ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ScheduledThreadPoolExecutor.java
Revision: 1.60
Committed: Sat Jun 4 01:29:30 2011 UTC (13 years ago) by jsr166
Branch: MAIN
Changes since 1.59: +1 -1 lines
Log Message:
use nullary AtomicFoo constructors when possible

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.11 * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8     import java.util.concurrent.atomic.*;
9 dl 1.40 import java.util.concurrent.locks.*;
10 dl 1.1 import java.util.*;
11    
12     /**
13 dl 1.7 * A {@link ThreadPoolExecutor} that can additionally schedule
14     * commands to run after a given delay, or to execute
15     * periodically. This class is preferable to {@link java.util.Timer}
16     * when multiple worker threads are needed, or when the additional
17     * flexibility or capabilities of {@link ThreadPoolExecutor} (which
18     * this class extends) are required.
19 dl 1.1 *
20 jsr166 1.46 * <p>Delayed tasks execute no sooner than they are enabled, but
21 dl 1.18 * without any real-time guarantees about when, after they are
22     * enabled, they will commence. Tasks scheduled for exactly the same
23     * execution time are enabled in first-in-first-out (FIFO) order of
24 jsr166 1.46 * submission.
25     *
26     * <p>When a submitted task is cancelled before it is run, execution
27     * is suppressed. By default, such a cancelled task is not
28     * automatically removed from the work queue until its delay
29     * elapses. While this enables further inspection and monitoring, it
30     * may also cause unbounded retention of cancelled tasks. To avoid
31     * this, set {@link #setRemoveOnCancelPolicy} to {@code true}, which
32     * causes tasks to be immediately removed from the work queue at
33     * time of cancellation.
34 dl 1.1 *
35 dl 1.51 * <p>Successive executions of a task scheduled via
36 jsr166 1.55 * {@code scheduleAtFixedRate} or
37     * {@code scheduleWithFixedDelay} do not overlap. While different
38 dl 1.51 * executions may be performed by different threads, the effects of
39     * prior executions <a
40     * href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
41     * those of subsequent ones.
42     *
43 dl 1.1 * <p>While this class inherits from {@link ThreadPoolExecutor}, a few
44 dl 1.8 * of the inherited tuning methods are not useful for it. In
45 jsr166 1.53 * particular, because it acts as a fixed-sized pool using
46     * {@code corePoolSize} threads and an unbounded queue, adjustments
47     * to {@code maximumPoolSize} have no useful effect. Additionally, it
48     * is almost never a good idea to set {@code corePoolSize} to zero or
49     * use {@code allowCoreThreadTimeOut} because this may leave the pool
50     * without threads to handle tasks once they become eligible to run.
51 dl 1.1 *
52 jsr166 1.39 * <p><b>Extension notes:</b> This class overrides the
53     * {@link ThreadPoolExecutor#execute execute} and
54     * {@link AbstractExecutorService#submit(Runnable) submit}
55     * methods to generate internal {@link ScheduledFuture} objects to
56     * control per-task delays and scheduling. To preserve
57     * functionality, any further overrides of these methods in
58 dl 1.32 * subclasses must invoke superclass versions, which effectively
59 jsr166 1.39 * disables additional task customization. However, this class
60 dl 1.32 * provides alternative protected extension method
61 jsr166 1.39 * {@code decorateTask} (one version each for {@code Runnable} and
62     * {@code Callable}) that can be used to customize the concrete task
63     * types used to execute commands entered via {@code execute},
64     * {@code submit}, {@code schedule}, {@code scheduleAtFixedRate},
65     * and {@code scheduleWithFixedDelay}. By default, a
66     * {@code ScheduledThreadPoolExecutor} uses a task type extending
67 dl 1.32 * {@link FutureTask}. However, this may be modified or replaced using
68     * subclasses of the form:
69     *
70 jsr166 1.39 * <pre> {@code
71 dl 1.23 * public class CustomScheduledExecutor extends ScheduledThreadPoolExecutor {
72     *
73 jsr166 1.39 * static class CustomTask<V> implements RunnableScheduledFuture<V> { ... }
74 dl 1.23 *
75 jsr166 1.39 * protected <V> RunnableScheduledFuture<V> decorateTask(
76     * Runnable r, RunnableScheduledFuture<V> task) {
77     * return new CustomTask<V>(r, task);
78 jsr166 1.29 * }
79 dl 1.23 *
80 jsr166 1.39 * protected <V> RunnableScheduledFuture<V> decorateTask(
81     * Callable<V> c, RunnableScheduledFuture<V> task) {
82     * return new CustomTask<V>(c, task);
83 jsr166 1.29 * }
84     * // ... add constructors, etc.
85 jsr166 1.39 * }}</pre>
86     *
87 dl 1.1 * @since 1.5
88     * @author Doug Lea
89     */
90 jsr166 1.21 public class ScheduledThreadPoolExecutor
91     extends ThreadPoolExecutor
92 tim 1.3 implements ScheduledExecutorService {
93 dl 1.1
94 dl 1.37 /*
95     * This class specializes ThreadPoolExecutor implementation by
96     *
97     * 1. Using a custom task type, ScheduledFutureTask for
98     * tasks, even those that don't require scheduling (i.e.,
99     * those submitted using ExecutorService execute, not
100     * ScheduledExecutorService methods) which are treated as
101     * delayed tasks with a delay of zero.
102     *
103 jsr166 1.46 * 2. Using a custom queue (DelayedWorkQueue), a variant of
104 dl 1.37 * unbounded DelayQueue. The lack of capacity constraint and
105     * the fact that corePoolSize and maximumPoolSize are
106     * effectively identical simplifies some execution mechanics
107 jsr166 1.46 * (see delayedExecute) compared to ThreadPoolExecutor.
108 dl 1.37 *
109     * 3. Supporting optional run-after-shutdown parameters, which
110     * leads to overrides of shutdown methods to remove and cancel
111     * tasks that should NOT be run after shutdown, as well as
112     * different recheck logic when task (re)submission overlaps
113     * with a shutdown.
114     *
115     * 4. Task decoration methods to allow interception and
116     * instrumentation, which are needed because subclasses cannot
117     * otherwise override submit methods to get this effect. These
118     * don't have any impact on pool control logic though.
119     */
120    
121 dl 1.1 /**
122     * False if should cancel/suppress periodic tasks on shutdown.
