ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ScheduledThreadPoolExecutor.java
Revision: 1.106
Committed: Tue Mar 28 00:41:44 2017 UTC (7 years, 2 months ago) by jsr166
Branch: MAIN
Changes since 1.105: +6 -6 lines
Log Message:
align drainTo implementations

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.11 * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.82
9 jsr166 1.83 import static java.util.concurrent.TimeUnit.MILLISECONDS;
10 jsr166 1.62 import static java.util.concurrent.TimeUnit.NANOSECONDS;
11 jsr166 1.83
12 jsr166 1.82 import java.util.AbstractQueue;
13     import java.util.Arrays;
14     import java.util.Collection;
15     import java.util.Iterator;
16     import java.util.List;
17     import java.util.NoSuchElementException;
18 jsr166 1.106 import java.util.Objects;
19 jsr166 1.83 import java.util.concurrent.atomic.AtomicLong;
20     import java.util.concurrent.locks.Condition;
21     import java.util.concurrent.locks.ReentrantLock;
22 dl 1.1
23     /**
24 dl 1.7 * A {@link ThreadPoolExecutor} that can additionally schedule
25 jsr166 1.75 * commands to run after a given delay, or to execute periodically.
26     * This class is preferable to {@link java.util.Timer} when multiple
27     * worker threads are needed, or when the additional flexibility or
28     * capabilities of {@link ThreadPoolExecutor} (which this class
29     * extends) are required.
30 dl 1.1 *
31 jsr166 1.46 * <p>Delayed tasks execute no sooner than they are enabled, but
32 dl 1.18 * without any real-time guarantees about when, after they are
33     * enabled, they will commence. Tasks scheduled for exactly the same
34     * execution time are enabled in first-in-first-out (FIFO) order of
35 jsr166 1.46 * submission.
36     *
37     * <p>When a submitted task is cancelled before it is run, execution
38 jsr166 1.75 * is suppressed. By default, such a cancelled task is not
39     * automatically removed from the work queue until its delay elapses.
40     * While this enables further inspection and monitoring, it may also
41     * cause unbounded retention of cancelled tasks. To avoid this, use
42     * {@link #setRemoveOnCancelPolicy} to cause tasks to be immediately
43     * removed from the work queue at time of cancellation.
44 dl 1.1 *
45 jsr166 1.75 * <p>Successive executions of a periodic task scheduled via
46 jsr166 1.84 * {@link #scheduleAtFixedRate scheduleAtFixedRate} or
47     * {@link #scheduleWithFixedDelay scheduleWithFixedDelay}
48     * do not overlap. While different executions may be performed by
49     * different threads, the effects of prior executions
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51 dl 1.51 * those of subsequent ones.
52     *
53 dl 1.1 * <p>While this class inherits from {@link ThreadPoolExecutor}, a few
54 dl 1.8 * of the inherited tuning methods are not useful for it. In
55 jsr166 1.53 * particular, because it acts as a fixed-sized pool using
56     * {@code corePoolSize} threads and an unbounded queue, adjustments
57     * to {@code maximumPoolSize} have no useful effect. Additionally, it
58     * is almost never a good idea to set {@code corePoolSize} to zero or
59     * use {@code allowCoreThreadTimeOut} because this may leave the pool
60     * without threads to handle tasks once they become eligible to run.
61 dl 1.1 *
62 jsr166 1.103 * <p>As with {@code ThreadPoolExecutor}, if not otherwise specified,
63     * this class uses {@link Executors#defaultThreadFactory} as the
64     * default thread factory, and {@link ThreadPoolExecutor.AbortPolicy}
65     * as the default rejected execution handler.
66     *
67 jsr166 1.39 * <p><b>Extension notes:</b> This class overrides the
68 jsr166 1.69 * {@link ThreadPoolExecutor#execute(Runnable) execute} and
69 jsr166 1.39 * {@link AbstractExecutorService#submit(Runnable) submit}
70     * methods to generate internal {@link ScheduledFuture} objects to
71     * control per-task delays and scheduling. To preserve
72     * functionality, any further overrides of these methods in
73 dl 1.32 * subclasses must invoke superclass versions, which effectively
74 jsr166 1.39 * disables additional task customization. However, this class
75 dl 1.32 * provides alternative protected extension method
76 jsr166 1.39 * {@code decorateTask} (one version each for {@code Runnable} and
77     * {@code Callable}) that can be used to customize the concrete task
78     * types used to execute commands entered via {@code execute},
79     * {@code submit}, {@code schedule}, {@code scheduleAtFixedRate},
80     * and {@code scheduleWithFixedDelay}. By default, a
81     * {@code ScheduledThreadPoolExecutor} uses a task type extending
82 dl 1.32 * {@link FutureTask}. However, this may be modified or replaced using
83     * subclasses of the form:
84     *
85 jsr166 1.85 * <pre> {@code
86 dl 1.23 * public class CustomScheduledExecutor extends ScheduledThreadPoolExecutor {
87     *
88 jsr166 1.39 * static class CustomTask<V> implements RunnableScheduledFuture<V> { ... }
89 dl 1.23 *
90 jsr166 1.39 * protected <V> RunnableScheduledFuture<V> decorateTask(
91     * Runnable r, RunnableScheduledFuture<V> task) {
92     * return new CustomTask<V>(r, task);
93 jsr166 1.29 * }
94 dl 1.23 *
95 jsr166 1.39 * protected <V> RunnableScheduledFuture<V> decorateTask(
96     * Callable<V> c, RunnableScheduledFuture<V> task) {
97     * return new CustomTask<V>(c, task);
98 jsr166 1.29 * }
99     * // ... add constructors, etc.
100 jsr166 1.39 * }}</pre>
101     *
102 dl 1.1 * @since 1.5
103     * @author Doug Lea
104     */
105 jsr166 1.21 public class ScheduledThreadPoolExecutor
106     extends ThreadPoolExecutor
107 tim 1.3 implements ScheduledExecutorService {
108 dl 1.1
109 dl 1.37 /*
110     * This class specializes ThreadPoolExecutor implementation by
111     *
112 jsr166 1.99 * 1. Using a custom task type ScheduledFutureTask, even for tasks
113     * that don't require scheduling because they are submitted
114     * using ExecutorService rather than ScheduledExecutorService
115     * methods, which are treated as tasks with a delay of zero.
116 dl 1.37 *
117 jsr166 1.46 * 2. Using a custom queue (DelayedWorkQueue), a variant of
118 dl 1.37 * unbounded DelayQueue. The lack of capacity constraint and
119     * the fact that corePoolSize and maximumPoolSize are
120     * effectively identical simplifies some execution mechanics
121 jsr166 1.46 * (see delayedExecute) compared to ThreadPoolExecutor.
122 dl 1.37 *
123     * 3. Supporting optional run-after-shutdown parameters, which
124     * leads to overrides of shutdown methods to remove and cancel
125     * tasks that should NOT be run after shutdown, as well as
126     * different recheck logic when task (re)submission overlaps
127     * with a shutdown.
