ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ScheduledThreadPoolExecutor.java
Revision: 1.64
Committed: Tue Dec 20 01:26:24 2011 UTC (12 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.63: +1 -2 lines
Log Message:
coding style

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.11 * Expert Group and released to the public domain, as explained at
4 jsr166 1.58 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.62 import static java.util.concurrent.TimeUnit.NANOSECONDS;
9     import java.util.concurrent.atomic.AtomicLong;
10     import java.util.concurrent.locks.Condition;
11     import java.util.concurrent.locks.ReentrantLock;
12 dl 1.1 import java.util.*;
13    
14     /**
15 dl 1.7 * A {@link ThreadPoolExecutor} that can additionally schedule
16     * commands to run after a given delay, or to execute
17     * periodically. This class is preferable to {@link java.util.Timer}
18     * when multiple worker threads are needed, or when the additional
19     * flexibility or capabilities of {@link ThreadPoolExecutor} (which
20     * this class extends) are required.
21 dl 1.1 *
22 jsr166 1.46 * <p>Delayed tasks execute no sooner than they are enabled, but
23 dl 1.18 * without any real-time guarantees about when, after they are
24     * enabled, they will commence. Tasks scheduled for exactly the same
25     * execution time are enabled in first-in-first-out (FIFO) order of
26 jsr166 1.46 * submission.
27     *
28     * <p>When a submitted task is cancelled before it is run, execution
29     * is suppressed. By default, such a cancelled task is not
30     * automatically removed from the work queue until its delay
31     * elapses. While this enables further inspection and monitoring, it
32     * may also cause unbounded retention of cancelled tasks. To avoid
33     * this, set {@link #setRemoveOnCancelPolicy} to {@code true}, which
34     * causes tasks to be immediately removed from the work queue at
35     * time of cancellation.
36 dl 1.1 *
37 dl 1.51 * <p>Successive executions of a task scheduled via
38 jsr166 1.55 * {@code scheduleAtFixedRate} or
39     * {@code scheduleWithFixedDelay} do not overlap. While different
40 dl 1.51 * executions may be performed by different threads, the effects of
41     * prior executions <a
42     * href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
43     * those of subsequent ones.
44     *
45 dl 1.1 * <p>While this class inherits from {@link ThreadPoolExecutor}, a few
46 dl 1.8 * of the inherited tuning methods are not useful for it. In
47 jsr166 1.53 * particular, because it acts as a fixed-sized pool using
48     * {@code corePoolSize} threads and an unbounded queue, adjustments
49     * to {@code maximumPoolSize} have no useful effect. Additionally, it
50     * is almost never a good idea to set {@code corePoolSize} to zero or
51     * use {@code allowCoreThreadTimeOut} because this may leave the pool
52     * without threads to handle tasks once they become eligible to run.
53 dl 1.1 *
54 jsr166 1.39 * <p><b>Extension notes:</b> This class overrides the
55     * {@link ThreadPoolExecutor#execute execute} and
56     * {@link AbstractExecutorService#submit(Runnable) submit}
57     * methods to generate internal {@link ScheduledFuture} objects to
58     * control per-task delays and scheduling. To preserve
59     * functionality, any further overrides of these methods in
60 dl 1.32 * subclasses must invoke superclass versions, which effectively
61 jsr166 1.39 * disables additional task customization. However, this class
62 dl 1.32 * provides alternative protected extension method
63 jsr166 1.39 * {@code decorateTask} (one version each for {@code Runnable} and
64     * {@code Callable}) that can be used to customize the concrete task
65     * types used to execute commands entered via {@code execute},
66     * {@code submit}, {@code schedule}, {@code scheduleAtFixedRate},
67     * and {@code scheduleWithFixedDelay}. By default, a
68     * {@code ScheduledThreadPoolExecutor} uses a task type extending
69 dl 1.32 * {@link FutureTask}. However, this may be modified or replaced using
70     * subclasses of the form:
71     *
72 jsr166 1.39 * <pre> {@code
73 dl 1.23 * public class CustomScheduledExecutor extends ScheduledThreadPoolExecutor {
74     *
75 jsr166 1.39 * static class CustomTask<V> implements RunnableScheduledFuture<V> { ... }
76 dl 1.23 *
77 jsr166 1.39 * protected <V> RunnableScheduledFuture<V> decorateTask(
78     * Runnable r, RunnableScheduledFuture<V> task) {
79     * return new CustomTask<V>(r, task);
80 jsr166 1.29 * }
81 dl 1.23 *
82 jsr166 1.39 * protected <V> RunnableScheduledFuture<V> decorateTask(
83     * Callable<V> c, RunnableScheduledFuture<V> task) {
84     * return new CustomTask<V>(c, task);
85 jsr166 1.29 * }
86     * // ... add constructors, etc.
87 jsr166 1.39 * }}</pre>
88     *
89 dl 1.1 * @since 1.5
90     * @author Doug Lea
91     */
92 jsr166 1.21 public class ScheduledThreadPoolExecutor
93     extends ThreadPoolExecutor
94 tim 1.3 implements ScheduledExecutorService {
95 dl 1.1
96 dl 1.37 /*
97     * This class specializes ThreadPoolExecutor implementation by
98     *
99     * 1. Using a custom task type, ScheduledFutureTask for
100     * tasks, even those that don't require scheduling (i.e.,
101     * those submitted using ExecutorService execute, not
102     * ScheduledExecutorService methods) which are treated as
103     * delayed tasks with a delay of zero.
104     *
105 jsr166 1.46 * 2. Using a custom queue (DelayedWorkQueue), a variant of
106 dl 1.37 * unbounded DelayQueue. The lack of capacity constraint and
107     * the fact that corePoolSize and maximumPoolSize are
108     * effectively identical simplifies some execution mechanics
109 jsr166 1.46 * (see delayedExecute) compared to ThreadPoolExecutor.
110 dl 1.37 *
111     * 3. Supporting optional run-after-shutdown parameters, which
112     * leads to overrides of shutdown methods to remove and cancel
113     * tasks that should NOT be run after shutdown, as well as
114     * different recheck logic when task (re)submission overlaps
115     * with a shutdown.
116     *
117     * 4. Task decoration methods to allow interception and
118     * instrumentation, which are needed because subclasses cannot
119     * otherwise override submit methods to get this effect. These
120     * don't have any impact on pool control logic though.
121     */
122    
123 dl 1.1 /**
124     * False if should cancel/suppress periodic tasks on shutdown.