123     */
124     private volatile boolean continueExistingPeriodicTasksAfterShutdown;
125    
126     /**
127     * False if should cancel non-periodic tasks on shutdown.
128     */
129     private volatile boolean executeExistingDelayedTasksAfterShutdown = true;
130    
131     /**
132 dl 1.41 * True if ScheduledFutureTask.cancel should remove from queue
133     */
134     private volatile boolean removeOnCancel = false;
135    
136     /**
137 dl 1.1 * Sequence number to break scheduling ties, and in turn to
138     * guarantee FIFO order among tied entries.
139     */
140 jsr166 1.60 private static final AtomicLong sequencer = new AtomicLong();
141 dl 1.14
142     /**
143 jsr166 1.39 * Returns current nanosecond time.
144 dl 1.14 */
145 jsr166 1.54 final long now() {
146     return System.nanoTime();
147 dl 1.14 }
148    
149 jsr166 1.21 private class ScheduledFutureTask<V>
150 peierls 1.22 extends FutureTask<V> implements RunnableScheduledFuture<V> {
151 jsr166 1.21
152 dl 1.1 /** Sequence number to break ties FIFO */
153     private final long sequenceNumber;
154 jsr166 1.44
155 dl 1.1 /** The time the task is enabled to execute in nanoTime units */
156     private long time;
157 jsr166 1.44
158 dl 1.16 /**
159     * Period in nanoseconds for repeating tasks. A positive
160     * value indicates fixed-rate execution. A negative value
161     * indicates fixed-delay execution. A value of 0 indicates a
162     * non-repeating task.
163     */
164 dl 1.1 private final long period;
165    
166 jsr166 1.48 /** The actual task to be re-enqueued by reExecutePeriodic */
167     RunnableScheduledFuture<V> outerTask = this;
168 jsr166 1.44
169 dl 1.1 /**
170 dl 1.40 * Index into delay queue, to support faster cancellation.
171     */
172     int heapIndex;
173    
174     /**
175 jsr166 1.30 * Creates a one-shot action with given nanoTime-based trigger time.
176 dl 1.1 */
177     ScheduledFutureTask(Runnable r, V result, long ns) {
178     super(r, result);
179     this.time = ns;
180     this.period = 0;
181     this.sequenceNumber = sequencer.getAndIncrement();
182     }
183    
184     /**
185 jsr166 1.30 * Creates a periodic action with given nano time and period.
186 dl 1.1 */
187 jsr166 1.30 ScheduledFutureTask(Runnable r, V result, long ns, long period) {
188 dl 1.1 super(r, result);
189     this.time = ns;
190     this.period = period;
191     this.sequenceNumber = sequencer.getAndIncrement();
192     }
193    
194     /**
195 jsr166 1.30 * Creates a one-shot action with given nanoTime-based trigger.
196 dl 1.1 */
197     ScheduledFutureTask(Callable<V> callable, long ns) {
198     super(callable);
199     this.time = ns;
200     this.period = 0;
201     this.sequenceNumber = sequencer.getAndIncrement();
202     }
203    
204     public long getDelay(TimeUnit unit) {
205 jsr166 1.54 return unit.convert(time - now(), TimeUnit.NANOSECONDS);
206 dl 1.1 }
207    
208 dl 1.20 public int compareTo(Delayed other) {
209 dl 1.59 if (other == this) // compare zero if same object
210 dl 1.1 return 0;
211 dl 1.34 if (other instanceof ScheduledFutureTask) {
212     ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
213     long diff = time - x.time;
214     if (diff < 0)
215     return -1;
216     else if (diff > 0)
217     return 1;
218     else if (sequenceNumber < x.sequenceNumber)
219     return -1;
220     else
221     return 1;
222     }
223     long d = (getDelay(TimeUnit.NANOSECONDS) -
224     other.getDelay(TimeUnit.NANOSECONDS));
225 jsr166 1.38 return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
226 dl 1.1 }
227    
228     /**
229 dl 1.18 * Returns true if this is a periodic (not a one-shot) action.
230 jsr166 1.30 *
231 dl 1.1 * @return true if periodic
232     */
233 dl 1.23 public boolean isPeriodic() {
234 dl 1.16 return period != 0;
235 dl 1.1 }
236    
237     /**
238 jsr166 1.39 * Sets the next time to run for a periodic task.
239 dl 1.13 */
240 dl 1.37 private void setNextRunTime() {
241     long p = period;
242     if (p > 0)
243     time += p;
244     else
245 jsr166 1.54 time = triggerTime(-p);
246 dl 1.13 }
247    
248 dl 1.40 public boolean cancel(boolean mayInterruptIfRunning) {
249 dl 1.41 boolean cancelled = super.cancel(mayInterruptIfRunning);
250     if (cancelled && removeOnCancel && heapIndex >= 0)
251 jsr166 1.42 remove(this);
252 dl 1.41 return cancelled;
253 dl 1.40 }
254    
255 dl 1.13 /**
256 dl 1.5 * Overrides FutureTask version so as to reset/requeue if periodic.
257 jsr166 1.21 */
258 dl 1.1 public void run() {
259 dl 1.37 boolean periodic = isPeriodic();
260     if (!canRunInCurrentRunState(periodic))
261     cancel(false);
262     else if (!periodic)
263 dl 1.5 ScheduledFutureTask.super.run();
264 dl 1.37 else if (ScheduledFutureTask.super.runAndReset()) {
265     setNextRunTime();
266 jsr166 1.44 reExecutePeriodic(outerTask);
267 dl 1.37 }
268 dl 1.1 }
269     }
270    
271     /**
272 dl 1.37 * Returns true if can run a task given current run state
273 jsr166 1.39 * and run-after-shutdown parameters.
274     *
275 dl 1.37 * @param periodic true if this task periodic, false if delayed
276     */
277     boolean canRunInCurrentRunState(boolean periodic) {
278 jsr166 1.38 return isRunningOrShutdown(periodic ?
279 dl 1.37 continueExistingPeriodicTasksAfterShutdown :
280     executeExistingDelayedTasksAfterShutdown);
281     }
282    
283     /**
284     * Main execution method for delayed or periodic tasks. If pool
285     * is shut down, rejects the task. Otherwise adds task to queue
286     * and starts a thread, if necessary, to run it. (We cannot
287     * prestart the thread to run the task because the task (probably)
288     * shouldn't be run yet,) If the pool is shut down while the task
289     * is being added, cancel and remove it if required by state and
290 jsr166 1.39 * run-after-shutdown parameters.