128     *
129     * 4. Task decoration methods to allow interception and
130     * instrumentation, which are needed because subclasses cannot
131     * otherwise override submit methods to get this effect. These
132     * don't have any impact on pool control logic though.
133     */
134    
135 dl 1.1 /**
136     * False if should cancel/suppress periodic tasks on shutdown.
137     */
138     private volatile boolean continueExistingPeriodicTasksAfterShutdown;
139    
140     /**
141     * False if should cancel non-periodic tasks on shutdown.
142     */
143     private volatile boolean executeExistingDelayedTasksAfterShutdown = true;
144    
145     /**
146 jsr166 1.75 * True if ScheduledFutureTask.cancel should remove from queue.
147 dl 1.41 */
148 jsr166 1.90 volatile boolean removeOnCancel;
149 dl 1.41
150     /**
151 dl 1.1 * Sequence number to break scheduling ties, and in turn to
152     * guarantee FIFO order among tied entries.
153     */
154 jsr166 1.60 private static final AtomicLong sequencer = new AtomicLong();
155 dl 1.14
156 jsr166 1.21 private class ScheduledFutureTask<V>
157 peierls 1.22 extends FutureTask<V> implements RunnableScheduledFuture<V> {
158 jsr166 1.21
159 dl 1.1 /** Sequence number to break ties FIFO */
160     private final long sequenceNumber;
161 jsr166 1.44
162 jsr166 1.99 /** The nanoTime-based time when the task is enabled to execute. */
163 dl 1.88 private volatile long time;
164 jsr166 1.44
165 dl 1.16 /**
166 jsr166 1.99 * Period for repeating tasks, in nanoseconds.
167 jsr166 1.75 * A positive value indicates fixed-rate execution.
168     * A negative value indicates fixed-delay execution.
169     * A value of 0 indicates a non-repeating (one-shot) task.
170 dl 1.16 */
171 dl 1.1 private final long period;
172    
173 jsr166 1.48 /** The actual task to be re-enqueued by reExecutePeriodic */
174     RunnableScheduledFuture<V> outerTask = this;
175 jsr166 1.44
176 dl 1.1 /**
177 dl 1.40 * Index into delay queue, to support faster cancellation.
178     */
179     int heapIndex;
180    
181     /**
182 jsr166 1.30 * Creates a one-shot action with given nanoTime-based trigger time.
183 dl 1.1 */
184 jsr166 1.89 ScheduledFutureTask(Runnable r, V result, long triggerTime,
185     long sequenceNumber) {
186 dl 1.1 super(r, result);
187 jsr166 1.75 this.time = triggerTime;
188 dl 1.1 this.period = 0;
189 jsr166 1.89 this.sequenceNumber = sequenceNumber;
190 dl 1.1 }
191    
192     /**
193 jsr166 1.75 * Creates a periodic action with given nanoTime-based initial
194     * trigger time and period.
195 dl 1.1 */
196 jsr166 1.75 ScheduledFutureTask(Runnable r, V result, long triggerTime,
197 jsr166 1.89 long period, long sequenceNumber) {
198 dl 1.1 super(r, result);
199 jsr166 1.75 this.time = triggerTime;
200 dl 1.1 this.period = period;
201 jsr166 1.89 this.sequenceNumber = sequenceNumber;
202 dl 1.1 }
203    
204     /**
205 jsr166 1.65 * Creates a one-shot action with given nanoTime-based trigger time.
206 dl 1.1 */
207 jsr166 1.89 ScheduledFutureTask(Callable<V> callable, long triggerTime,
208     long sequenceNumber) {
209 dl 1.1 super(callable);
210 jsr166 1.75 this.time = triggerTime;
211 dl 1.1 this.period = 0;
212 jsr166 1.89 this.sequenceNumber = sequenceNumber;
213 dl 1.1 }
214    
215     public long getDelay(TimeUnit unit) {
216 jsr166 1.98 return unit.convert(time - System.nanoTime(), NANOSECONDS);
217 dl 1.1 }
218    
219 dl 1.20 public int compareTo(Delayed other) {
220 dl 1.59 if (other == this) // compare zero if same object
221 dl 1.1 return 0;
222 dl 1.34 if (other instanceof ScheduledFutureTask) {
223     ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
224     long diff = time - x.time;
225     if (diff < 0)
226     return -1;
227     else if (diff > 0)
228     return 1;
229     else if (sequenceNumber < x.sequenceNumber)
230     return -1;
231     else
232     return 1;
233     }
234 jsr166 1.64 long diff = getDelay(NANOSECONDS) - other.getDelay(NANOSECONDS);
235 jsr166 1.61 return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;
236 dl 1.1 }
237    
238     /**
239 jsr166 1.70 * Returns {@code true} if this is a periodic (not a one-shot) action.
240 jsr166 1.30 *
241 jsr166 1.70 * @return {@code true} if periodic
242 dl 1.1 */
243 dl 1.23 public boolean isPeriodic() {
244 dl 1.16 return period != 0;
245 dl 1.1 }
246    
247     /**
248 jsr166 1.39 * Sets the next time to run for a periodic task.
249 dl 1.13 */
250 dl 1.37 private void setNextRunTime() {
251     long p = period;
252     if (p > 0)
253     time += p;
254     else
255 jsr166 1.54 time = triggerTime(-p);
256 dl 1.13 }
257    
258 dl 1.40 public boolean cancel(boolean mayInterruptIfRunning) {
259 jsr166 1.100 // The racy read of heapIndex below is benign:
260     // if heapIndex < 0, then OOTA guarantees that we have surely
261     // been removed; else we recheck under lock in remove()
262 dl 1.41 boolean cancelled = super.cancel(mayInterruptIfRunning);
263     if (cancelled && removeOnCancel && heapIndex >= 0)
264 jsr166 1.42 remove(this);
265 dl 1.41 return cancelled;
266 dl 1.40 }
267    
268 dl 1.13 /**
269 dl 1.5 * Overrides FutureTask version so as to reset/requeue if periodic.
270 jsr166 1.21 */
271 dl 1.1 public void run() {
272 dl 1.37 boolean periodic = isPeriodic();
273     if (!canRunInCurrentRunState(periodic))
274     cancel(false);
275     else if (!periodic)
276 jsr166 1.91 super.run();
277     else if (super.runAndReset()) {
278 dl 1.37 setNextRunTime();
279 jsr166 1.44 reExecutePeriodic(outerTask);
280 dl 1.37 }
281 dl 1.1 }
282     }
283    
284     /**
285 dl 1.37 * Returns true if can run a task given current run state
286 jsr166 1.39 * and run-after-shutdown parameters.
287     *
288 dl 1.37 * @param periodic true if this task periodic, false if delayed
289     */
290     boolean canRunInCurrentRunState(boolean periodic) {
291 jsr166 1.38 return isRunningOrShutdown(periodic ?
