> as a BlockingQueue<Runnable>
165     */
166     private static class DelayedWorkQueue
167     extends AbstractCollection<Runnable> implements BlockingQueue<Runnable> {
168    
169     private final DelayQueue<ScheduledFutureTask> dq = new DelayQueue<ScheduledFutureTask>();
170     public Runnable poll() { return dq.poll(); }
171     public Runnable peek() { return dq.peek(); }
172     public Runnable take() throws InterruptedException { return dq.take(); }
173     public Runnable poll(long timeout, TimeUnit unit) throws InterruptedException {
174     return dq.poll(timeout, unit);
175     }
176    
177     public boolean add(Runnable x) { return dq.add((ScheduledFutureTask)x); }
178     public boolean offer(Runnable x) { return dq.offer((ScheduledFutureTask)x); }
179     public void put(Runnable x) {
180     dq.put((ScheduledFutureTask)x);
181     }
182     public boolean offer(Runnable x, long timeout, TimeUnit unit) {
183     return dq.offer((ScheduledFutureTask)x, timeout, unit);
184     }
185    
186     public Runnable remove() { return dq.remove(); }
187     public Runnable element() { return dq.element(); }
188     public void clear() { dq.clear(); }
189     public int drainTo(Collection<? super Runnable> c) { return dq.drainTo(c); }
190     public int drainTo(Collection<? super Runnable> c, int maxElements) {
191     return dq.drainTo(c, maxElements);
192     }
193    
194     public int remainingCapacity() { return dq.remainingCapacity(); }
195     public boolean remove(Object x) { return dq.remove(x); }
196     public boolean contains(Object x) { return dq.contains(x); }
197     public int size() { return dq.size(); }
198     public boolean isEmpty() { return dq.isEmpty(); }
199     public Object[] toArray() { return dq.toArray(); }
200     public <T> T[] toArray(T[] array) { return dq.toArray(array); }
201     public Iterator<Runnable> iterator() {
202     return new Iterator<Runnable>() {
203     private Iterator<ScheduledFutureTask> it = dq.iterator();
204     public boolean hasNext() { return it.hasNext(); }
205     public Runnable next() { return it.next(); }
206     public void remove() { it.remove(); }
207     };
208     }
209     }
210    
211     /**
212     * Creates a new ScheduledThreadPoolExecutor with the given core pool size.
213     *
214     * @param corePoolSize the number of threads to keep in the pool,
215     * even if they are idle.
216     * @throws IllegalArgumentException if corePoolSize less than or
217     * equal to zero
218     */
219     public ScheduledThreadPoolExecutor(int corePoolSize) {
220     super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
221     new DelayedWorkQueue());
222     }
223    
224     /**
225     * Creates a new ScheduledThreadPoolExecutor with the given initial parameters.
226     *
227     * @param corePoolSize the number of threads to keep in the pool,
228     * even if they are idle.
229     * @param threadFactory the factory to use when the executor
230     * creates a new thread.
231     * @throws NullPointerException if threadFactory is null
232     */
233     public ScheduledThreadPoolExecutor(int corePoolSize,
234     ThreadFactory threadFactory) {
235     super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
236     new DelayedWorkQueue(), threadFactory);
237     }
238    
239     /**
240     * Creates a new ScheduledThreadPoolExecutor with the given initial parameters.
241     *
242     * @param corePoolSize the number of threads to keep in the pool,
243     * even if they are idle.
244     * @param handler the handler to use when execution is blocked
245     * because the thread bounds and queue capacities are reached.
246     * @throws NullPointerException if handler is null
247     */
248     public ScheduledThreadPoolExecutor(int corePoolSize,
249     RejectedExecutionHandler handler) {
250     super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
251     new DelayedWorkQueue(), handler);
252     }
253    
254     /**
255     * Creates a new ScheduledThreadPoolExecutor with the given initial parameters.
256     *
257     * @param corePoolSize the number of threads to keep in the pool,
258     * even if they are idle.
259     * @param threadFactory the factory to use when the executor
260     * creates a new thread.
261     * @param handler the handler to use when execution is blocked
262     * because the thread bounds and queue capacities are reached.
263     * @throws NullPointerException if threadFactory or handler is null
264     */
265     public ScheduledThreadPoolExecutor(int corePoolSize,
266     ThreadFactory threadFactory,
267     RejectedExecutionHandler handler) {
268     super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
269     new DelayedWorkQueue(), threadFactory, handler);
270     }
271    
272     /**
273     * Specialized variant of ThreadPoolExecutor.execute for delayed tasks.