291     *
292 dl 1.37 * @param task the task
293     */
294     private void delayedExecute(RunnableScheduledFuture<?> task) {
295     if (isShutdown())
296     reject(task);
297     else {
298     super.getQueue().add(task);
299     if (isShutdown() &&
300     !canRunInCurrentRunState(task.isPeriodic()) &&
301     remove(task))
302     task.cancel(false);
303 jsr166 1.48 else
304     prestartCoreThread();
305 dl 1.37 }
306     }
307 jsr166 1.21
308 dl 1.37 /**
309 jsr166 1.39 * Requeues a periodic task unless current run state precludes it.
310     * Same idea as delayedExecute except drops task rather than rejecting.
311     *
312 dl 1.37 * @param task the task
313     */
314     void reExecutePeriodic(RunnableScheduledFuture<?> task) {
315     if (canRunInCurrentRunState(true)) {
316     super.getQueue().add(task);
317     if (!canRunInCurrentRunState(true) && remove(task))
318     task.cancel(false);
319 jsr166 1.48 else
320     prestartCoreThread();
321 dl 1.37 }
322 dl 1.13 }
323 dl 1.1
324 dl 1.13 /**
325 jsr166 1.21 * Cancels and clears the queue of all tasks that should not be run
326 jsr166 1.39 * due to shutdown policy. Invoked within super.shutdown.
327 dl 1.13 */
328 dl 1.37 @Override void onShutdown() {
329     BlockingQueue<Runnable> q = super.getQueue();
330     boolean keepDelayed =
331     getExecuteExistingDelayedTasksAfterShutdownPolicy();
332     boolean keepPeriodic =
333     getContinueExistingPeriodicTasksAfterShutdownPolicy();
334 jsr166 1.57 if (!keepDelayed && !keepPeriodic) {
335     for (Object e : q.toArray())
336     if (e instanceof RunnableScheduledFuture<?>)
337     ((RunnableScheduledFuture<?>) e).cancel(false);
338 dl 1.37 q.clear();
339 jsr166 1.57 }
340 dl 1.37 else {
341     // Traverse snapshot to avoid iterator exceptions
342 jsr166 1.39 for (Object e : q.toArray()) {
343 dl 1.23 if (e instanceof RunnableScheduledFuture) {
344 dl 1.37 RunnableScheduledFuture<?> t =
345     (RunnableScheduledFuture<?>)e;
346 dl 1.41 if ((t.isPeriodic() ? !keepPeriodic : !keepDelayed) ||
347     t.isCancelled()) { // also remove if already cancelled
348     if (q.remove(t))
349     t.cancel(false);
350     }
351 dl 1.13 }
352     }
353 dl 1.1 }
354 jsr166 1.48 tryTerminate();
355 dl 1.1 }
356    
357 dl 1.23 /**
358 jsr166 1.30 * Modifies or replaces the task used to execute a runnable.
359 jsr166 1.28 * This method can be used to override the concrete
360 dl 1.23 * class used for managing internal tasks.
361 jsr166 1.30 * The default implementation simply returns the given task.
362 jsr166 1.28 *
363 dl 1.23 * @param runnable the submitted Runnable
364     * @param task the task created to execute the runnable
365     * @return a task that can execute the runnable
366     * @since 1.6
367     */
368 peierls 1.22 protected <V> RunnableScheduledFuture<V> decorateTask(
369 dl 1.23 Runnable runnable, RunnableScheduledFuture<V> task) {
370     return task;
371 peierls 1.22 }
372    
373 dl 1.23 /**
374 jsr166 1.30 * Modifies or replaces the task used to execute a callable.
375 jsr166 1.28 * This method can be used to override the concrete
376 dl 1.23 * class used for managing internal tasks.
377 jsr166 1.30 * The default implementation simply returns the given task.
378 jsr166 1.28 *
379 dl 1.23 * @param callable the submitted Callable
380     * @param task the task created to execute the callable
381     * @return a task that can execute the callable
382     * @since 1.6
383     */
384 peierls 1.22 protected <V> RunnableScheduledFuture<V> decorateTask(
385 dl 1.23 Callable<V> callable, RunnableScheduledFuture<V> task) {
386     return task;
387 dl 1.19 }
388    
389 dl 1.1 /**
390 jsr166 1.39 * Creates a new {@code ScheduledThreadPoolExecutor} with the
391     * given core pool size.
392 jsr166 1.21 *
393 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
394     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
395     * @throws IllegalArgumentException if {@code corePoolSize < 0}
396 dl 1.1 */
397     public ScheduledThreadPoolExecutor(int corePoolSize) {
398     super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
399     new DelayedWorkQueue());
400     }
401    
402     /**
403 jsr166 1.39 * Creates a new {@code ScheduledThreadPoolExecutor} with the
404     * given initial parameters.
405 jsr166 1.21 *
406 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
407     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
408 dl 1.1 * @param threadFactory the factory to use when the executor
409 jsr166 1.39 * creates a new thread
410     * @throws IllegalArgumentException if {@code corePoolSize < 0}
411     * @throws NullPointerException if {@code threadFactory} is null
412 dl 1.1 */
413     public ScheduledThreadPoolExecutor(int corePoolSize,
414 jsr166 1.56 ThreadFactory threadFactory) {
415 dl 1.1 super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
416     new DelayedWorkQueue(), threadFactory);
417     }
418    
419     /**
420 dl 1.13 * Creates a new ScheduledThreadPoolExecutor with the given
421     * initial parameters.
422 jsr166 1.21 *
423 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
424     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
425 dl 1.1 * @param handler the handler to use when execution is blocked
426 jsr166 1.39 * because the thread bounds and queue capacities are reached
427     * @throws IllegalArgumentException if {@code corePoolSize < 0}
428     * @throws NullPointerException if {@code handler} is null
429 dl 1.1 */
430     public ScheduledThreadPoolExecutor(int corePoolSize,
431 jsr166 1.56 RejectedExecutionHandler handler) {
432 dl 1.1 super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
433     new DelayedWorkQueue(), handler);
434     }
435    
436     /**
437 dl 1.13 * Creates a new ScheduledThreadPoolExecutor with the given
438     * initial parameters.