292 dl 1.37 continueExistingPeriodicTasksAfterShutdown :
293     executeExistingDelayedTasksAfterShutdown);
294     }
295    
296     /**
297     * Main execution method for delayed or periodic tasks. If pool
298     * is shut down, rejects the task. Otherwise adds task to queue
299     * and starts a thread, if necessary, to run it. (We cannot
300     * prestart the thread to run the task because the task (probably)
301 jsr166 1.67 * shouldn't be run yet.) If the pool is shut down while the task
302 dl 1.37 * is being added, cancel and remove it if required by state and
303 jsr166 1.39 * run-after-shutdown parameters.
304     *
305 dl 1.37 * @param task the task
306     */
307     private void delayedExecute(RunnableScheduledFuture<?> task) {
308     if (isShutdown())
309     reject(task);
310     else {
311     super.getQueue().add(task);
312     if (isShutdown() &&
313     !canRunInCurrentRunState(task.isPeriodic()) &&
314     remove(task))
315     task.cancel(false);
316 jsr166 1.48 else
317 dl 1.63 ensurePrestart();
318 dl 1.37 }
319     }
320 jsr166 1.21
321 dl 1.37 /**
322 jsr166 1.39 * Requeues a periodic task unless current run state precludes it.
323     * Same idea as delayedExecute except drops task rather than rejecting.
324     *
325 dl 1.37 * @param task the task
326     */
327     void reExecutePeriodic(RunnableScheduledFuture<?> task) {
328     if (canRunInCurrentRunState(true)) {
329     super.getQueue().add(task);
330     if (!canRunInCurrentRunState(true) && remove(task))
331     task.cancel(false);
332 jsr166 1.48 else
333 dl 1.63 ensurePrestart();
334 dl 1.37 }
335 dl 1.13 }
336 dl 1.1
337 dl 1.13 /**
338 jsr166 1.21 * Cancels and clears the queue of all tasks that should not be run
339 jsr166 1.39 * due to shutdown policy. Invoked within super.shutdown.
340 dl 1.13 */
341 dl 1.37 @Override void onShutdown() {
342     BlockingQueue<Runnable> q = super.getQueue();
343     boolean keepDelayed =
344     getExecuteExistingDelayedTasksAfterShutdownPolicy();
345     boolean keepPeriodic =
346     getContinueExistingPeriodicTasksAfterShutdownPolicy();
347 jsr166 1.57 if (!keepDelayed && !keepPeriodic) {
348     for (Object e : q.toArray())
349     if (e instanceof RunnableScheduledFuture<?>)
350     ((RunnableScheduledFuture<?>) e).cancel(false);
351 dl 1.37 q.clear();
352 jsr166 1.57 }
353 dl 1.37 else {
354     // Traverse snapshot to avoid iterator exceptions
355 jsr166 1.39 for (Object e : q.toArray()) {
356 dl 1.23 if (e instanceof RunnableScheduledFuture) {
357 dl 1.37 RunnableScheduledFuture<?> t =
358     (RunnableScheduledFuture<?>)e;
359 dl 1.41 if ((t.isPeriodic() ? !keepPeriodic : !keepDelayed) ||
360     t.isCancelled()) { // also remove if already cancelled
361     if (q.remove(t))
362     t.cancel(false);
363     }
364 dl 1.13 }
365     }
366 dl 1.1 }
367 jsr166 1.48 tryTerminate();
368 dl 1.1 }
369    
370 dl 1.23 /**
371 jsr166 1.30 * Modifies or replaces the task used to execute a runnable.
372 jsr166 1.28 * This method can be used to override the concrete
373 dl 1.23 * class used for managing internal tasks.
374 jsr166 1.30 * The default implementation simply returns the given task.
375 jsr166 1.28 *
376 dl 1.23 * @param runnable the submitted Runnable
377     * @param task the task created to execute the runnable
378 jsr166 1.72 * @param <V> the type of the task's result
379 dl 1.23 * @return a task that can execute the runnable
380     * @since 1.6
381     */
382 peierls 1.22 protected <V> RunnableScheduledFuture<V> decorateTask(
383 dl 1.23 Runnable runnable, RunnableScheduledFuture<V> task) {
384     return task;
385 peierls 1.22 }
386    
387 dl 1.23 /**
388 jsr166 1.30 * Modifies or replaces the task used to execute a callable.
389 jsr166 1.28 * This method can be used to override the concrete
390 dl 1.23 * class used for managing internal tasks.
391 jsr166 1.30 * The default implementation simply returns the given task.
392 jsr166 1.28 *
393 dl 1.23 * @param callable the submitted Callable
394     * @param task the task created to execute the callable
395 jsr166 1.72 * @param <V> the type of the task's result
396 dl 1.23 * @return a task that can execute the callable
397     * @since 1.6
398     */
399 peierls 1.22 protected <V> RunnableScheduledFuture<V> decorateTask(
400 dl 1.23 Callable<V> callable, RunnableScheduledFuture<V> task) {
401     return task;
402 dl 1.19 }
403    
404 dl 1.1 /**
405 jsr166 1.78 * The default keep-alive time for pool threads.
406     *
407     * Normally, this value is unused because all pool threads will be
408     * core threads, but if a user creates a pool with a corePoolSize
409     * of zero (against our advice), we keep a thread alive as long as
410     * there are queued tasks. If the keep alive time is zero (the
411     * historic value), we end up hot-spinning in getTask, wasting a
412     * CPU. But on the other hand, if we set the value too high, and
413     * users create a one-shot pool which they don't cleanly shutdown,
414     * the pool's non-daemon threads will prevent JVM termination. A
415     * small but non-zero value (relative to a JVM's lifetime) seems
416     * best.
417     */
418     private static final long DEFAULT_KEEPALIVE_MILLIS = 10L;
419    
420     /**
421 jsr166 1.39 * Creates a new {@code ScheduledThreadPoolExecutor} with the
422     * given core pool size.
423 jsr166 1.21 *
424 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
425     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
426     * @throws IllegalArgumentException if {@code corePoolSize < 0}
427 dl 1.1 */
428     public ScheduledThreadPoolExecutor(int corePoolSize) {
429 jsr166 1.78 super(corePoolSize, Integer.MAX_VALUE,
430     DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
431 dl 1.1 new DelayedWorkQueue());
432     }
433    
434     /**
435 jsr166 1.39 * Creates a new {@code ScheduledThreadPoolExecutor} with the
436     * given initial parameters.
437 jsr166 1.21 *
438 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
439     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
440 dl 1.1 * @param threadFactory the factory to use when the executor
441 jsr166 1.39 * creates a new thread
442     * @throws IllegalArgumentException if {@code corePoolSize < 0}
443     * @throws NullPointerException if {@code threadFactory} is null
444 dl 1.1 */
445     public ScheduledThreadPoolExecutor(int corePoolSize,
446 jsr166 1.56 ThreadFactory threadFactory) {
447 jsr166 1.78 super(corePoolSize, Integer.MAX_VALUE,
448     DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
449 dl 1.1 new DelayedWorkQueue(), threadFactory);
450     }
451    
452     /**
453 jsr166 1.79 * Creates a new {@code ScheduledThreadPoolExecutor} with the
454     * given initial parameters.