125     */
126     private volatile boolean continueExistingPeriodicTasksAfterShutdown;
127    
128     /**
129     * False if should cancel non-periodic tasks on shutdown.
130     */
131     private volatile boolean executeExistingDelayedTasksAfterShutdown = true;
132    
133     /**
134 dl 1.41 * True if ScheduledFutureTask.cancel should remove from queue
135     */
136     private volatile boolean removeOnCancel = false;
137    
138     /**
139 dl 1.1 * Sequence number to break scheduling ties, and in turn to
140     * guarantee FIFO order among tied entries.
141     */
142 jsr166 1.60 private static final AtomicLong sequencer = new AtomicLong();
143 dl 1.14
144     /**
145 jsr166 1.39 * Returns current nanosecond time.
146 dl 1.14 */
147 jsr166 1.54 final long now() {
148     return System.nanoTime();
149 dl 1.14 }
150    
151 jsr166 1.21 private class ScheduledFutureTask<V>
152 peierls 1.22 extends FutureTask<V> implements RunnableScheduledFuture<V> {
153 jsr166 1.21
154 dl 1.1 /** Sequence number to break ties FIFO */
155     private final long sequenceNumber;
156 jsr166 1.44
157 dl 1.1 /** The time the task is enabled to execute in nanoTime units */
158     private long time;
159 jsr166 1.44
160 dl 1.16 /**
161     * Period in nanoseconds for repeating tasks. A positive
162     * value indicates fixed-rate execution. A negative value
163     * indicates fixed-delay execution. A value of 0 indicates a
164     * non-repeating task.
165     */
166 dl 1.1 private final long period;
167    
168 jsr166 1.48 /** The actual task to be re-enqueued by reExecutePeriodic */
169     RunnableScheduledFuture<V> outerTask = this;
170 jsr166 1.44
171 dl 1.1 /**
172 dl 1.40 * Index into delay queue, to support faster cancellation.
173     */
174     int heapIndex;
175    
176     /**
177 jsr166 1.30 * Creates a one-shot action with given nanoTime-based trigger time.
178 dl 1.1 */
179     ScheduledFutureTask(Runnable r, V result, long ns) {
180     super(r, result);
181     this.time = ns;
182     this.period = 0;
183     this.sequenceNumber = sequencer.getAndIncrement();
184     }
185    
186     /**
187 jsr166 1.30 * Creates a periodic action with given nano time and period.
188 dl 1.1 */
189 jsr166 1.30 ScheduledFutureTask(Runnable r, V result, long ns, long period) {
190 dl 1.1 super(r, result);
191     this.time = ns;
192     this.period = period;
193     this.sequenceNumber = sequencer.getAndIncrement();
194     }
195    
196     /**
197 jsr166 1.30 * Creates a one-shot action with given nanoTime-based trigger.
198 dl 1.1 */
199     ScheduledFutureTask(Callable<V> callable, long ns) {
200     super(callable);
201     this.time = ns;
202     this.period = 0;
203     this.sequenceNumber = sequencer.getAndIncrement();
204     }
205    
206     public long getDelay(TimeUnit unit) {
207 jsr166 1.62 return unit.convert(time - now(), NANOSECONDS);
208 dl 1.1 }
209    
210 dl 1.20 public int compareTo(Delayed other) {
211 dl 1.59 if (other == this) // compare zero if same object
212 dl 1.1 return 0;
213 dl 1.34 if (other instanceof ScheduledFutureTask) {
214     ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
215     long diff = time - x.time;
216     if (diff < 0)
217     return -1;
218     else if (diff > 0)
219     return 1;
220     else if (sequenceNumber < x.sequenceNumber)
221     return -1;
222     else
223     return 1;
224     }
225 jsr166 1.64 long diff = getDelay(NANOSECONDS) - other.getDelay(NANOSECONDS);
226 jsr166 1.61 return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;
227 dl 1.1 }
228    
229     /**
230 dl 1.18 * Returns true if this is a periodic (not a one-shot) action.
231 jsr166 1.30 *
232 dl 1.1 * @return true if periodic
233     */
234 dl 1.23 public boolean isPeriodic() {
235 dl 1.16 return period != 0;
236 dl 1.1 }
237    
238     /**
239 jsr166 1.39 * Sets the next time to run for a periodic task.
240 dl 1.13 */
241 dl 1.37 private void setNextRunTime() {
242     long p = period;
243     if (p > 0)
244     time += p;
245     else
246 jsr166 1.54 time = triggerTime(-p);
247 dl 1.13 }
248    
249 dl 1.40 public boolean cancel(boolean mayInterruptIfRunning) {
250 dl 1.41 boolean cancelled = super.cancel(mayInterruptIfRunning);
251     if (cancelled && removeOnCancel && heapIndex >= 0)
252 jsr166 1.42 remove(this);
253 dl 1.41 return cancelled;
254 dl 1.40 }
255    
256 dl 1.13 /**
257 dl 1.5 * Overrides FutureTask version so as to reset/requeue if periodic.
258 jsr166 1.21 */
259 dl 1.1 public void run() {
260 dl 1.37 boolean periodic = isPeriodic();
261     if (!canRunInCurrentRunState(periodic))
262     cancel(false);
263     else if (!periodic)
264 dl 1.5 ScheduledFutureTask.super.run();
265 dl 1.37 else if (ScheduledFutureTask.super.runAndReset()) {
266     setNextRunTime();
267 jsr166 1.44 reExecutePeriodic(outerTask);
268 dl 1.37 }
269 dl 1.1 }
270     }
271    
272     /**
273 dl 1.37 * Returns true if can run a task given current run state
274 jsr166 1.39 * and run-after-shutdown parameters.
275     *
276 dl 1.37 * @param periodic true if this task periodic, false if delayed
277     */
278     boolean canRunInCurrentRunState(boolean periodic) {
279 jsr166 1.38 return isRunningOrShutdown(periodic ?
280 dl 1.37 continueExistingPeriodicTasksAfterShutdown :
281     executeExistingDelayedTasksAfterShutdown);
282     }
283    
284     /**
285     * Main execution method for delayed or periodic tasks. If pool
286     * is shut down, rejects the task. Otherwise adds task to queue
287     * and starts a thread, if necessary, to run it. (We cannot
288     * prestart the thread to run the task because the task (probably)
289     * shouldn't be run yet,) If the pool is shut down while the task
290     * is being added, cancel and remove it if required by state and
291 jsr166 1.39 * run-after-shutdown parameters.