439 jsr166 1.21 *
440 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
441     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
442 dl 1.1 * @param threadFactory the factory to use when the executor
443 jsr166 1.39 * creates a new thread
444 dl 1.1 * @param handler the handler to use when execution is blocked
445 jsr166 1.39 * because the thread bounds and queue capacities are reached
446     * @throws IllegalArgumentException if {@code corePoolSize < 0}
447     * @throws NullPointerException if {@code threadFactory} or
448     * {@code handler} is null
449 dl 1.1 */
450     public ScheduledThreadPoolExecutor(int corePoolSize,
451 jsr166 1.56 ThreadFactory threadFactory,
452     RejectedExecutionHandler handler) {
453 dl 1.1 super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
454     new DelayedWorkQueue(), threadFactory, handler);
455     }
456    
457 dl 1.37 /**
458 jsr166 1.54 * Returns the trigger time of a delayed action.
459     */
460     private long triggerTime(long delay, TimeUnit unit) {
461     return triggerTime(unit.toNanos((delay < 0) ? 0 : delay));
462     }
463    
464     /**
465     * Returns the trigger time of a delayed action.
466 dl 1.50 */
467 jsr166 1.54 long triggerTime(long delay) {
468     return now() +
469     ((delay < (Long.MAX_VALUE >> 1)) ? delay : overflowFree(delay));
470     }
471    
472     /**
473     * Constrains the values of all delays in the queue to be within
474     * Long.MAX_VALUE of each other, to avoid overflow in compareTo.
475     * This may occur if a task is eligible to be dequeued, but has
476     * not yet been, while some other task is added with a delay of
477     * Long.MAX_VALUE.
478     */
479     private long overflowFree(long delay) {
480     Delayed head = (Delayed) super.getQueue().peek();
481     if (head != null) {
482     long headDelay = head.getDelay(TimeUnit.NANOSECONDS);
483     if (headDelay < 0 && (delay - headDelay < 0))
484     delay = Long.MAX_VALUE + headDelay;
485     }
486     return delay;
487 dl 1.50 }
488    
489     /**
490 dl 1.37 * @throws RejectedExecutionException {@inheritDoc}
491     * @throws NullPointerException {@inheritDoc}
492     */
493 jsr166 1.21 public ScheduledFuture<?> schedule(Runnable command,
494     long delay,
495 dl 1.13 TimeUnit unit) {
496 dl 1.9 if (command == null || unit == null)
497 dl 1.1 throw new NullPointerException();
498 peierls 1.22 RunnableScheduledFuture<?> t = decorateTask(command,
499 jsr166 1.54 new ScheduledFutureTask<Void>(command, null,
500     triggerTime(delay, unit)));
501 dl 1.1 delayedExecute(t);
502     return t;
503     }
504 jsr166 1.52
505 dl 1.37 /**
506     * @throws RejectedExecutionException {@inheritDoc}
507     * @throws NullPointerException {@inheritDoc}
508     */
509 jsr166 1.21 public <V> ScheduledFuture<V> schedule(Callable<V> callable,
510     long delay,
511 dl 1.13 TimeUnit unit) {
512 dl 1.9 if (callable == null || unit == null)
513 dl 1.1 throw new NullPointerException();
514 peierls 1.22 RunnableScheduledFuture<V> t = decorateTask(callable,
515 jsr166 1.54 new ScheduledFutureTask<V>(callable,
516     triggerTime(delay, unit)));
517 dl 1.1 delayedExecute(t);
518     return t;
519     }
520    
521 dl 1.37 /**
522     * @throws RejectedExecutionException {@inheritDoc}
523     * @throws NullPointerException {@inheritDoc}
524     * @throws IllegalArgumentException {@inheritDoc}
525     */
526 jsr166 1.21 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
527     long initialDelay,
528     long period,
529 dl 1.13 TimeUnit unit) {
530 dl 1.9 if (command == null || unit == null)
531 dl 1.1 throw new NullPointerException();
532     if (period <= 0)
533     throw new IllegalArgumentException();
534 jsr166 1.48 ScheduledFutureTask<Void> sft =
535     new ScheduledFutureTask<Void>(command,
536     null,
537 jsr166 1.54 triggerTime(initialDelay, unit),
538 jsr166 1.48 unit.toNanos(period));
539 jsr166 1.44 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
540 jsr166 1.48 sft.outerTask = t;
541 dl 1.1 delayedExecute(t);
542     return t;
543     }
544 jsr166 1.21
545 dl 1.37 /**
546     * @throws RejectedExecutionException {@inheritDoc}
547     * @throws NullPointerException {@inheritDoc}
548     * @throws IllegalArgumentException {@inheritDoc}
549     */
550 jsr166 1.21 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
551     long initialDelay,
552     long delay,
553 dl 1.13 TimeUnit unit) {
554 dl 1.9 if (command == null || unit == null)
555 dl 1.1 throw new NullPointerException();
556     if (delay <= 0)
557     throw new IllegalArgumentException();
558 jsr166 1.48 ScheduledFutureTask<Void> sft =
559     new ScheduledFutureTask<Void>(command,
560     null,
561 jsr166 1.54 triggerTime(initialDelay, unit),
562 jsr166 1.48 unit.toNanos(-delay));
563 jsr166 1.44 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
564 jsr166 1.48 sft.outerTask = t;
565 dl 1.1 delayedExecute(t);
566     return t;
567     }
568 jsr166 1.21
569 dl 1.1 /**
570 jsr166 1.39 * Executes {@code command} with zero required delay.
571     * This has effect equivalent to
572     * {@link #schedule(Runnable,long,TimeUnit) schedule(command, 0, anyUnit)}.
573     * Note that inspections of the queue and of the list returned by
574     * {@code shutdownNow} will access the zero-delayed
575     * {@link ScheduledFuture}, not the {@code command} itself.
576     *
577     * <p>A consequence of the use of {@code ScheduledFuture} objects is
578     * that {@link ThreadPoolExecutor#afterExecute afterExecute} is always
579     * called with a null second {@code Throwable} argument, even if the
580     * {@code command} terminated abruptly. Instead, the {@code Throwable}
581     * thrown by such a task can be obtained via {@link Future#get}.