455 jsr166 1.21 *
456 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
457     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
458 dl 1.1 * @param handler the handler to use when execution is blocked
459 jsr166 1.39 * because the thread bounds and queue capacities are reached
460     * @throws IllegalArgumentException if {@code corePoolSize < 0}
461     * @throws NullPointerException if {@code handler} is null
462 dl 1.1 */
463     public ScheduledThreadPoolExecutor(int corePoolSize,
464 jsr166 1.56 RejectedExecutionHandler handler) {
465 jsr166 1.78 super(corePoolSize, Integer.MAX_VALUE,
466     DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
467 dl 1.1 new DelayedWorkQueue(), handler);
468     }
469    
470     /**
471 jsr166 1.79 * Creates a new {@code ScheduledThreadPoolExecutor} with the
472     * given initial parameters.
473 jsr166 1.21 *
474 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
475     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
476 dl 1.1 * @param threadFactory the factory to use when the executor
477 jsr166 1.39 * creates a new thread
478 dl 1.1 * @param handler the handler to use when execution is blocked
479 jsr166 1.39 * because the thread bounds and queue capacities are reached
480     * @throws IllegalArgumentException if {@code corePoolSize < 0}
481     * @throws NullPointerException if {@code threadFactory} or
482     * {@code handler} is null
483 dl 1.1 */
484     public ScheduledThreadPoolExecutor(int corePoolSize,
485 jsr166 1.56 ThreadFactory threadFactory,
486     RejectedExecutionHandler handler) {
487 jsr166 1.78 super(corePoolSize, Integer.MAX_VALUE,
488     DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
489 dl 1.1 new DelayedWorkQueue(), threadFactory, handler);
490     }
491    
492 dl 1.37 /**
493 jsr166 1.73 * Returns the nanoTime-based trigger time of a delayed action.
494 jsr166 1.54 */
495     private long triggerTime(long delay, TimeUnit unit) {
496     return triggerTime(unit.toNanos((delay < 0) ? 0 : delay));
497     }
498    
499     /**
500 jsr166 1.73 * Returns the nanoTime-based trigger time of a delayed action.
501 dl 1.50 */
502 jsr166 1.54 long triggerTime(long delay) {
503 jsr166 1.98 return System.nanoTime() +
504 jsr166 1.54 ((delay < (Long.MAX_VALUE >> 1)) ? delay : overflowFree(delay));
505     }
506    
507     /**
508     * Constrains the values of all delays in the queue to be within
509     * Long.MAX_VALUE of each other, to avoid overflow in compareTo.
510     * This may occur if a task is eligible to be dequeued, but has
511     * not yet been, while some other task is added with a delay of
512     * Long.MAX_VALUE.
513     */
514     private long overflowFree(long delay) {
515     Delayed head = (Delayed) super.getQueue().peek();
516     if (head != null) {
517 jsr166 1.62 long headDelay = head.getDelay(NANOSECONDS);
518 jsr166 1.54 if (headDelay < 0 && (delay - headDelay < 0))
519     delay = Long.MAX_VALUE + headDelay;
520     }
521     return delay;
522 dl 1.50 }
523    
524     /**
525 dl 1.37 * @throws RejectedExecutionException {@inheritDoc}
526     * @throws NullPointerException {@inheritDoc}
527     */
528 jsr166 1.21 public ScheduledFuture<?> schedule(Runnable command,
529     long delay,
530 dl 1.13 TimeUnit unit) {
531 dl 1.9 if (command == null || unit == null)
532 dl 1.1 throw new NullPointerException();
533 jsr166 1.76 RunnableScheduledFuture<Void> t = decorateTask(command,
534 jsr166 1.54 new ScheduledFutureTask<Void>(command, null,
535 jsr166 1.89 triggerTime(delay, unit),
536     sequencer.getAndIncrement()));
537 dl 1.1 delayedExecute(t);
538     return t;
539     }
540 jsr166 1.52
541 dl 1.37 /**
542     * @throws RejectedExecutionException {@inheritDoc}
543     * @throws NullPointerException {@inheritDoc}
544     */
545 jsr166 1.21 public <V> ScheduledFuture<V> schedule(Callable<V> callable,
546     long delay,
547 dl 1.13 TimeUnit unit) {
548 dl 1.9 if (callable == null || unit == null)
549 dl 1.1 throw new NullPointerException();
550 peierls 1.22 RunnableScheduledFuture<V> t = decorateTask(callable,
551 jsr166 1.54 new ScheduledFutureTask<V>(callable,
552 jsr166 1.89 triggerTime(delay, unit),
553     sequencer.getAndIncrement()));
554 dl 1.1 delayedExecute(t);
555     return t;
556     }
557    
558 dl 1.37 /**
559     * @throws RejectedExecutionException {@inheritDoc}
560     * @throws NullPointerException {@inheritDoc}
561     * @throws IllegalArgumentException {@inheritDoc}
562     */
563 jsr166 1.21 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
564     long initialDelay,
565     long period,
566 dl 1.13 TimeUnit unit) {
567 dl 1.9 if (command == null || unit == null)
568 dl 1.1 throw new NullPointerException();
569 jsr166 1.96 if (period <= 0L)
570 dl 1.1 throw new IllegalArgumentException();
571 jsr166 1.48 ScheduledFutureTask<Void> sft =
572     new ScheduledFutureTask<Void>(command,
573     null,
574 jsr166 1.54 triggerTime(initialDelay, unit),
575 jsr166 1.89 unit.toNanos(period),
576     sequencer.getAndIncrement());
577 jsr166 1.44 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
578 jsr166 1.48 sft.outerTask = t;
579 dl 1.1 delayedExecute(t);
580     return t;
581     }
582 jsr166 1.21
583 dl 1.37 /**
584     * @throws RejectedExecutionException {@inheritDoc}
585     * @throws NullPointerException {@inheritDoc}
586     * @throws IllegalArgumentException {@inheritDoc}
587     */
588 jsr166 1.21 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
589     long initialDelay,
590     long delay,
591 dl 1.13 TimeUnit unit) {
592 dl 1.9 if (command == null || unit == null)
593 dl 1.1 throw new NullPointerException();
594 jsr166 1.96 if (delay <= 0L)
595 dl 1.1 throw new IllegalArgumentException();
596 jsr166 1.48 ScheduledFutureTask<Void> sft =
597     new ScheduledFutureTask<Void>(command,
598     null,
599 jsr166 1.54 triggerTime(initialDelay, unit),
600 jsr166 1.97 -unit.toNanos(delay),
601 jsr166 1.89 sequencer.getAndIncrement());
602 jsr166 1.44 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
603 jsr166 1.48 sft.outerTask = t;
604 dl 1.1 delayedExecute(t);
605     return t;
606     }
607 jsr166 1.21
608 dl 1.1 /**
609 jsr166 1.39 * Executes {@code command} with zero required delay.