274     */
275     private void delayedExecute(Runnable command) {
276     if (isShutdown()) {
277     reject(command);
278     return;
279     }
280     // Prestart a thread if necessary. We cannot prestart it
281     // running the task because the task (probably) shouldn't be
282     // run yet, so thread will just idle until delay elapses.
283     if (getPoolSize() < getCorePoolSize())
284     prestartCoreThread();
285    
286     super.getQueue().add(command);
287     }
288    
289 dl 1.6 public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit) {
290 dl 1.9 if (command == null || unit == null)
291 dl 1.1 throw new NullPointerException();
292     long triggerTime = System.nanoTime() + unit.toNanos(delay);
293 dl 1.6 ScheduledFutureTask<?> t = new ScheduledFutureTask<Boolean>(command, null, triggerTime);
294 dl 1.1 delayedExecute(t);
295     return t;
296     }
297    
298     public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {
299 dl 1.9 if (callable == null || unit == null)
300 dl 1.1 throw new NullPointerException();
301     long triggerTime = System.nanoTime() + unit.toNanos(delay);
302     ScheduledFutureTask<V> t = new ScheduledFutureTask<V>(callable, triggerTime);
303     delayedExecute(t);
304     return t;
305     }
306    
307 dl 1.6 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) {
308 dl 1.9 if (command == null || unit == null)
309 dl 1.1 throw new NullPointerException();
310     if (period <= 0)
311     throw new IllegalArgumentException();
312     long triggerTime = System.nanoTime() + unit.toNanos(initialDelay);
313 dl 1.6 ScheduledFutureTask<?> t = new ScheduledFutureTask<Object>
314     (command, null,
315 dl 1.1 triggerTime,
316     unit.toNanos(period),
317     true);
318     delayedExecute(t);
319     return t;
320     }
321    
322 dl 1.6 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) {
323 dl 1.9 if (command == null || unit == null)
324 dl 1.1 throw new NullPointerException();
325     if (delay <= 0)
326     throw new IllegalArgumentException();
327     long triggerTime = System.nanoTime() + unit.toNanos(initialDelay);
328 dl 1.6 ScheduledFutureTask<?> t = new ScheduledFutureTask<Boolean>
329 dl 1.1 (command,
330 dl 1.6 null,
331 dl 1.1 triggerTime,
332     unit.toNanos(delay),
333     false);
334     delayedExecute(t);
335     return t;
336     }
337    
338    
339     /**
340     * Execute command with zero required delay. This has effect
341     * equivalent to <tt>schedule(command, 0, anyUnit)</tt>. Note
342     * that inspections of the queue and of the list returned by
343     * <tt>shutdownNow</tt> will access the zero-delayed
344     * {@link ScheduledFuture}, not the <tt>command</tt> itself.
345     *
346     * @param command the task to execute
347     * @throws RejectedExecutionException at discretion of
348     * <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
349     * for execution because the executor has been shut down.
350     * @throws NullPointerException if command is null
351     */
352     public void execute(Runnable command) {
353     if (command == null)
354     throw new NullPointerException();
355     schedule(command, 0, TimeUnit.NANOSECONDS);
356     }
357    
358 dl 1.7 public Future<?> submit(Runnable task) {
359     return schedule(task, 0, TimeUnit.NANOSECONDS);
360     }
361    
362     public <T> Future<T> submit(Runnable task, T result) {
363     return schedule(Executors.callable(task, result), 0, TimeUnit.NANOSECONDS);
364     }
365    
366     public <T> Future<T> submit(Callable<T> task) {
367     return schedule(task, 0, TimeUnit.NANOSECONDS);
368     }
369 dl 1.1
370     /**
371     * Set policy on whether to continue executing existing periodic
372     * tasks even when this executor has been <tt>shutdown</tt>. In
373     * this case, these tasks will only terminate upon
374     * <tt>shutdownNow</tt>, or after setting the policy to
375     * <tt>false</tt> when already shutdown. This value is by default
376     * false.
377     * @param value if true, continue after shutdown, else don't.
378     */
379     public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value) {
380     continueExistingPeriodicTasksAfterShutdown = value;
381     if (!value && isShutdown())
382     cancelUnwantedTasks();
383     }
384    
385     /**
386     * Get the policy on whether to continue executing existing
387     * periodic tasks even when this executor has been
388     * <tt>shutdown</tt>. In this case, these tasks will only
389     * terminate upon <tt>shutdownNow</tt> or after setting the policy
390     * to <tt>false</tt> when already shutdown. This value is by
391     * default false.