292     *
293 dl 1.37 * @param task the task
294     */
295     private void delayedExecute(RunnableScheduledFuture<?> task) {
296     if (isShutdown())
297     reject(task);
298     else {
299     super.getQueue().add(task);
300     if (isShutdown() &&
301     !canRunInCurrentRunState(task.isPeriodic()) &&
302     remove(task))
303     task.cancel(false);
304 jsr166 1.48 else
305 dl 1.63 ensurePrestart();
306 dl 1.37 }
307     }
308 jsr166 1.21
309 dl 1.37 /**
310 jsr166 1.39 * Requeues a periodic task unless current run state precludes it.
311     * Same idea as delayedExecute except drops task rather than rejecting.
312     *
313 dl 1.37 * @param task the task
314     */
315     void reExecutePeriodic(RunnableScheduledFuture<?> task) {
316     if (canRunInCurrentRunState(true)) {
317     super.getQueue().add(task);
318     if (!canRunInCurrentRunState(true) && remove(task))
319     task.cancel(false);
320 jsr166 1.48 else
321 dl 1.63 ensurePrestart();
322 dl 1.37 }
323 dl 1.13 }
324 dl 1.1
325 dl 1.13 /**
326 jsr166 1.21 * Cancels and clears the queue of all tasks that should not be run
327 jsr166 1.39 * due to shutdown policy. Invoked within super.shutdown.
328 dl 1.13 */
329 dl 1.37 @Override void onShutdown() {
330     BlockingQueue<Runnable> q = super.getQueue();
331     boolean keepDelayed =
332     getExecuteExistingDelayedTasksAfterShutdownPolicy();
333     boolean keepPeriodic =
334     getContinueExistingPeriodicTasksAfterShutdownPolicy();
335 jsr166 1.57 if (!keepDelayed && !keepPeriodic) {
336     for (Object e : q.toArray())
337     if (e instanceof RunnableScheduledFuture<?>)
338     ((RunnableScheduledFuture<?>) e).cancel(false);
339 dl 1.37 q.clear();
340 jsr166 1.57 }
341 dl 1.37 else {
342     // Traverse snapshot to avoid iterator exceptions
343 jsr166 1.39 for (Object e : q.toArray()) {
344 dl 1.23 if (e instanceof RunnableScheduledFuture) {
345 dl 1.37 RunnableScheduledFuture<?> t =
346     (RunnableScheduledFuture<?>)e;
347 dl 1.41 if ((t.isPeriodic() ? !keepPeriodic : !keepDelayed) ||
348     t.isCancelled()) { // also remove if already cancelled
349     if (q.remove(t))
350     t.cancel(false);
351     }
352 dl 1.13 }
353     }
354 dl 1.1 }
355 jsr166 1.48 tryTerminate();
356 dl 1.1 }
357    
358 dl 1.23 /**
359 jsr166 1.30 * Modifies or replaces the task used to execute a runnable.
360 jsr166 1.28 * This method can be used to override the concrete
361 dl 1.23 * class used for managing internal tasks.
362 jsr166 1.30 * The default implementation simply returns the given task.
363 jsr166 1.28 *
364 dl 1.23 * @param runnable the submitted Runnable
365     * @param task the task created to execute the runnable
366     * @return a task that can execute the runnable
367     * @since 1.6
368     */
369 peierls 1.22 protected <V> RunnableScheduledFuture<V> decorateTask(
370 dl 1.23 Runnable runnable, RunnableScheduledFuture<V> task) {
371     return task;
372 peierls 1.22 }
373    
374 dl 1.23 /**
375 jsr166 1.30 * Modifies or replaces the task used to execute a callable.
376 jsr166 1.28 * This method can be used to override the concrete
377 dl 1.23 * class used for managing internal tasks.
378 jsr166 1.30 * The default implementation simply returns the given task.
379 jsr166 1.28 *
380 dl 1.23 * @param callable the submitted Callable
381     * @param task the task created to execute the callable
382     * @return a task that can execute the callable
383     * @since 1.6
384     */
385 peierls 1.22 protected <V> RunnableScheduledFuture<V> decorateTask(
386 dl 1.23 Callable<V> callable, RunnableScheduledFuture<V> task) {
387     return task;
388 dl 1.19 }
389    
390 dl 1.1 /**
391 jsr166 1.39 * Creates a new {@code ScheduledThreadPoolExecutor} with the
392     * given core pool size.
393 jsr166 1.21 *
394 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
395     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
396     * @throws IllegalArgumentException if {@code corePoolSize < 0}
397 dl 1.1 */
398     public ScheduledThreadPoolExecutor(int corePoolSize) {
399 jsr166 1.62 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
400 dl 1.1 new DelayedWorkQueue());
401     }
402    
403     /**
404 jsr166 1.39 * Creates a new {@code ScheduledThreadPoolExecutor} with the
405     * given initial parameters.
406 jsr166 1.21 *
407 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
408     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
409 dl 1.1 * @param threadFactory the factory to use when the executor
410 jsr166 1.39 * creates a new thread
411     * @throws IllegalArgumentException if {@code corePoolSize < 0}
412     * @throws NullPointerException if {@code threadFactory} is null
413 dl 1.1 */
414     public ScheduledThreadPoolExecutor(int corePoolSize,
415 jsr166 1.56 ThreadFactory threadFactory) {
416 jsr166 1.62 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
417 dl 1.1 new DelayedWorkQueue(), threadFactory);
418     }
419    
420     /**
421 dl 1.13 * Creates a new ScheduledThreadPoolExecutor with the given
422     * initial parameters.
423 jsr166 1.21 *
424 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
425     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
426 dl 1.1 * @param handler the handler to use when execution is blocked
427 jsr166 1.39 * because the thread bounds and queue capacities are reached
428     * @throws IllegalArgumentException if {@code corePoolSize < 0}
429     * @throws NullPointerException if {@code handler} is null
430 dl 1.1 */
431     public ScheduledThreadPoolExecutor(int corePoolSize,
432 jsr166 1.56 RejectedExecutionHandler handler) {
433 jsr166 1.62 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
434 dl 1.1 new DelayedWorkQueue(), handler);
435     }
436    
437     /**
438 dl 1.13 * Creates a new ScheduledThreadPoolExecutor with the given
439     * initial parameters.