610     * This has effect equivalent to
611     * {@link #schedule(Runnable,long,TimeUnit) schedule(command, 0, anyUnit)}.
612     * Note that inspections of the queue and of the list returned by
613     * {@code shutdownNow} will access the zero-delayed
614     * {@link ScheduledFuture}, not the {@code command} itself.
615     *
616     * <p>A consequence of the use of {@code ScheduledFuture} objects is
617     * that {@link ThreadPoolExecutor#afterExecute afterExecute} is always
618     * called with a null second {@code Throwable} argument, even if the
619     * {@code command} terminated abruptly. Instead, the {@code Throwable}
620     * thrown by such a task can be obtained via {@link Future#get}.
621 dl 1.1 *
622     * @throws RejectedExecutionException at discretion of
623 jsr166 1.39 * {@code RejectedExecutionHandler}, if the task
624     * cannot be accepted for execution because the
625     * executor has been shut down
626     * @throws NullPointerException {@inheritDoc}
627 dl 1.1 */
628     public void execute(Runnable command) {
629 jsr166 1.62 schedule(command, 0, NANOSECONDS);
630 dl 1.1 }
631    
632 dl 1.13 // Override AbstractExecutorService methods
633    
634 dl 1.37 /**
635     * @throws RejectedExecutionException {@inheritDoc}
636     * @throws NullPointerException {@inheritDoc}
637     */
638 dl 1.7 public Future<?> submit(Runnable task) {
639 jsr166 1.62 return schedule(task, 0, NANOSECONDS);
640 dl 1.7 }
641    
642 dl 1.37 /**
643     * @throws RejectedExecutionException {@inheritDoc}
644     * @throws NullPointerException {@inheritDoc}
645     */
646 dl 1.7 public <T> Future<T> submit(Runnable task, T result) {
647 jsr166 1.62 return schedule(Executors.callable(task, result), 0, NANOSECONDS);
648 dl 1.7 }
649    
650 dl 1.37 /**
651     * @throws RejectedExecutionException {@inheritDoc}
652     * @throws NullPointerException {@inheritDoc}
653     */
654 dl 1.7 public <T> Future<T> submit(Callable<T> task) {
655 jsr166 1.62 return schedule(task, 0, NANOSECONDS);
656 dl 1.7 }
657 dl 1.1
658     /**
659 dl 1.37 * Sets the policy on whether to continue executing existing
660 jsr166 1.39 * periodic tasks even when this executor has been {@code shutdown}.
661     * In this case, these tasks will only terminate upon
662     * {@code shutdownNow} or after setting the policy to
663     * {@code false} when already shutdown.
664     * This value is by default {@code false}.
665 jsr166 1.30 *
666 jsr166 1.68 * @param value if {@code true}, continue after shutdown, else don't
667 jsr166 1.25 * @see #getContinueExistingPeriodicTasksAfterShutdownPolicy
668 dl 1.1 */
669     public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value) {
670     continueExistingPeriodicTasksAfterShutdown = value;
671 jsr166 1.39 if (!value && isShutdown())
672 dl 1.37 onShutdown();
673 dl 1.1 }
674    
675     /**
676 jsr166 1.21 * Gets the policy on whether to continue executing existing
677 jsr166 1.39 * periodic tasks even when this executor has been {@code shutdown}.
678     * In this case, these tasks will only terminate upon
679     * {@code shutdownNow} or after setting the policy to
680     * {@code false} when already shutdown.
681     * This value is by default {@code false}.
682 jsr166 1.30 *
683 jsr166 1.39 * @return {@code true} if will continue after shutdown
684 dl 1.16 * @see #setContinueExistingPeriodicTasksAfterShutdownPolicy
685 dl 1.1 */
686     public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy() {
687     return continueExistingPeriodicTasksAfterShutdown;
688     }
689    
690     /**
691 jsr166 1.21 * Sets the policy on whether to execute existing delayed
692 jsr166 1.39 * tasks even when this executor has been {@code shutdown}.
693     * In this case, these tasks will only terminate upon
694     * {@code shutdownNow}, or after setting the policy to
695     * {@code false} when already shutdown.
696     * This value is by default {@code true}.
697 jsr166 1.30 *
698 jsr166 1.68 * @param value if {@code true}, execute after shutdown, else don't
699 dl 1.16 * @see #getExecuteExistingDelayedTasksAfterShutdownPolicy
700 dl 1.1 */
701     public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value) {
702     executeExistingDelayedTasksAfterShutdown = value;
703 jsr166 1.39 if (!value && isShutdown())
704 dl 1.37 onShutdown();
705 dl 1.1 }
706    
707     /**
708 jsr166 1.21 * Gets the policy on whether to execute existing delayed
709 jsr166 1.39 * tasks even when this executor has been {@code shutdown}.
710     * In this case, these tasks will only terminate upon
711     * {@code shutdownNow}, or after setting the policy to
712     * {@code false} when already shutdown.
713     * This value is by default {@code true}.
714 jsr166 1.30 *
715 jsr166 1.39 * @return {@code true} if will execute after shutdown
716 dl 1.16 * @see #setExecuteExistingDelayedTasksAfterShutdownPolicy
717 dl 1.1 */
718     public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy() {
719     return executeExistingDelayedTasksAfterShutdown;
720     }
721    
722     /**
723 jsr166 1.46 * Sets the policy on whether cancelled tasks should be immediately
724     * removed from the work queue at time of cancellation. This value is
725     * by default {@code false}.
726 dl 1.41 *
727 jsr166 1.42 * @param value if {@code true}, remove on cancellation, else don't
728 dl 1.41 * @see #getRemoveOnCancelPolicy
729 jsr166 1.43 * @since 1.7
730 dl 1.41 */
731     public void setRemoveOnCancelPolicy(boolean value) {
732     removeOnCancel = value;
733     }
734    
735     /**
736 jsr166 1.46 * Gets the policy on whether cancelled tasks should be immediately
737     * removed from the work queue at time of cancellation. This value is
738     * by default {@code false}.
739 dl 1.41 *
740 jsr166 1.46 * @return {@code true} if cancelled tasks are immediately removed
741     * from the queue
742 dl 1.41 * @see #setRemoveOnCancelPolicy
743 jsr166 1.43 * @since 1.7
744 dl 1.41 */
745     public boolean getRemoveOnCancelPolicy() {
746     return removeOnCancel;
747     }
748    
749     /**
750 dl 1.1 * Initiates an orderly shutdown in which previously submitted
751 jsr166 1.49 * tasks are executed, but no new tasks will be accepted.