582 dl 1.1 *
583     * @throws RejectedExecutionException at discretion of
584 jsr166 1.39 * {@code RejectedExecutionHandler}, if the task
585     * cannot be accepted for execution because the
586     * executor has been shut down
587     * @throws NullPointerException {@inheritDoc}
588 dl 1.1 */
589     public void execute(Runnable command) {
590     schedule(command, 0, TimeUnit.NANOSECONDS);
591     }
592    
593 dl 1.13 // Override AbstractExecutorService methods
594    
595 dl 1.37 /**
596     * @throws RejectedExecutionException {@inheritDoc}
597     * @throws NullPointerException {@inheritDoc}
598     */
599 dl 1.7 public Future<?> submit(Runnable task) {
600     return schedule(task, 0, TimeUnit.NANOSECONDS);
601     }
602    
603 dl 1.37 /**
604     * @throws RejectedExecutionException {@inheritDoc}
605     * @throws NullPointerException {@inheritDoc}
606     */
607 dl 1.7 public <T> Future<T> submit(Runnable task, T result) {
608 jsr166 1.21 return schedule(Executors.callable(task, result),
609 dl 1.13 0, TimeUnit.NANOSECONDS);
610 dl 1.7 }
611    
612 dl 1.37 /**
613     * @throws RejectedExecutionException {@inheritDoc}
614     * @throws NullPointerException {@inheritDoc}
615     */
616 dl 1.7 public <T> Future<T> submit(Callable<T> task) {
617     return schedule(task, 0, TimeUnit.NANOSECONDS);
618     }
619 dl 1.1
620     /**
621 dl 1.37 * Sets the policy on whether to continue executing existing
622 jsr166 1.39 * periodic tasks even when this executor has been {@code shutdown}.
623     * In this case, these tasks will only terminate upon
624     * {@code shutdownNow} or after setting the policy to
625     * {@code false} when already shutdown.
626     * This value is by default {@code false}.
627 jsr166 1.30 *
628 jsr166 1.39 * @param value if {@code true}, continue after shutdown, else don't.
629 jsr166 1.25 * @see #getContinueExistingPeriodicTasksAfterShutdownPolicy
630 dl 1.1 */
631     public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value) {
632     continueExistingPeriodicTasksAfterShutdown = value;
633 jsr166 1.39 if (!value && isShutdown())
634 dl 1.37 onShutdown();
635 dl 1.1 }
636    
637     /**
638 jsr166 1.21 * Gets the policy on whether to continue executing existing
639 jsr166 1.39 * periodic tasks even when this executor has been {@code shutdown}.
640     * In this case, these tasks will only terminate upon
641     * {@code shutdownNow} or after setting the policy to
642     * {@code false} when already shutdown.
643     * This value is by default {@code false}.
644 jsr166 1.30 *
645 jsr166 1.39 * @return {@code true} if will continue after shutdown
646 dl 1.16 * @see #setContinueExistingPeriodicTasksAfterShutdownPolicy
647 dl 1.1 */
648     public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy() {
649     return continueExistingPeriodicTasksAfterShutdown;
650     }
651    
652     /**
653 jsr166 1.21 * Sets the policy on whether to execute existing delayed
654 jsr166 1.39 * tasks even when this executor has been {@code shutdown}.
655     * In this case, these tasks will only terminate upon
656     * {@code shutdownNow}, or after setting the policy to
657     * {@code false} when already shutdown.
658     * This value is by default {@code true}.
659 jsr166 1.30 *
660 jsr166 1.39 * @param value if {@code true}, execute after shutdown, else don't.
661 dl 1.16 * @see #getExecuteExistingDelayedTasksAfterShutdownPolicy
662 dl 1.1 */
663     public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value) {
664     executeExistingDelayedTasksAfterShutdown = value;
665 jsr166 1.39 if (!value && isShutdown())
666 dl 1.37 onShutdown();
667 dl 1.1 }
668    
669     /**
670 jsr166 1.21 * Gets the policy on whether to execute existing delayed
671 jsr166 1.39 * tasks even when this executor has been {@code shutdown}.
672     * In this case, these tasks will only terminate upon
673     * {@code shutdownNow}, or after setting the policy to
674     * {@code false} when already shutdown.
675     * This value is by default {@code true}.
676 jsr166 1.30 *
677 jsr166 1.39 * @return {@code true} if will execute after shutdown
678 dl 1.16 * @see #setExecuteExistingDelayedTasksAfterShutdownPolicy
679 dl 1.1 */
680     public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy() {
681     return executeExistingDelayedTasksAfterShutdown;
682     }
683    
684     /**
685 jsr166 1.46 * Sets the policy on whether cancelled tasks should be immediately
686     * removed from the work queue at time of cancellation. This value is
687     * by default {@code false}.
688 dl 1.41 *
689 jsr166 1.42 * @param value if {@code true}, remove on cancellation, else don't
690 dl 1.41 * @see #getRemoveOnCancelPolicy
691 jsr166 1.43 * @since 1.7
692 dl 1.41 */
693     public void setRemoveOnCancelPolicy(boolean value) {
694     removeOnCancel = value;
695     }
696    
697     /**
698 jsr166 1.46 * Gets the policy on whether cancelled tasks should be immediately
699     * removed from the work queue at time of cancellation. This value is
700     * by default {@code false}.
701 dl 1.41 *
702 jsr166 1.46 * @return {@code true} if cancelled tasks are immediately removed
703     * from the queue
704 dl 1.41 * @see #setRemoveOnCancelPolicy
705 jsr166 1.43 * @since 1.7
706 dl 1.41 */
707     public boolean getRemoveOnCancelPolicy() {
708     return removeOnCancel;
709     }
710    
711     /**
712 dl 1.1 * Initiates an orderly shutdown in which previously submitted
713 jsr166 1.49 * tasks are executed, but no new tasks will be accepted.
714     * Invocation has no additional effect if already shut down.
715     *
716     * <p>This method does not wait for previously submitted tasks to
717     * complete execution. Use {@link #awaitTermination awaitTermination}
718     * to do that.
719     *
720     * <p>If the {@code ExecuteExistingDelayedTasksAfterShutdownPolicy}
721     * has been set {@code false}, existing delayed tasks whose delays
722     * have not yet elapsed are cancelled. And unless the {@code
723     * ContinueExistingPeriodicTasksAfterShutdownPolicy} has been set
724     * {@code true}, future executions of existing periodic tasks will
725     * be cancelled.