440 jsr166 1.21 *
441 jsr166 1.39 * @param corePoolSize the number of threads to keep in the pool, even
442     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
443 dl 1.1 * @param threadFactory the factory to use when the executor
444 jsr166 1.39 * creates a new thread
445 dl 1.1 * @param handler the handler to use when execution is blocked
446 jsr166 1.39 * because the thread bounds and queue capacities are reached
447     * @throws IllegalArgumentException if {@code corePoolSize < 0}
448     * @throws NullPointerException if {@code threadFactory} or
449     * {@code handler} is null
450 dl 1.1 */
451     public ScheduledThreadPoolExecutor(int corePoolSize,
452 jsr166 1.56 ThreadFactory threadFactory,
453     RejectedExecutionHandler handler) {
454 jsr166 1.62 super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
455 dl 1.1 new DelayedWorkQueue(), threadFactory, handler);
456     }
457    
458 dl 1.37 /**
459 jsr166 1.54 * Returns the trigger time of a delayed action.
460     */
461     private long triggerTime(long delay, TimeUnit unit) {
462     return triggerTime(unit.toNanos((delay < 0) ? 0 : delay));
463     }
464    
465     /**
466     * Returns the trigger time of a delayed action.
467 dl 1.50 */
468 jsr166 1.54 long triggerTime(long delay) {
469     return now() +
470     ((delay < (Long.MAX_VALUE >> 1)) ? delay : overflowFree(delay));
471     }
472    
473     /**
474     * Constrains the values of all delays in the queue to be within
475     * Long.MAX_VALUE of each other, to avoid overflow in compareTo.
476     * This may occur if a task is eligible to be dequeued, but has
477     * not yet been, while some other task is added with a delay of
478     * Long.MAX_VALUE.
479     */
480     private long overflowFree(long delay) {
481     Delayed head = (Delayed) super.getQueue().peek();
482     if (head != null) {
483 jsr166 1.62 long headDelay = head.getDelay(NANOSECONDS);
484 jsr166 1.54 if (headDelay < 0 && (delay - headDelay < 0))
485     delay = Long.MAX_VALUE + headDelay;
486     }
487     return delay;
488 dl 1.50 }
489    
490     /**
491 dl 1.37 * @throws RejectedExecutionException {@inheritDoc}
492     * @throws NullPointerException {@inheritDoc}
493     */
494 jsr166 1.21 public ScheduledFuture<?> schedule(Runnable command,
495     long delay,
496 dl 1.13 TimeUnit unit) {
497 dl 1.9 if (command == null || unit == null)
498 dl 1.1 throw new NullPointerException();
499 peierls 1.22 RunnableScheduledFuture<?> t = decorateTask(command,
500 jsr166 1.54 new ScheduledFutureTask<Void>(command, null,
501     triggerTime(delay, unit)));
502 dl 1.1 delayedExecute(t);
503     return t;
504     }
505 jsr166 1.52
506 dl 1.37 /**
507     * @throws RejectedExecutionException {@inheritDoc}
508     * @throws NullPointerException {@inheritDoc}
509     */
510 jsr166 1.21 public <V> ScheduledFuture<V> schedule(Callable<V> callable,
511     long delay,
512 dl 1.13 TimeUnit unit) {
513 dl 1.9 if (callable == null || unit == null)
514 dl 1.1 throw new NullPointerException();
515 peierls 1.22 RunnableScheduledFuture<V> t = decorateTask(callable,
516 jsr166 1.54 new ScheduledFutureTask<V>(callable,
517     triggerTime(delay, unit)));
518 dl 1.1 delayedExecute(t);
519     return t;
520     }
521    
522 dl 1.37 /**
523     * @throws RejectedExecutionException {@inheritDoc}
524     * @throws NullPointerException {@inheritDoc}
525     * @throws IllegalArgumentException {@inheritDoc}
526     */
527 jsr166 1.21 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
528     long initialDelay,
529     long period,
530 dl 1.13 TimeUnit unit) {
531 dl 1.9 if (command == null || unit == null)
532 dl 1.1 throw new NullPointerException();
533     if (period <= 0)
534     throw new IllegalArgumentException();
535 jsr166 1.48 ScheduledFutureTask<Void> sft =
536     new ScheduledFutureTask<Void>(command,
537     null,
538 jsr166 1.54 triggerTime(initialDelay, unit),
539 jsr166 1.48 unit.toNanos(period));
540 jsr166 1.44 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
541 jsr166 1.48 sft.outerTask = t;
542 dl 1.1 delayedExecute(t);
543     return t;
544     }
545 jsr166 1.21
546 dl 1.37 /**
547     * @throws RejectedExecutionException {@inheritDoc}
548     * @throws NullPointerException {@inheritDoc}
549     * @throws IllegalArgumentException {@inheritDoc}
550     */
551 jsr166 1.21 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
552     long initialDelay,
553     long delay,
554 dl 1.13 TimeUnit unit) {
555 dl 1.9 if (command == null || unit == null)
556 dl 1.1 throw new NullPointerException();
557     if (delay <= 0)
558     throw new IllegalArgumentException();
559 jsr166 1.48 ScheduledFutureTask<Void> sft =
560     new ScheduledFutureTask<Void>(command,
561     null,
562 jsr166 1.54 triggerTime(initialDelay, unit),
563 jsr166 1.48 unit.toNanos(-delay));
564 jsr166 1.44 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
565 jsr166 1.48 sft.outerTask = t;
566 dl 1.1 delayedExecute(t);
567     return t;
568     }
569 jsr166 1.21
570 dl 1.1 /**
571 jsr166 1.39 * Executes {@code command} with zero required delay.
572     * This has effect equivalent to
573     * {@link #schedule(Runnable,long,TimeUnit) schedule(command, 0, anyUnit)}.
574     * Note that inspections of the queue and of the list returned by
575     * {@code shutdownNow} will access the zero-delayed
576     * {@link ScheduledFuture}, not the {@code command} itself.
577     *
578     * <p>A consequence of the use of {@code ScheduledFuture} objects is
579     * that {@link ThreadPoolExecutor#afterExecute afterExecute} is always
580     * called with a null second {@code Throwable} argument, even if the
581     * {@code command} terminated abruptly. Instead, the {@code Throwable}
582     * thrown by such a task can be obtained via {@link Future#get}.