392     * @return true if will continue after shutdown.
393     */
394     public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy() {
395     return continueExistingPeriodicTasksAfterShutdown;
396     }
397    
398     /**
399     * Set policy on whether to execute existing delayed
400     * tasks even when this executor has been <tt>shutdown</tt>. In
401     * this case, these tasks will only terminate upon
402     * <tt>shutdownNow</tt>, or after setting the policy to
403     * <tt>false</tt> when already shutdown. This value is by default
404     * true.
405     * @param value if true, execute after shutdown, else don't.
406     */
407     public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value) {
408     executeExistingDelayedTasksAfterShutdown = value;
409     if (!value && isShutdown())
410     cancelUnwantedTasks();
411     }
412    
413     /**
414     * Get policy on whether to execute existing delayed
415     * tasks even when this executor has been <tt>shutdown</tt>. In
416     * this case, these tasks will only terminate upon
417     * <tt>shutdownNow</tt>, or after setting the policy to
418     * <tt>false</tt> when already shutdown. This value is by default
419     * true.
420     * @return true if will execute after shutdown.
421     */
422     public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy() {
423     return executeExistingDelayedTasksAfterShutdown;
424     }
425    
426     /**
427     * Cancel and clear the queue of all tasks that should not be run
428     * due to shutdown policy.
429     */
430     private void cancelUnwantedTasks() {
431     boolean keepDelayed = getExecuteExistingDelayedTasksAfterShutdownPolicy();
432     boolean keepPeriodic = getContinueExistingPeriodicTasksAfterShutdownPolicy();
433     if (!keepDelayed && !keepPeriodic)
434     super.getQueue().clear();
435     else if (keepDelayed || keepPeriodic) {
436     Object[] entries = super.getQueue().toArray();
437     for (int i = 0; i < entries.length; ++i) {
438 dl 1.7 Object e = entries[i];
439     if (e instanceof ScheduledFutureTask) {
440     ScheduledFutureTask<?> t = (ScheduledFutureTask<?>)e;
441     if (t.isPeriodic()? !keepPeriodic : !keepDelayed)
442     t.cancel(false);
443     }
444 dl 1.1 }
445     entries = null;
446     purge();
447     }
448     }
449    
450     /**
451     * Initiates an orderly shutdown in which previously submitted
452     * tasks are executed, but no new tasks will be accepted. If the
453     * <tt>ExecuteExistingDelayedTasksAfterShutdownPolicy</tt> has
454     * been set <tt>false</tt>, existing delayed tasks whose delays
455     * have not yet elapsed are cancelled. And unless the
456     * <tt>ContinueExistingPeriodicTasksAfterShutdownPolicy</tt> has
457     * been set <tt>true</tt>, future executions of existing periodic
458     * tasks will be cancelled.
459     */
460     public void shutdown() {
461     cancelUnwantedTasks();
462     super.shutdown();
463     }
464    
465     /**
466     * Attempts to stop all actively executing tasks, halts the
467     * processing of waiting tasks, and returns a list of the tasks that were
468     * awaiting execution.
469     *
470     * <p>There are no guarantees beyond best-effort attempts to stop
471     * processing actively executing tasks. This implementations
472     * cancels via {@link Thread#interrupt}, so if any tasks mask or
473     * fail to respond to interrupts, they may never terminate.
474     *
475     * @return list of tasks that never commenced execution. Each
476     * element of this list is a {@link ScheduledFuture},
477     * including those tasks submitted using <tt>execute</tt> which
478     * are for scheduling purposes used as the basis of a zero-delay
479     * <tt>ScheduledFuture</tt>.
480     */
481 tim 1.4 public List<Runnable> shutdownNow() {
482 dl 1.1 return super.shutdownNow();
483     }
484    
485    
486     /**
487     * Returns the task queue used by this executor. Each element of
488     * this queue is a {@link ScheduledFuture}, including those
489     * tasks submitted using <tt>execute</tt> which are for scheduling
490     * purposes used as the basis of a zero-delay
491     * <tt>ScheduledFuture</tt>. Iteration over this queue is
492     * </em>not</em> guaranteed to traverse tasks in the order in
493     * which they will execute.
494     *
495     * @return the task queue
496     */
497     public BlockingQueue<Runnable> getQueue() {
498     return super.getQueue();
499     }
500    
501     }