726 jsr166 1.39 *
727     * @throws SecurityException {@inheritDoc}
728 dl 1.1 */
729     public void shutdown() {
730     super.shutdown();
731     }
732    
733     /**
734     * Attempts to stop all actively executing tasks, halts the
735 jsr166 1.30 * processing of waiting tasks, and returns a list of the tasks
736     * that were awaiting execution.
737 jsr166 1.21 *
738 jsr166 1.49 * <p>This method does not wait for actively executing tasks to
739     * terminate. Use {@link #awaitTermination awaitTermination} to
740     * do that.
741     *
742 dl 1.1 * <p>There are no guarantees beyond best-effort attempts to stop
743 dl 1.18 * processing actively executing tasks. This implementation
744 jsr166 1.31 * cancels tasks via {@link Thread#interrupt}, so any task that
745     * fails to respond to interrupts may never terminate.
746 dl 1.1 *
747 jsr166 1.39 * @return list of tasks that never commenced execution.
748     * Each element of this list is a {@link ScheduledFuture},
749     * including those tasks submitted using {@code execute},
750     * which are for scheduling purposes used as the basis of a
751     * zero-delay {@code ScheduledFuture}.
752 jsr166 1.31 * @throws SecurityException {@inheritDoc}
753 dl 1.1 */
754 tim 1.4 public List<Runnable> shutdownNow() {
755 dl 1.1 return super.shutdownNow();
756     }
757    
758     /**
759     * Returns the task queue used by this executor. Each element of
760     * this queue is a {@link ScheduledFuture}, including those
761 jsr166 1.39 * tasks submitted using {@code execute} which are for scheduling
762 dl 1.1 * purposes used as the basis of a zero-delay
763 jsr166 1.39 * {@code ScheduledFuture}. Iteration over this queue is
764 dl 1.15 * <em>not</em> guaranteed to traverse tasks in the order in
765 dl 1.1 * which they will execute.
766     *
767     * @return the task queue
768     */
769     public BlockingQueue<Runnable> getQueue() {
770     return super.getQueue();
771     }
772    
773 dl 1.13 /**
774 dl 1.40 * Specialized delay queue. To mesh with TPE declarations, this
775     * class must be declared as a BlockingQueue<Runnable> even though
776 jsr166 1.42 * it can only hold RunnableScheduledFutures.
777 jsr166 1.21 */
778 dl 1.40 static class DelayedWorkQueue extends AbstractQueue<Runnable>
779 dl 1.13 implements BlockingQueue<Runnable> {
780 jsr166 1.21
781 dl 1.40 /*
782     * A DelayedWorkQueue is based on a heap-based data structure
783     * like those in DelayQueue and PriorityQueue, except that
784     * every ScheduledFutureTask also records its index into the
785     * heap array. This eliminates the need to find a task upon
786     * cancellation, greatly speeding up removal (down from O(n)
787     * to O(log n)), and reducing garbage retention that would
788     * otherwise occur by waiting for the element to rise to top
789     * before clearing. But because the queue may also hold
790     * RunnableScheduledFutures that are not ScheduledFutureTasks,
791     * we are not guaranteed to have such indices available, in
792     * which case we fall back to linear search. (We expect that
793     * most tasks will not be decorated, and that the faster cases
794     * will be much more common.)
795     *
796     * All heap operations must record index changes -- mainly
797     * within siftUp and siftDown. Upon removal, a task's
798     * heapIndex is set to -1. Note that ScheduledFutureTasks can
799     * appear at most once in the queue (this need not be true for
800     * other kinds of tasks or work queues), so are uniquely
801     * identified by heapIndex.
802     */
803    
804 jsr166 1.46 private static final int INITIAL_CAPACITY = 16;
805     private RunnableScheduledFuture[] queue =
806 dl 1.40 new RunnableScheduledFuture[INITIAL_CAPACITY];
807 jsr166 1.46 private final ReentrantLock lock = new ReentrantLock();
808 dl 1.40 private int size = 0;
809    
810 jsr166 1.48 /**
811     * Thread designated to wait for the task at the head of the
812     * queue. This variant of the Leader-Follower pattern
813     * (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to
814     * minimize unnecessary timed waiting. When a thread becomes
815     * the leader, it waits only for the next delay to elapse, but
816     * other threads await indefinitely. The leader thread must
817     * signal some other thread before returning from take() or
818     * poll(...), unless some other thread becomes leader in the
819     * interim. Whenever the head of the queue is replaced with a
820     * task with an earlier expiration time, the leader field is
821     * invalidated by being reset to null, and some waiting
822     * thread, but not necessarily the current leader, is
823     * signalled. So waiting threads must be prepared to acquire
824     * and lose leadership while waiting.
825     */
826     private Thread leader = null;
827    
828     /**
829     * Condition signalled when a newer task becomes available at the
830     * head of the queue or a new thread may need to become leader.
831     */
832     private final Condition available = lock.newCondition();
833 dl 1.40
834     /**
835 jsr166 1.42 * Set f's heapIndex if it is a ScheduledFutureTask.
836 dl 1.40 */
837 jsr166 1.45 private void setIndex(RunnableScheduledFuture f, int idx) {
838 dl 1.40 if (f instanceof ScheduledFutureTask)
839     ((ScheduledFutureTask)f).heapIndex = idx;
840     }
841    
842     /**
843 jsr166 1.42 * Sift element added at bottom up to its heap-ordered spot.
844 dl 1.40 * Call only when holding lock.
845     */
846     private void siftUp(int k, RunnableScheduledFuture key) {
847     while (k > 0) {
848     int parent = (k - 1) >>> 1;
849     RunnableScheduledFuture e = queue[parent];
850     if (key.compareTo(e) >= 0)
851     break;
852     queue[k] = e;
853     setIndex(e, k);
854     k = parent;
855     }
856     queue[k] = key;
857     setIndex(key, k);
858     }
859    
860     /**
861 jsr166 1.42 * Sift element added at top down to its heap-ordered spot.
862 dl 1.40 * Call only when holding lock.