583 dl 1.1 *
584     * @throws RejectedExecutionException at discretion of
585 jsr166 1.39 * {@code RejectedExecutionHandler}, if the task
586     * cannot be accepted for execution because the
587     * executor has been shut down
588     * @throws NullPointerException {@inheritDoc}
589 dl 1.1 */
590     public void execute(Runnable command) {
591 jsr166 1.62 schedule(command, 0, NANOSECONDS);
592 dl 1.1 }
593    
594 dl 1.13 // Override AbstractExecutorService methods
595    
596 dl 1.37 /**
597     * @throws RejectedExecutionException {@inheritDoc}
598     * @throws NullPointerException {@inheritDoc}
599     */
600 dl 1.7 public Future<?> submit(Runnable task) {
601 jsr166 1.62 return schedule(task, 0, NANOSECONDS);
602 dl 1.7 }
603    
604 dl 1.37 /**
605     * @throws RejectedExecutionException {@inheritDoc}
606     * @throws NullPointerException {@inheritDoc}
607     */
608 dl 1.7 public <T> Future<T> submit(Runnable task, T result) {
609 jsr166 1.62 return schedule(Executors.callable(task, result), 0, NANOSECONDS);
610 dl 1.7 }
611    
612 dl 1.37 /**
613     * @throws RejectedExecutionException {@inheritDoc}
614     * @throws NullPointerException {@inheritDoc}
615     */
616 dl 1.7 public <T> Future<T> submit(Callable<T> task) {
617 jsr166 1.62 return schedule(task, 0, NANOSECONDS);
618 dl 1.7 }
619 dl 1.1
620     /**
621 dl 1.37 * Sets the policy on whether to continue executing existing
622 jsr166 1.39 * periodic tasks even when this executor has been {@code shutdown}.
623     * In this case, these tasks will only terminate upon
624     * {@code shutdownNow} or after setting the policy to
625     * {@code false} when already shutdown.
626     * This value is by default {@code false}.
627 jsr166 1.30 *
628 jsr166 1.39 * @param value if {@code true}, continue after shutdown, else don't.
629 jsr166 1.25 * @see #getContinueExistingPeriodicTasksAfterShutdownPolicy
630 dl 1.1 */
631     public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value) {
632     continueExistingPeriodicTasksAfterShutdown = value;
633 jsr166 1.39 if (!value && isShutdown())
634 dl 1.37 onShutdown();
635 dl 1.1 }
636    
637     /**
638 jsr166 1.21 * Gets the policy on whether to continue executing existing
639 jsr166 1.39 * periodic tasks even when this executor has been {@code shutdown}.
640     * In this case, these tasks will only terminate upon
641     * {@code shutdownNow} or after setting the policy to
642     * {@code false} when already shutdown.
643     * This value is by default {@code false}.
644 jsr166 1.30 *
645 jsr166 1.39 * @return {@code true} if will continue after shutdown
646 dl 1.16 * @see #setContinueExistingPeriodicTasksAfterShutdownPolicy
647 dl 1.1 */
648     public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy() {
649     return continueExistingPeriodicTasksAfterShutdown;
650     }
651    
652     /**
653 jsr166 1.21 * Sets the policy on whether to execute existing delayed
654 jsr166 1.39 * tasks even when this executor has been {@code shutdown}.
655     * In this case, these tasks will only terminate upon
656     * {@code shutdownNow}, or after setting the policy to
657     * {@code false} when already shutdown.
658     * This value is by default {@code true}.
659 jsr166 1.30 *
660 jsr166 1.39 * @param value if {@code true}, execute after shutdown, else don't.
661 dl 1.16 * @see #getExecuteExistingDelayedTasksAfterShutdownPolicy
662 dl 1.1 */
663     public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value) {
664     executeExistingDelayedTasksAfterShutdown = value;
665 jsr166 1.39 if (!value && isShutdown())
666 dl 1.37 onShutdown();
667 dl 1.1 }
668    
669     /**
670 jsr166 1.21 * Gets the policy on whether to execute existing delayed
671 jsr166 1.39 * tasks even when this executor has been {@code shutdown}.
672     * In this case, these tasks will only terminate upon
673     * {@code shutdownNow}, or after setting the policy to
674     * {@code false} when already shutdown.
675     * This value is by default {@code true}.
676 jsr166 1.30 *
677 jsr166 1.39 * @return {@code true} if will execute after shutdown
678 dl 1.16 * @see #setExecuteExistingDelayedTasksAfterShutdownPolicy
679 dl 1.1 */
680     public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy() {
681     return executeExistingDelayedTasksAfterShutdown;
682     }
683    
684     /**
685 jsr166 1.46 * Sets the policy on whether cancelled tasks should be immediately
686     * removed from the work queue at time of cancellation. This value is
687     * by default {@code false}.
688 dl 1.41 *
689 jsr166 1.42 * @param value if {@code true}, remove on cancellation, else don't
690 dl 1.41 * @see #getRemoveOnCancelPolicy
691 jsr166 1.43 * @since 1.7
692 dl 1.41 */
693     public void setRemoveOnCancelPolicy(boolean value) {
694     removeOnCancel = value;
695     }
696    
697     /**
698 jsr166 1.46 * Gets the policy on whether cancelled tasks should be immediately
699     * removed from the work queue at time of cancellation. This value is
700     * by default {@code false}.
701 dl 1.41 *
702 jsr166 1.46 * @return {@code true} if cancelled tasks are immediately removed
703     * from the queue
704 dl 1.41 * @see #setRemoveOnCancelPolicy
705 jsr166 1.43 * @since 1.7
706 dl 1.41 */
707     public boolean getRemoveOnCancelPolicy() {
708     return removeOnCancel;
709     }
710    
711     /**
712 dl 1.1 * Initiates an orderly shutdown in which previously submitted
713 jsr166 1.49 * tasks are executed, but no new tasks will be accepted.
714     * Invocation has no additional effect if already shut down.
715     *
716     * <p>This method does not wait for previously submitted tasks to
717     * complete execution. Use {@link #awaitTermination awaitTermination}
718     * to do that.
719     *
720     * <p>If the {@code ExecuteExistingDelayedTasksAfterShutdownPolicy}
721     * has been set {@code false}, existing delayed tasks whose delays
722     * have not yet elapsed are cancelled. And unless the {@code
723     * ContinueExistingPeriodicTasksAfterShutdownPolicy} has been set
724     * {@code true}, future executions of existing periodic tasks will
725     * be cancelled.
726 jsr166 1.39 *
727     * @throws SecurityException {@inheritDoc}
728 dl 1.1 */
729     public void shutdown() {
730     super.shutdown();
731     }
732    
733     /**
734     * Attempts to stop all actively executing tasks, halts the
735 jsr166 1.30 * processing of waiting tasks, and returns a list of the tasks
736     * that were awaiting execution.
737 jsr166 1.21 *
738 jsr166 1.49 * <p>This method does not wait for actively executing tasks to
739     * terminate. Use {@link #awaitTermination awaitTermination} to
740     * do that.