752     * Invocation has no additional effect if already shut down.
753     *
754     * <p>This method does not wait for previously submitted tasks to
755     * complete execution. Use {@link #awaitTermination awaitTermination}
756     * to do that.
757     *
758     * <p>If the {@code ExecuteExistingDelayedTasksAfterShutdownPolicy}
759     * has been set {@code false}, existing delayed tasks whose delays
760     * have not yet elapsed are cancelled. And unless the {@code
761     * ContinueExistingPeriodicTasksAfterShutdownPolicy} has been set
762     * {@code true}, future executions of existing periodic tasks will
763     * be cancelled.
764 jsr166 1.39 *
765     * @throws SecurityException {@inheritDoc}
766 dl 1.1 */
767     public void shutdown() {
768     super.shutdown();
769     }
770    
771     /**
772     * Attempts to stop all actively executing tasks, halts the
773 jsr166 1.30 * processing of waiting tasks, and returns a list of the tasks
774 jsr166 1.92 * that were awaiting execution. These tasks are drained (removed)
775     * from the task queue upon return from this method.
776 jsr166 1.21 *
777 jsr166 1.49 * <p>This method does not wait for actively executing tasks to
778     * terminate. Use {@link #awaitTermination awaitTermination} to
779     * do that.
780     *
781 dl 1.1 * <p>There are no guarantees beyond best-effort attempts to stop
782 dl 1.18 * processing actively executing tasks. This implementation
783 jsr166 1.93 * interrupts tasks via {@link Thread#interrupt}; any task that
784 jsr166 1.31 * fails to respond to interrupts may never terminate.
785 dl 1.1 *
786 jsr166 1.39 * @return list of tasks that never commenced execution.
787 jsr166 1.77 * Each element of this list is a {@link ScheduledFuture}.
788     * For tasks submitted via one of the {@code schedule}
789     * methods, the element will be identical to the returned
790     * {@code ScheduledFuture}. For tasks submitted using
791 jsr166 1.84 * {@link #execute execute}, the element will be a
792     * zero-delay {@code ScheduledFuture}.
793 jsr166 1.31 * @throws SecurityException {@inheritDoc}
794 dl 1.1 */
795 tim 1.4 public List<Runnable> shutdownNow() {
796 dl 1.1 return super.shutdownNow();
797     }
798    
799     /**
800 jsr166 1.95 * Returns the task queue used by this executor. Access to the
801     * task queue is intended primarily for debugging and monitoring.
802     * This queue may be in active use. Retrieving the task queue
803     * does not prevent queued tasks from executing.
804     *
805     * <p>Each element of this queue is a {@link ScheduledFuture}.
806 jsr166 1.77 * For tasks submitted via one of the {@code schedule} methods, the
807     * element will be identical to the returned {@code ScheduledFuture}.
808 jsr166 1.84 * For tasks submitted using {@link #execute execute}, the element
809     * will be a zero-delay {@code ScheduledFuture}.
810 jsr166 1.77 *
811     * <p>Iteration over this queue is <em>not</em> guaranteed to traverse
812     * tasks in the order in which they will execute.
813 dl 1.1 *
814     * @return the task queue
815     */
816     public BlockingQueue<Runnable> getQueue() {
817     return super.getQueue();
818     }
819    
820 dl 1.13 /**
821 dl 1.40 * Specialized delay queue. To mesh with TPE declarations, this
822     * class must be declared as a BlockingQueue<Runnable> even though
823 jsr166 1.42 * it can only hold RunnableScheduledFutures.
824 jsr166 1.21 */
825 dl 1.40 static class DelayedWorkQueue extends AbstractQueue<Runnable>
826 dl 1.13 implements BlockingQueue<Runnable> {
827 jsr166 1.21
828 dl 1.40 /*
829     * A DelayedWorkQueue is based on a heap-based data structure
830     * like those in DelayQueue and PriorityQueue, except that
831     * every ScheduledFutureTask also records its index into the
832     * heap array. This eliminates the need to find a task upon
833     * cancellation, greatly speeding up removal (down from O(n)
834     * to O(log n)), and reducing garbage retention that would
835     * otherwise occur by waiting for the element to rise to top
836     * before clearing. But because the queue may also hold
837     * RunnableScheduledFutures that are not ScheduledFutureTasks,
838     * we are not guaranteed to have such indices available, in
839     * which case we fall back to linear search. (We expect that
840     * most tasks will not be decorated, and that the faster cases
841     * will be much more common.)
842     *
843     * All heap operations must record index changes -- mainly
844     * within siftUp and siftDown. Upon removal, a task's
845     * heapIndex is set to -1. Note that ScheduledFutureTasks can
846     * appear at most once in the queue (this need not be true for
847     * other kinds of tasks or work queues), so are uniquely
848     * identified by heapIndex.
849     */
850    
851 jsr166 1.46 private static final int INITIAL_CAPACITY = 16;
852 jsr166 1.61 private RunnableScheduledFuture<?>[] queue =
853     new RunnableScheduledFuture<?>[INITIAL_CAPACITY];
854 jsr166 1.46 private final ReentrantLock lock = new ReentrantLock();
855 jsr166 1.80 private int size;
856 dl 1.40
857 jsr166 1.48 /**
858     * Thread designated to wait for the task at the head of the
859     * queue. This variant of the Leader-Follower pattern
860     * (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to
861     * minimize unnecessary timed waiting. When a thread becomes
862     * the leader, it waits only for the next delay to elapse, but
863     * other threads await indefinitely. The leader thread must
864     * signal some other thread before returning from take() or
865     * poll(...), unless some other thread becomes leader in the
866     * interim. Whenever the head of the queue is replaced with a
867     * task with an earlier expiration time, the leader field is
868     * invalidated by being reset to null, and some waiting
869     * thread, but not necessarily the current leader, is
870     * signalled. So waiting threads must be prepared to acquire
871     * and lose leadership while waiting.
872     */
873 jsr166 1.80 private Thread leader;
874 jsr166 1.48
875     /**
876     * Condition signalled when a newer task becomes available at the
877     * head of the queue or a new thread may need to become leader.
878     */
879     private final Condition available = lock.newCondition();
880 dl 1.40
881     /**
882 jsr166 1.66 * Sets f's heapIndex if it is a ScheduledFutureTask.
883 dl 1.40 */
884 jsr166 1.102 private static void setIndex(RunnableScheduledFuture<?> f, int idx) {
885 dl 1.40 if (f instanceof ScheduledFutureTask)
886     ((ScheduledFutureTask)f).heapIndex = idx;
887     }
888    
889     /**
890 jsr166 1.66 * Sifts element added at bottom up to its heap-ordered spot.
891 dl 1.40 * Call only when holding lock.