863     */
864     private void siftDown(int k, RunnableScheduledFuture key) {
865 jsr166 1.42 int half = size >>> 1;
866 dl 1.40 while (k < half) {
867 jsr166 1.42 int child = (k << 1) + 1;
868 dl 1.40 RunnableScheduledFuture c = queue[child];
869     int right = child + 1;
870     if (right < size && c.compareTo(queue[right]) > 0)
871     c = queue[child = right];
872     if (key.compareTo(c) <= 0)
873     break;
874     queue[k] = c;
875     setIndex(c, k);
876     k = child;
877     }
878     queue[k] = key;
879     setIndex(key, k);
880     }
881    
882     /**
883     * Resize the heap array. Call only when holding lock.
884     */
885     private void grow() {
886     int oldCapacity = queue.length;
887     int newCapacity = oldCapacity + (oldCapacity >> 1); // grow 50%
888     if (newCapacity < 0) // overflow
889     newCapacity = Integer.MAX_VALUE;
890     queue = Arrays.copyOf(queue, newCapacity);
891     }
892    
893     /**
894     * Find index of given object, or -1 if absent
895     */
896     private int indexOf(Object x) {
897     if (x != null) {
898 jsr166 1.48 if (x instanceof ScheduledFutureTask) {
899     int i = ((ScheduledFutureTask) x).heapIndex;
900     // Sanity check; x could conceivably be a
901     // ScheduledFutureTask from some other pool.
902     if (i >= 0 && i < size && queue[i] == x)
903     return i;
904     } else {
905     for (int i = 0; i < size; i++)
906     if (x.equals(queue[i]))
907     return i;
908     }
909 dl 1.40 }
910     return -1;
911     }
912    
913 jsr166 1.48 public boolean contains(Object x) {
914     final ReentrantLock lock = this.lock;
915 jsr166 1.45 lock.lock();
916     try {
917 jsr166 1.48 return indexOf(x) != -1;
918 jsr166 1.45 } finally {
919     lock.unlock();
920     }
921 jsr166 1.48 }
922 jsr166 1.45
923 dl 1.40 public boolean remove(Object x) {
924     final ReentrantLock lock = this.lock;
925     lock.lock();
926     try {
927 jsr166 1.45 int i = indexOf(x);
928 jsr166 1.48 if (i < 0)
929     return false;
930 jsr166 1.45
931 jsr166 1.48 setIndex(queue[i], -1);
932     int s = --size;
933     RunnableScheduledFuture replacement = queue[s];
934     queue[s] = null;
935     if (s != i) {
936     siftDown(i, replacement);
937     if (queue[i] == replacement)
938     siftUp(i, replacement);
939     }
940     return true;
941 dl 1.40 } finally {
942     lock.unlock();
943     }
944     }
945    
946     public int size() {
947     final ReentrantLock lock = this.lock;
948     lock.lock();
949     try {
950 jsr166 1.45 return size;
951 dl 1.40 } finally {
952     lock.unlock();
953     }
954     }
955    
956 jsr166 1.42 public boolean isEmpty() {
957     return size() == 0;
958 dl 1.40 }
959    
960     public int remainingCapacity() {
961     return Integer.MAX_VALUE;
962     }
963    
964     public RunnableScheduledFuture peek() {
965     final ReentrantLock lock = this.lock;
966     lock.lock();
967     try {
968     return queue[0];
969     } finally {
970     lock.unlock();
971     }
972 dl 1.13 }
973    
974 dl 1.40 public boolean offer(Runnable x) {
975     if (x == null)
976     throw new NullPointerException();
977     RunnableScheduledFuture e = (RunnableScheduledFuture)x;
978     final ReentrantLock lock = this.lock;
979     lock.lock();
980     try {
981     int i = size;
982     if (i >= queue.length)
983     grow();
984     size = i + 1;
985     if (i == 0) {
986     queue[0] = e;
987     setIndex(e, 0);
988 jsr166 1.45 } else {
989 dl 1.40 siftUp(i, e);
990     }
991 jsr166 1.46 if (queue[0] == e) {
992 jsr166 1.48 leader = null;
993 jsr166 1.46 available.signal();
994 jsr166 1.48 }
995 dl 1.40 } finally {
996     lock.unlock();
997     }
998     return true;
999 jsr166 1.48 }
1000 dl 1.40
1001     public void put(Runnable e) {
1002     offer(e);
1003     }
1004    
1005     public boolean add(Runnable e) {
1006 jsr166 1.48 return offer(e);
1007     }
1008 dl 1.40
1009     public boolean offer(Runnable e, long timeout, TimeUnit unit) {
1010     return offer(e);
1011     }
1012 jsr166 1.42
1013 jsr166 1.46 /**
1014     * Performs common bookkeeping for poll and take: Replaces
1015 jsr166 1.47 * first element with last and sifts it down. Call only when
1016     * holding lock.