741     *
742 dl 1.1 * <p>There are no guarantees beyond best-effort attempts to stop
743 dl 1.18 * processing actively executing tasks. This implementation
744 jsr166 1.31 * cancels tasks via {@link Thread#interrupt}, so any task that
745     * fails to respond to interrupts may never terminate.
746 dl 1.1 *
747 jsr166 1.39 * @return list of tasks that never commenced execution.
748     * Each element of this list is a {@link ScheduledFuture},
749     * including those tasks submitted using {@code execute},
750     * which are for scheduling purposes used as the basis of a
751     * zero-delay {@code ScheduledFuture}.
752 jsr166 1.31 * @throws SecurityException {@inheritDoc}
753 dl 1.1 */
754 tim 1.4 public List<Runnable> shutdownNow() {
755 dl 1.1 return super.shutdownNow();
756     }
757    
758     /**
759     * Returns the task queue used by this executor. Each element of
760     * this queue is a {@link ScheduledFuture}, including those
761 jsr166 1.39 * tasks submitted using {@code execute} which are for scheduling
762 dl 1.1 * purposes used as the basis of a zero-delay
763 jsr166 1.39 * {@code ScheduledFuture}. Iteration over this queue is
764 dl 1.15 * <em>not</em> guaranteed to traverse tasks in the order in
765 dl 1.1 * which they will execute.
766     *
767     * @return the task queue
768     */
769     public BlockingQueue<Runnable> getQueue() {
770     return super.getQueue();
771     }
772    
773 dl 1.13 /**
774 dl 1.40 * Specialized delay queue. To mesh with TPE declarations, this
775     * class must be declared as a BlockingQueue<Runnable> even though
776 jsr166 1.42 * it can only hold RunnableScheduledFutures.
777 jsr166 1.21 */
778 dl 1.40 static class DelayedWorkQueue extends AbstractQueue<Runnable>
779 dl 1.13 implements BlockingQueue<Runnable> {
780 jsr166 1.21
781 dl 1.40 /*
782     * A DelayedWorkQueue is based on a heap-based data structure
783     * like those in DelayQueue and PriorityQueue, except that
784     * every ScheduledFutureTask also records its index into the
785     * heap array. This eliminates the need to find a task upon
786     * cancellation, greatly speeding up removal (down from O(n)
787     * to O(log n)), and reducing garbage retention that would
788     * otherwise occur by waiting for the element to rise to top
789     * before clearing. But because the queue may also hold
790     * RunnableScheduledFutures that are not ScheduledFutureTasks,
791     * we are not guaranteed to have such indices available, in
792     * which case we fall back to linear search. (We expect that
793     * most tasks will not be decorated, and that the faster cases
794     * will be much more common.)
795     *
796     * All heap operations must record index changes -- mainly
797     * within siftUp and siftDown. Upon removal, a task's
798     * heapIndex is set to -1. Note that ScheduledFutureTasks can
799     * appear at most once in the queue (this need not be true for
800     * other kinds of tasks or work queues), so are uniquely
801     * identified by heapIndex.
802     */
803    
804 jsr166 1.46 private static final int INITIAL_CAPACITY = 16;
805 jsr166 1.61 private RunnableScheduledFuture<?>[] queue =
806     new RunnableScheduledFuture<?>[INITIAL_CAPACITY];
807 jsr166 1.46 private final ReentrantLock lock = new ReentrantLock();
808 dl 1.40 private int size = 0;
809    
810 jsr166 1.48 /**
811     * Thread designated to wait for the task at the head of the
812     * queue. This variant of the Leader-Follower pattern
813     * (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to
814     * minimize unnecessary timed waiting. When a thread becomes
815     * the leader, it waits only for the next delay to elapse, but
816     * other threads await indefinitely. The leader thread must
817     * signal some other thread before returning from take() or
818     * poll(...), unless some other thread becomes leader in the
819     * interim. Whenever the head of the queue is replaced with a
820     * task with an earlier expiration time, the leader field is
821     * invalidated by being reset to null, and some waiting
822     * thread, but not necessarily the current leader, is
823     * signalled. So waiting threads must be prepared to acquire
824     * and lose leadership while waiting.
825     */
826     private Thread leader = null;
827    
828     /**
829     * Condition signalled when a newer task becomes available at the
830     * head of the queue or a new thread may need to become leader.
831     */
832     private final Condition available = lock.newCondition();
833 dl 1.40
834     /**
835 jsr166 1.42 * Set f's heapIndex if it is a ScheduledFutureTask.
836 dl 1.40 */
837 jsr166 1.61 private void setIndex(RunnableScheduledFuture<?> f, int idx) {
838 dl 1.40 if (f instanceof ScheduledFutureTask)
839     ((ScheduledFutureTask)f).heapIndex = idx;
840     }
841    
842     /**
843 jsr166 1.42 * Sift element added at bottom up to its heap-ordered spot.
844 dl 1.40 * Call only when holding lock.
845     */
846 jsr166 1.61 private void siftUp(int k, RunnableScheduledFuture<?> key) {
847 dl 1.40 while (k > 0) {
848     int parent = (k - 1) >>> 1;
849 jsr166 1.61 RunnableScheduledFuture<?> e = queue[parent];
850 dl 1.40 if (key.compareTo(e) >= 0)
851     break;
852     queue[k] = e;
853     setIndex(e, k);
854     k = parent;
855     }
856     queue[k] = key;
857     setIndex(key, k);
858     }
859    
860     /**
861 jsr166 1.42 * Sift element added at top down to its heap-ordered spot.
862 dl 1.40 * Call only when holding lock.
863     */
864 jsr166 1.61 private void siftDown(int k, RunnableScheduledFuture<?> key) {
865 jsr166 1.42 int half = size >>> 1;
866 dl 1.40 while (k < half) {
867 jsr166 1.42 int child = (k << 1) + 1;
868 jsr166 1.61 RunnableScheduledFuture<?> c = queue[child];
869 dl 1.40 int right = child + 1;
870     if (right < size && c.compareTo(queue[right]) > 0)
871     c = queue[child = right];
872     if (key.compareTo(c) <= 0)
873     break;
874     queue[k] = c;
875     setIndex(c, k);
876     k = child;
877     }
878     queue[k] = key;
879     setIndex(key, k);
880     }
881    
882     /**
883     * Resize the heap array. Call only when holding lock.