892     */
893 jsr166 1.61 private void siftUp(int k, RunnableScheduledFuture<?> key) {
894 dl 1.40 while (k > 0) {
895     int parent = (k - 1) >>> 1;
896 jsr166 1.61 RunnableScheduledFuture<?> e = queue[parent];
897 dl 1.40 if (key.compareTo(e) >= 0)
898     break;
899     queue[k] = e;
900     setIndex(e, k);
901     k = parent;
902     }
903     queue[k] = key;
904     setIndex(key, k);
905     }
906    
907     /**
908 jsr166 1.66 * Sifts element added at top down to its heap-ordered spot.
909 dl 1.40 * Call only when holding lock.
910     */
911 jsr166 1.61 private void siftDown(int k, RunnableScheduledFuture<?> key) {
912 jsr166 1.42 int half = size >>> 1;
913 dl 1.40 while (k < half) {
914 jsr166 1.42 int child = (k << 1) + 1;
915 jsr166 1.61 RunnableScheduledFuture<?> c = queue[child];
916 dl 1.40 int right = child + 1;
917     if (right < size && c.compareTo(queue[right]) > 0)
918     c = queue[child = right];
919     if (key.compareTo(c) <= 0)
920     break;
921     queue[k] = c;
922     setIndex(c, k);
923     k = child;
924     }
925     queue[k] = key;
926     setIndex(key, k);
927     }
928    
929     /**
930 jsr166 1.66 * Resizes the heap array. Call only when holding lock.
931 dl 1.40 */
932     private void grow() {
933     int oldCapacity = queue.length;
934     int newCapacity = oldCapacity + (oldCapacity >> 1); // grow 50%
935     if (newCapacity < 0) // overflow
936     newCapacity = Integer.MAX_VALUE;
937     queue = Arrays.copyOf(queue, newCapacity);
938     }
939    
940     /**
941 jsr166 1.66 * Finds index of given object, or -1 if absent.
942 dl 1.40 */
943     private int indexOf(Object x) {
944     if (x != null) {
945 jsr166 1.48 if (x instanceof ScheduledFutureTask) {
946     int i = ((ScheduledFutureTask) x).heapIndex;
947     // Sanity check; x could conceivably be a
948     // ScheduledFutureTask from some other pool.
949     if (i >= 0 && i < size && queue[i] == x)
950     return i;
951     } else {
952     for (int i = 0; i < size; i++)
953     if (x.equals(queue[i]))
954     return i;
955     }
956 dl 1.40 }
957     return -1;
958     }
959    
960 jsr166 1.48 public boolean contains(Object x) {
961     final ReentrantLock lock = this.lock;
962 jsr166 1.45 lock.lock();
963     try {
964 jsr166 1.48 return indexOf(x) != -1;
965 jsr166 1.45 } finally {
966     lock.unlock();
967     }
968 jsr166 1.48 }
969 jsr166 1.45
970 dl 1.40 public boolean remove(Object x) {
971     final ReentrantLock lock = this.lock;
972     lock.lock();
973     try {
974 jsr166 1.45 int i = indexOf(x);
975 jsr166 1.48 if (i < 0)
976     return false;
977 jsr166 1.45
978 jsr166 1.48 setIndex(queue[i], -1);
979     int s = --size;
980 jsr166 1.61 RunnableScheduledFuture<?> replacement = queue[s];
981 jsr166 1.48 queue[s] = null;
982     if (s != i) {
983     siftDown(i, replacement);
984     if (queue[i] == replacement)
985     siftUp(i, replacement);
986     }
987     return true;
988 dl 1.40 } finally {
989     lock.unlock();
990     }
991     }
992    
993     public int size() {
994     final ReentrantLock lock = this.lock;
995     lock.lock();
996     try {
997 jsr166 1.45 return size;
998 dl 1.40 } finally {
999     lock.unlock();
1000     }
1001     }
1002    
1003 jsr166 1.42 public boolean isEmpty() {
1004     return size() == 0;
1005 dl 1.40 }
1006    
1007     public int remainingCapacity() {
1008     return Integer.MAX_VALUE;
1009     }
1010    
1011 jsr166 1.61 public RunnableScheduledFuture<?> peek() {
1012 dl 1.40 final ReentrantLock lock = this.lock;
1013     lock.lock();
1014     try {
1015     return queue[0];
1016     } finally {
1017     lock.unlock();
1018     }
1019 dl 1.13 }
1020    
1021 dl 1.40 public boolean offer(Runnable x) {
1022     if (x == null)
1023     throw new NullPointerException();
1024 jsr166 1.61 RunnableScheduledFuture<?> e = (RunnableScheduledFuture<?>)x;
1025 dl 1.40 final ReentrantLock lock = this.lock;
1026     lock.lock();
1027     try {
1028     int i = size;
1029     if (i >= queue.length)
1030     grow();
1031     size = i + 1;
1032     if (i == 0) {
1033     queue[0] = e;
1034     setIndex(e, 0);
1035 jsr166 1.45 } else {
1036 dl 1.40 siftUp(i, e);
1037     }
1038 jsr166 1.46 if (queue[0] == e) {
1039 jsr166 1.48 leader = null;
1040 jsr166 1.46 available.signal();
1041 jsr166 1.48 }
1042 dl 1.40 } finally {
1043     lock.unlock();
1044     }
1045     return true;
1046 jsr166 1.48 }
1047 dl 1.40
1048     public void put(Runnable e) {
1049     offer(e);
1050     }
1051    
1052     public boolean add(Runnable e) {
1053 jsr166 1.48 return offer(e);
1054     }
1055 dl 1.40
1056     public boolean offer(Runnable e, long timeout, TimeUnit unit) {
1057     return offer(e);
1058     }
1059 jsr166 1.42
1060 jsr166 1.46 /**
1061     * Performs common bookkeeping for poll and take: Replaces
1062 jsr166 1.47 * first element with last and sifts it down. Call only when
1063     * holding lock.