1017 jsr166 1.46 * @param f the task to remove and return
1018     */
1019     private RunnableScheduledFuture finishPoll(RunnableScheduledFuture f) {
1020     int s = --size;
1021     RunnableScheduledFuture x = queue[s];
1022     queue[s] = null;
1023     if (s != 0)
1024     siftDown(0, x);
1025     setIndex(f, -1);
1026     return f;
1027     }
1028    
1029 dl 1.40 public RunnableScheduledFuture poll() {
1030     final ReentrantLock lock = this.lock;
1031     lock.lock();
1032     try {
1033     RunnableScheduledFuture first = queue[0];
1034     if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0)
1035     return null;
1036 jsr166 1.42 else
1037 dl 1.40 return finishPoll(first);
1038     } finally {
1039     lock.unlock();
1040     }
1041     }
1042    
1043     public RunnableScheduledFuture take() throws InterruptedException {
1044     final ReentrantLock lock = this.lock;
1045     lock.lockInterruptibly();
1046     try {
1047     for (;;) {
1048     RunnableScheduledFuture first = queue[0];
1049 jsr166 1.42 if (first == null)
1050 dl 1.40 available.await();
1051     else {
1052 jsr166 1.48 long delay = first.getDelay(TimeUnit.NANOSECONDS);
1053     if (delay <= 0)
1054     return finishPoll(first);
1055     else if (leader != null)
1056     available.await();
1057     else {
1058     Thread thisThread = Thread.currentThread();
1059     leader = thisThread;
1060     try {
1061     available.awaitNanos(delay);
1062     } finally {
1063     if (leader == thisThread)
1064     leader = null;
1065     }
1066     }
1067 dl 1.40 }
1068     }
1069     } finally {
1070 jsr166 1.48 if (leader == null && queue[0] != null)
1071     available.signal();
1072 dl 1.40 lock.unlock();
1073     }
1074     }
1075    
1076 jsr166 1.42 public RunnableScheduledFuture poll(long timeout, TimeUnit unit)
1077 dl 1.40 throws InterruptedException {
1078     long nanos = unit.toNanos(timeout);
1079     final ReentrantLock lock = this.lock;
1080     lock.lockInterruptibly();
1081     try {
1082     for (;;) {
1083     RunnableScheduledFuture first = queue[0];
1084     if (first == null) {
1085     if (nanos <= 0)
1086     return null;
1087     else
1088     nanos = available.awaitNanos(nanos);
1089     } else {
1090     long delay = first.getDelay(TimeUnit.NANOSECONDS);
1091 jsr166 1.48 if (delay <= 0)
1092 dl 1.40 return finishPoll(first);
1093 jsr166 1.48 if (nanos <= 0)
1094     return null;
1095     if (nanos < delay || leader != null)
1096     nanos = available.awaitNanos(nanos);
1097     else {
1098     Thread thisThread = Thread.currentThread();
1099     leader = thisThread;
1100     try {
1101     long timeLeft = available.awaitNanos(delay);
1102     nanos -= delay - timeLeft;
1103     } finally {
1104     if (leader == thisThread)
1105     leader = null;
1106     }
1107     }
1108     }
1109     }
1110 dl 1.40 } finally {
1111 jsr166 1.48 if (leader == null && queue[0] != null)
1112     available.signal();
1113 dl 1.40 lock.unlock();
1114     }
1115     }
1116    
1117     public void clear() {
1118     final ReentrantLock lock = this.lock;
1119     lock.lock();
1120     try {
1121     for (int i = 0; i < size; i++) {
1122     RunnableScheduledFuture t = queue[i];
1123     if (t != null) {
1124     queue[i] = null;
1125     setIndex(t, -1);
1126     }
1127     }
1128     size = 0;
1129     } finally {
1130     lock.unlock();
1131     }
1132 dl 1.13 }
1133 dl 1.40
1134     /**
1135     * Return and remove first element only if it is expired.
1136     * Used only by drainTo. Call only when holding lock.
1137     */
1138     private RunnableScheduledFuture pollExpired() {
1139     RunnableScheduledFuture first = queue[0];
1140 jsr166 1.42 if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0)
1141 dl 1.40 return null;
1142 jsr166 1.48 return finishPoll(first);
1143 dl 1.40 }
1144    
1145     public int drainTo(Collection<? super Runnable> c) {
1146     if (c == null)
1147     throw new NullPointerException();
1148     if (c == this)
1149     throw new IllegalArgumentException();
1150     final ReentrantLock lock = this.lock;
1151     lock.lock();
1152     try {
1153 jsr166 1.48 RunnableScheduledFuture first;
1154 dl 1.40 int n = 0;
1155 jsr166 1.45 while ((first = pollExpired()) != null) {
1156 jsr166 1.48 c.add(first);
1157     ++n;
1158     }
1159 dl 1.40 return n;
1160     } finally {
1161     lock.unlock();
1162     }
1163 dl 1.13 }
1164    
1165 jsr166 1.21 public int drainTo(Collection<? super Runnable> c, int maxElements) {
1166 dl 1.40 if (c == null)
1167     throw new NullPointerException();
1168     if (c == this)
1169     throw new IllegalArgumentException();
1170     if (maxElements <= 0)
1171     return 0;
1172     final ReentrantLock lock = this.lock;
1173     lock.lock();
1174     try {
1175 jsr166 1.48 RunnableScheduledFuture first;
1176 dl 1.40 int n = 0;
1177 jsr166 1.45 while (n < maxElements && (first = pollExpired()) != null) {
1178 jsr166 1.48 c.add(first);
1179     ++n;
1180     }
1181 dl 1.40 return n;
1182     } finally {
1183     lock.unlock();
1184     }
1185     }
1186    
1187     public Object[] toArray() {
1188     final ReentrantLock lock = this.lock;
1189     lock.lock();
1190     try {
1191 jsr166 1.45 return Arrays.copyOf(queue, size, Object[].class);
1192 dl 1.40 } finally {
1193     lock.unlock();
1194     }
1195     }
1196    
1197 jsr166 1.48 @SuppressWarnings("unchecked")
1198 dl 1.40 public <T> T[] toArray(T[] a) {
1199     final ReentrantLock lock = this.lock;
1200     lock.lock();
1201     try {
1202     if (a.length < size)
1203     return (T[]) Arrays.copyOf(queue, size, a.getClass());
1204     System.arraycopy(queue, 0, a, 0, size);
1205     if (a.length > size)
1206     a[size] = null;
1207     return a;
1208     } finally {
1209     lock.unlock();
1210     }
1211 dl 1.13 }
1212    
1213 jsr166 1.21 public Iterator<Runnable> iterator() {
1214 jsr166 1.45 return new Itr(Arrays.copyOf(queue, size));
1215 dl 1.40 }
1216 jsr166 1.42
1217 dl 1.40 /**
1218     * Snapshot iterator that works off copy of underlying q array.
1219     */
1220     private class Itr implements Iterator<Runnable> {
1221 jsr166 1.45 final RunnableScheduledFuture[] array;
1222 jsr166 1.48 int cursor = 0; // index of next element to return
1223     int lastRet = -1; // index of last element, or -1 if no such
1224 jsr166 1.42
1225 jsr166 1.45 Itr(RunnableScheduledFuture[] array) {
1226 dl 1.40 this.array = array;
1227     }
1228 jsr166 1.42
1229 dl 1.40 public boolean hasNext() {
1230     return cursor < array.length;
1231     }
1232 jsr166 1.42
1233 dl 1.40 public Runnable next() {
1234     if (cursor >= array.length)
1235     throw new NoSuchElementException();
1236     lastRet = cursor;
1237 jsr166 1.45 return array[cursor++];
1238 dl 1.40 }
1239 jsr166 1.42
1240 dl 1.40 public void remove() {
1241     if (lastRet < 0)
1242     throw new IllegalStateException();
1243     DelayedWorkQueue.this.remove(array[lastRet]);
1244     lastRet = -1;
1245     }
1246 dl 1.13 }
1247     }
1248 dl 1.1 }