884     */
885     private void grow() {
886     int oldCapacity = queue.length;
887     int newCapacity = oldCapacity + (oldCapacity >> 1); // grow 50%
888     if (newCapacity < 0) // overflow
889     newCapacity = Integer.MAX_VALUE;
890     queue = Arrays.copyOf(queue, newCapacity);
891     }
892    
893     /**
894     * Find index of given object, or -1 if absent
895     */
896     private int indexOf(Object x) {
897     if (x != null) {
898 jsr166 1.48 if (x instanceof ScheduledFutureTask) {
899     int i = ((ScheduledFutureTask) x).heapIndex;
900     // Sanity check; x could conceivably be a
901     // ScheduledFutureTask from some other pool.
902     if (i >= 0 && i < size && queue[i] == x)
903     return i;
904     } else {
905     for (int i = 0; i < size; i++)
906     if (x.equals(queue[i]))
907     return i;
908     }
909 dl 1.40 }
910     return -1;
911     }
912    
913 jsr166 1.48 public boolean contains(Object x) {
914     final ReentrantLock lock = this.lock;
915 jsr166 1.45 lock.lock();
916     try {
917 jsr166 1.48 return indexOf(x) != -1;
918 jsr166 1.45 } finally {
919     lock.unlock();
920     }
921 jsr166 1.48 }
922 jsr166 1.45
923 dl 1.40 public boolean remove(Object x) {
924     final ReentrantLock lock = this.lock;
925     lock.lock();
926     try {
927 jsr166 1.45 int i = indexOf(x);
928 jsr166 1.48 if (i < 0)
929     return false;
930 jsr166 1.45
931 jsr166 1.48 setIndex(queue[i], -1);
932     int s = --size;
933 jsr166 1.61 RunnableScheduledFuture<?> replacement = queue[s];
934 jsr166 1.48 queue[s] = null;
935     if (s != i) {
936     siftDown(i, replacement);
937     if (queue[i] == replacement)
938     siftUp(i, replacement);
939     }
940     return true;
941 dl 1.40 } finally {
942     lock.unlock();
943     }
944     }
945    
946     public int size() {
947     final ReentrantLock lock = this.lock;
948     lock.lock();
949     try {
950 jsr166 1.45 return size;
951 dl 1.40 } finally {
952     lock.unlock();
953     }
954     }
955    
956 jsr166 1.42 public boolean isEmpty() {
957     return size() == 0;
958 dl 1.40 }
959    
960     public int remainingCapacity() {
961     return Integer.MAX_VALUE;
962     }
963    
964 jsr166 1.61 public RunnableScheduledFuture<?> peek() {
965 dl 1.40 final ReentrantLock lock = this.lock;
966     lock.lock();
967     try {
968     return queue[0];
969     } finally {
970     lock.unlock();
971     }
972 dl 1.13 }
973    
974 dl 1.40 public boolean offer(Runnable x) {
975     if (x == null)
976     throw new NullPointerException();
977 jsr166 1.61 RunnableScheduledFuture<?> e = (RunnableScheduledFuture<?>)x;
978 dl 1.40 final ReentrantLock lock = this.lock;
979     lock.lock();
980     try {
981     int i = size;
982     if (i >= queue.length)
983     grow();
984     size = i + 1;
985     if (i == 0) {
986     queue[0] = e;
987     setIndex(e, 0);
988 jsr166 1.45 } else {
989 dl 1.40 siftUp(i, e);
990     }
991 jsr166 1.46 if (queue[0] == e) {
992 jsr166 1.48 leader = null;
993 jsr166 1.46 available.signal();
994 jsr166 1.48 }
995 dl 1.40 } finally {
996     lock.unlock();
997     }
998     return true;
999 jsr166 1.48 }
1000 dl 1.40
1001     public void put(Runnable e) {
1002     offer(e);
1003     }
1004    
1005     public boolean add(Runnable e) {
1006 jsr166 1.48 return offer(e);
1007     }
1008 dl 1.40
1009     public boolean offer(Runnable e, long timeout, TimeUnit unit) {
1010     return offer(e);
1011     }
1012 jsr166 1.42
1013 jsr166 1.46 /**
1014     * Performs common bookkeeping for poll and take: Replaces
1015 jsr166 1.47 * first element with last and sifts it down. Call only when
1016     * holding lock.
1017 jsr166 1.46 * @param f the task to remove and return
1018     */
1019 jsr166 1.61 private RunnableScheduledFuture<?> finishPoll(RunnableScheduledFuture<?> f) {
1020 jsr166 1.46 int s = --size;
1021 jsr166 1.61 RunnableScheduledFuture<?> x = queue[s];
1022 jsr166 1.46 queue[s] = null;
1023     if (s != 0)
1024     siftDown(0, x);
1025     setIndex(f, -1);
1026     return f;
1027     }
1028    
1029 jsr166 1.61 public RunnableScheduledFuture<?> poll() {
1030 dl 1.40 final ReentrantLock lock = this.lock;
1031     lock.lock();
1032     try {
1033 jsr166 1.61 RunnableScheduledFuture<?> first = queue[0];
1034 jsr166 1.62 if (first == null || first.getDelay(NANOSECONDS) > 0)
1035 dl 1.40 return null;
1036 jsr166 1.42 else
1037 dl 1.40 return finishPoll(first);
1038     } finally {
1039     lock.unlock();
1040     }
1041     }
1042    
1043 jsr166 1.61 public RunnableScheduledFuture<?> take() throws InterruptedException {
1044 dl 1.40 final ReentrantLock lock = this.lock;
1045     lock.lockInterruptibly();
1046     try {
1047     for (;;) {
1048 jsr166 1.61 RunnableScheduledFuture<?> first = queue[0];
1049 jsr166 1.42 if (first == null)
1050 dl 1.40 available.await();
1051     else {
1052 jsr166 1.62 long delay = first.getDelay(NANOSECONDS);
1053 jsr166 1.48 if (delay <= 0)
1054     return finishPoll(first);
1055     else if (leader != null)
1056     available.await();
1057     else {
1058     Thread thisThread = Thread.currentThread();
1059     leader = thisThread;
1060     try {
1061     available.awaitNanos(delay);
1062     } finally {
1063     if (leader == thisThread)
1064     leader = null;
1065     }
1066     }
1067 dl 1.40 }
1068     }
1069     } finally {
1070 jsr166 1.48 if (leader == null && queue[0] != null)
1071     available.signal();
1072 dl 1.40 lock.unlock();
1073     }
1074     }
1075    