1064 jsr166 1.46 * @param f the task to remove and return
1065     */
1066 jsr166 1.61 private RunnableScheduledFuture<?> finishPoll(RunnableScheduledFuture<?> f) {
1067 jsr166 1.46 int s = --size;
1068 jsr166 1.61 RunnableScheduledFuture<?> x = queue[s];
1069 jsr166 1.46 queue[s] = null;
1070     if (s != 0)
1071     siftDown(0, x);
1072     setIndex(f, -1);
1073     return f;
1074     }
1075    
1076 jsr166 1.61 public RunnableScheduledFuture<?> poll() {
1077 dl 1.40 final ReentrantLock lock = this.lock;
1078     lock.lock();
1079     try {
1080 jsr166 1.61 RunnableScheduledFuture<?> first = queue[0];
1081 jsr166 1.87 return (first == null || first.getDelay(NANOSECONDS) > 0)
1082     ? null
1083     : finishPoll(first);
1084 dl 1.40 } finally {
1085     lock.unlock();
1086     }
1087     }
1088    
1089 jsr166 1.61 public RunnableScheduledFuture<?> take() throws InterruptedException {
1090 dl 1.40 final ReentrantLock lock = this.lock;
1091     lock.lockInterruptibly();
1092     try {
1093     for (;;) {
1094 jsr166 1.61 RunnableScheduledFuture<?> first = queue[0];
1095 jsr166 1.42 if (first == null)
1096 dl 1.40 available.await();
1097     else {
1098 jsr166 1.62 long delay = first.getDelay(NANOSECONDS);
1099 jsr166 1.96 if (delay <= 0L)
1100 jsr166 1.48 return finishPoll(first);
1101 jsr166 1.71 first = null; // don't retain ref while waiting
1102     if (leader != null)
1103 jsr166 1.48 available.await();
1104     else {
1105     Thread thisThread = Thread.currentThread();
1106     leader = thisThread;
1107     try {
1108     available.awaitNanos(delay);
1109     } finally {
1110     if (leader == thisThread)
1111     leader = null;
1112     }
1113     }
1114 dl 1.40 }
1115     }
1116     } finally {
1117 jsr166 1.48 if (leader == null && queue[0] != null)
1118     available.signal();
1119 dl 1.40 lock.unlock();
1120     }
1121     }
1122    
1123 jsr166 1.61 public RunnableScheduledFuture<?> poll(long timeout, TimeUnit unit)
1124 dl 1.40 throws InterruptedException {
1125     long nanos = unit.toNanos(timeout);
1126     final ReentrantLock lock = this.lock;
1127     lock.lockInterruptibly();
1128     try {
1129     for (;;) {
1130 jsr166 1.61 RunnableScheduledFuture<?> first = queue[0];
1131 dl 1.40 if (first == null) {
1132 jsr166 1.96 if (nanos <= 0L)
1133 dl 1.40 return null;
1134     else
1135     nanos = available.awaitNanos(nanos);
1136     } else {
1137 jsr166 1.62 long delay = first.getDelay(NANOSECONDS);
1138 jsr166 1.96 if (delay <= 0L)
1139 dl 1.40 return finishPoll(first);
1140 jsr166 1.96 if (nanos <= 0L)
1141 jsr166 1.48 return null;
1142 jsr166 1.71 first = null; // don't retain ref while waiting
1143 jsr166 1.48 if (nanos < delay || leader != null)
1144     nanos = available.awaitNanos(nanos);
1145     else {
1146     Thread thisThread = Thread.currentThread();
1147     leader = thisThread;
1148     try {
1149     long timeLeft = available.awaitNanos(delay);
1150     nanos -= delay - timeLeft;
1151     } finally {
1152     if (leader == thisThread)
1153     leader = null;
1154     }
1155     }
1156     }
1157     }
1158 dl 1.40 } finally {
1159 jsr166 1.48 if (leader == null && queue[0] != null)
1160     available.signal();
1161 dl 1.40 lock.unlock();
1162     }
1163     }
1164    
1165     public void clear() {
1166     final ReentrantLock lock = this.lock;
1167     lock.lock();
1168     try {
1169     for (int i = 0; i < size; i++) {
1170 jsr166 1.61 RunnableScheduledFuture<?> t = queue[i];
1171 dl 1.40 if (t != null) {
1172     queue[i] = null;
1173     setIndex(t, -1);
1174     }
1175     }
1176     size = 0;
1177     } finally {
1178     lock.unlock();
1179     }
1180 dl 1.13 }
1181 dl 1.40
1182     public int drainTo(Collection<? super Runnable> c) {
1183 jsr166 1.104 return drainTo(c, Integer.MAX_VALUE);
1184 dl 1.13 }
1185    
1186 jsr166 1.21 public int drainTo(Collection<? super Runnable> c, int maxElements) {
1187 jsr166 1.106 Objects.requireNonNull(c);
1188 dl 1.40 if (c == this)
1189     throw new IllegalArgumentException();
1190     if (maxElements <= 0)
1191     return 0;
1192     final ReentrantLock lock = this.lock;
1193     lock.lock();
1194     try {
1195     int n = 0;
1196 jsr166 1.106 for (RunnableScheduledFuture<?> first;
1197     n < maxElements
1198     && (first = queue[0]) != null
1199     && first.getDelay(NANOSECONDS) <= 0;) {
1200 jsr166 1.62 c.add(first); // In this order, in case add() throws.
1201     finishPoll(first);
1202 jsr166 1.48 ++n;
1203     }
1204 dl 1.40 return n;
1205     } finally {
1206     lock.unlock();
1207     }
1208     }
1209    
1210     public Object[] toArray() {
1211     final ReentrantLock lock = this.lock;
1212     lock.lock();
1213     try {
1214 jsr166 1.45 return Arrays.copyOf(queue, size, Object[].class);
1215 dl 1.40 } finally {
1216     lock.unlock();
1217     }
1218     }
1219    
1220 jsr166 1.48 @SuppressWarnings("unchecked")
1221 dl 1.40 public <T> T[] toArray(T[] a) {
1222     final ReentrantLock lock = this.lock;
1223     lock.lock();
1224     try {
1225     if (a.length < size)
1226     return (T[]) Arrays.copyOf(queue, size, a.getClass());
1227     System.arraycopy(queue, 0, a, 0, size);
1228     if (a.length > size)
1229     a[size] = null;
1230     return a;
1231     } finally {
1232     lock.unlock();
1233     }
1234 dl 1.13 }
1235    
1236 jsr166 1.21 public Iterator<Runnable> iterator() {
1237 jsr166 1.105 final ReentrantLock lock = this.lock;
1238     lock.lock();
1239     try {
1240     return new Itr(Arrays.copyOf(queue, size));
1241     } finally {
1242     lock.unlock();
1243     }
1244 dl 1.40 }
1245 jsr166 1.42
1246 dl 1.40 /**
1247     * Snapshot iterator that works off copy of underlying q array.
1248     */
1249     private class Itr implements Iterator<Runnable> {
1250 jsr166 1.74 final RunnableScheduledFuture<?>[] array;
1251 jsr166 1.86 int cursor; // index of next element to return; initially 0
1252     int lastRet = -1; // index of last element returned; -1 if no such
1253 jsr166 1.42
1254 jsr166 1.74 Itr(RunnableScheduledFuture<?>[] array) {
1255 dl 1.40 this.array = array;
1256     }
1257 jsr166 1.42
1258 dl 1.40 public boolean hasNext() {
1259     return cursor < array.length;
1260     }
1261 jsr166 1.42
1262 dl 1.40 public Runnable next() {
1263     if (cursor >= array.length)
1264     throw new NoSuchElementException();
1265 jsr166 1.101 return array[lastRet = cursor++];
1266 dl 1.40 }
1267 jsr166 1.42
1268 dl 1.40 public void remove() {
1269     if (lastRet < 0)
1270     throw new IllegalStateException();
1271     DelayedWorkQueue.this.remove(array[lastRet]);
1272     lastRet = -1;
1273     }
1274 dl 1.13 }
1275     }
1276 dl 1.1 }