1076 jsr166 1.61 public RunnableScheduledFuture<?> poll(long timeout, TimeUnit unit)
1077 dl 1.40 throws InterruptedException {
1078     long nanos = unit.toNanos(timeout);
1079     final ReentrantLock lock = this.lock;
1080     lock.lockInterruptibly();
1081     try {
1082     for (;;) {
1083 jsr166 1.61 RunnableScheduledFuture<?> first = queue[0];
1084 dl 1.40 if (first == null) {
1085     if (nanos <= 0)
1086     return null;
1087     else
1088     nanos = available.awaitNanos(nanos);
1089     } else {
1090 jsr166 1.62 long delay = first.getDelay(NANOSECONDS);
1091 jsr166 1.48 if (delay <= 0)
1092 dl 1.40 return finishPoll(first);
1093 jsr166 1.48 if (nanos <= 0)
1094     return null;
1095     if (nanos < delay || leader != null)
1096     nanos = available.awaitNanos(nanos);
1097     else {
1098     Thread thisThread = Thread.currentThread();
1099     leader = thisThread;
1100     try {
1101     long timeLeft = available.awaitNanos(delay);
1102     nanos -= delay - timeLeft;
1103     } finally {
1104     if (leader == thisThread)
1105     leader = null;
1106     }
1107     }
1108     }
1109     }
1110 dl 1.40 } finally {
1111 jsr166 1.48 if (leader == null && queue[0] != null)
1112     available.signal();
1113 dl 1.40 lock.unlock();
1114     }
1115     }
1116    
1117     public void clear() {
1118     final ReentrantLock lock = this.lock;
1119     lock.lock();
1120     try {
1121     for (int i = 0; i < size; i++) {
1122 jsr166 1.61 RunnableScheduledFuture<?> t = queue[i];
1123 dl 1.40 if (t != null) {
1124     queue[i] = null;
1125     setIndex(t, -1);
1126     }
1127     }
1128     size = 0;
1129     } finally {
1130     lock.unlock();
1131     }
1132 dl 1.13 }
1133 dl 1.40
1134     /**
1135 jsr166 1.62 * Return first element only if it is expired.
1136 dl 1.40 * Used only by drainTo. Call only when holding lock.
1137     */
1138 jsr166 1.62 private RunnableScheduledFuture<?> peekExpired() {
1139     // assert lock.isHeldByCurrentThread();
1140 jsr166 1.61 RunnableScheduledFuture<?> first = queue[0];
1141 jsr166 1.62 return (first == null || first.getDelay(NANOSECONDS) > 0) ?
1142     null : first;
1143 dl 1.40 }
1144    
1145     public int drainTo(Collection<? super Runnable> c) {
1146     if (c == null)
1147     throw new NullPointerException();
1148     if (c == this)
1149     throw new IllegalArgumentException();
1150     final ReentrantLock lock = this.lock;
1151     lock.lock();
1152     try {
1153 jsr166 1.61 RunnableScheduledFuture<?> first;
1154 dl 1.40 int n = 0;
1155 jsr166 1.62 while ((first = peekExpired()) != null) {
1156     c.add(first); // In this order, in case add() throws.
1157     finishPoll(first);
1158 jsr166 1.48 ++n;
1159     }
1160 dl 1.40 return n;
1161     } finally {
1162     lock.unlock();
1163     }
1164 dl 1.13 }
1165    
1166 jsr166 1.21 public int drainTo(Collection<? super Runnable> c, int maxElements) {
1167 dl 1.40 if (c == null)
1168     throw new NullPointerException();
1169     if (c == this)
1170     throw new IllegalArgumentException();
1171     if (maxElements <= 0)
1172     return 0;
1173     final ReentrantLock lock = this.lock;
1174     lock.lock();
1175     try {
1176 jsr166 1.61 RunnableScheduledFuture<?> first;
1177 dl 1.40 int n = 0;
1178 jsr166 1.62 while (n < maxElements && (first = peekExpired()) != null) {
1179     c.add(first); // In this order, in case add() throws.
1180     finishPoll(first);
1181 jsr166 1.48 ++n;
1182     }
1183 dl 1.40 return n;
1184     } finally {
1185     lock.unlock();
1186     }
1187     }
1188    
1189     public Object[] toArray() {
1190     final ReentrantLock lock = this.lock;
1191     lock.lock();
1192     try {
1193 jsr166 1.45 return Arrays.copyOf(queue, size, Object[].class);
1194 dl 1.40 } finally {
1195     lock.unlock();
1196     }
1197     }
1198    
1199 jsr166 1.48 @SuppressWarnings("unchecked")
1200 dl 1.40 public <T> T[] toArray(T[] a) {
1201     final ReentrantLock lock = this.lock;
1202     lock.lock();
1203     try {
1204     if (a.length < size)
1205     return (T[]) Arrays.copyOf(queue, size, a.getClass());
1206     System.arraycopy(queue, 0, a, 0, size);
1207     if (a.length > size)
1208     a[size] = null;
1209     return a;
1210     } finally {
1211     lock.unlock();
1212     }
1213 dl 1.13 }
1214    
1215 jsr166 1.21 public Iterator<Runnable> iterator() {
1216 jsr166 1.45 return new Itr(Arrays.copyOf(queue, size));
1217 dl 1.40 }
1218 jsr166 1.42
1219 dl 1.40 /**
1220     * Snapshot iterator that works off copy of underlying q array.
1221     */
1222     private class Itr implements Iterator<Runnable> {
1223 jsr166 1.45 final RunnableScheduledFuture[] array;
1224 jsr166 1.48 int cursor = 0; // index of next element to return
1225     int lastRet = -1; // index of last element, or -1 if no such
1226 jsr166 1.42
1227 jsr166 1.45 Itr(RunnableScheduledFuture[] array) {
1228 dl 1.40 this.array = array;
1229     }
1230 jsr166 1.42
1231 dl 1.40 public boolean hasNext() {
1232     return cursor < array.length;
1233     }
1234 jsr166 1.42
1235 dl 1.40 public Runnable next() {
1236     if (cursor >= array.length)
1237     throw new NoSuchElementException();
1238     lastRet = cursor;
1239 jsr166 1.45 return array[cursor++];
1240 dl 1.40 }
1241 jsr166 1.42
1242 dl 1.40 public void remove() {
1243     if (lastRet < 0)
1244     throw new IllegalStateException();
1245     DelayedWorkQueue.this.remove(array[lastRet]);
1246     lastRet = -1;
1247     }
1248 dl 1.13 }
1249     }
1250 dl 1.1 }