ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ScheduledThreadPoolExecutor.java
Revision: 1.59
Committed: Mon May 30 23:08:50 2011 UTC (13 years ago) by dl
Branch: MAIN
Changes since 1.58: +1 -1 lines
Log Message:
Fix outdated internal comment

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.atomic.*;
9 import java.util.concurrent.locks.*;
10 import java.util.*;
11
12 /**
13 * A {@link ThreadPoolExecutor} that can additionally schedule
14 * commands to run after a given delay, or to execute
15 * periodically. This class is preferable to {@link java.util.Timer}
16 * when multiple worker threads are needed, or when the additional
17 * flexibility or capabilities of {@link ThreadPoolExecutor} (which
18 * this class extends) are required.
19 *
20 * <p>Delayed tasks execute no sooner than they are enabled, but
21 * without any real-time guarantees about when, after they are
22 * enabled, they will commence. Tasks scheduled for exactly the same
23 * execution time are enabled in first-in-first-out (FIFO) order of
24 * submission.
25 *
26 * <p>When a submitted task is cancelled before it is run, execution
27 * is suppressed. By default, such a cancelled task is not
28 * automatically removed from the work queue until its delay
29 * elapses. While this enables further inspection and monitoring, it
30 * may also cause unbounded retention of cancelled tasks. To avoid
31 * this, set {@link #setRemoveOnCancelPolicy} to {@code true}, which
32 * causes tasks to be immediately removed from the work queue at
33 * time of cancellation.
34 *
35 * <p>Successive executions of a task scheduled via
36 * {@code scheduleAtFixedRate} or
37 * {@code scheduleWithFixedDelay} do not overlap. While different
38 * executions may be performed by different threads, the effects of
39 * prior executions <a
40 * href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
41 * those of subsequent ones.
42 *
43 * <p>While this class inherits from {@link ThreadPoolExecutor}, a few
44 * of the inherited tuning methods are not useful for it. In
45 * particular, because it acts as a fixed-sized pool using
46 * {@code corePoolSize} threads and an unbounded queue, adjustments
47 * to {@code maximumPoolSize} have no useful effect. Additionally, it
48 * is almost never a good idea to set {@code corePoolSize} to zero or
49 * use {@code allowCoreThreadTimeOut} because this may leave the pool
50 * without threads to handle tasks once they become eligible to run.
51 *
52 * <p><b>Extension notes:</b> This class overrides the
53 * {@link ThreadPoolExecutor#execute execute} and
54 * {@link AbstractExecutorService#submit(Runnable) submit}
55 * methods to generate internal {@link ScheduledFuture} objects to
56 * control per-task delays and scheduling. To preserve
57 * functionality, any further overrides of these methods in
58 * subclasses must invoke superclass versions, which effectively
59 * disables additional task customization. However, this class
60 * provides alternative protected extension method
61 * {@code decorateTask} (one version each for {@code Runnable} and
62 * {@code Callable}) that can be used to customize the concrete task
63 * types used to execute commands entered via {@code execute},
64 * {@code submit}, {@code schedule}, {@code scheduleAtFixedRate},
65 * and {@code scheduleWithFixedDelay}. By default, a
66 * {@code ScheduledThreadPoolExecutor} uses a task type extending
67 * {@link FutureTask}. However, this may be modified or replaced using
68 * subclasses of the form:
69 *
70 * <pre> {@code
71 * public class CustomScheduledExecutor extends ScheduledThreadPoolExecutor {
72 *
73 * static class CustomTask<V> implements RunnableScheduledFuture<V> { ... }
74 *
75 * protected <V> RunnableScheduledFuture<V> decorateTask(
76 * Runnable r, RunnableScheduledFuture<V> task) {
77 * return new CustomTask<V>(r, task);
78 * }
79 *
80 * protected <V> RunnableScheduledFuture<V> decorateTask(
81 * Callable<V> c, RunnableScheduledFuture<V> task) {
82 * return new CustomTask<V>(c, task);
83 * }
84 * // ... add constructors, etc.
85 * }}</pre>
86 *
87 * @since 1.5
88 * @author Doug Lea
89 */
90 public class ScheduledThreadPoolExecutor
91 extends ThreadPoolExecutor
92 implements ScheduledExecutorService {
93
94 /*
95 * This class specializes ThreadPoolExecutor implementation by
96 *
97 * 1. Using a custom task type, ScheduledFutureTask for
98 * tasks, even those that don't require scheduling (i.e.,
99 * those submitted using ExecutorService execute, not
100 * ScheduledExecutorService methods) which are treated as
101 * delayed tasks with a delay of zero.
102 *
103 * 2. Using a custom queue (DelayedWorkQueue), a variant of
104 * unbounded DelayQueue. The lack of capacity constraint and
105 * the fact that corePoolSize and maximumPoolSize are
106 * effectively identical simplifies some execution mechanics
107 * (see delayedExecute) compared to ThreadPoolExecutor.
108 *
109 * 3. Supporting optional run-after-shutdown parameters, which
110 * leads to overrides of shutdown methods to remove and cancel
111 * tasks that should NOT be run after shutdown, as well as
112 * different recheck logic when task (re)submission overlaps
113 * with a shutdown.
114 *
115 * 4. Task decoration methods to allow interception and
116 * instrumentation, which are needed because subclasses cannot
117 * otherwise override submit methods to get this effect. These
118 * don't have any impact on pool control logic though.
119 */
120
121 /**
122 * False if should cancel/suppress periodic tasks on shutdown.
123 */
124 private volatile boolean continueExistingPeriodicTasksAfterShutdown;
125
126 /**
127 * False if should cancel non-periodic tasks on shutdown.
128 */
129 private volatile boolean executeExistingDelayedTasksAfterShutdown = true;
130
131 /**
132 * True if ScheduledFutureTask.cancel should remove from queue
133 */
134 private volatile boolean removeOnCancel = false;
135
136 /**
137 * Sequence number to break scheduling ties, and in turn to
138 * guarantee FIFO order among tied entries.
139 */
140 private static final AtomicLong sequencer = new AtomicLong(0);
141
142 /**
143 * Returns current nanosecond time.
144 */
145 final long now() {
146 return System.nanoTime();
147 }
148
149 private class ScheduledFutureTask<V>
150 extends FutureTask<V> implements RunnableScheduledFuture<V> {
151
152 /** Sequence number to break ties FIFO */
153 private final long sequenceNumber;
154
155 /** The time the task is enabled to execute in nanoTime units */
156 private long time;
157
158 /**
159 * Period in nanoseconds for repeating tasks. A positive
160 * value indicates fixed-rate execution. A negative value
161 * indicates fixed-delay execution. A value of 0 indicates a
162 * non-repeating task.
163 */
164 private final long period;
165
166 /** The actual task to be re-enqueued by reExecutePeriodic */
167 RunnableScheduledFuture<V> outerTask = this;
168
169 /**
170 * Index into delay queue, to support faster cancellation.
171 */
172 int heapIndex;
173
174 /**
175 * Creates a one-shot action with given nanoTime-based trigger time.
176 */
177 ScheduledFutureTask(Runnable r, V result, long ns) {
178 super(r, result);
179 this.time = ns;
180 this.period = 0;
181 this.sequenceNumber = sequencer.getAndIncrement();
182 }
183
184 /**
185 * Creates a periodic action with given nano time and period.
186 */
187 ScheduledFutureTask(Runnable r, V result, long ns, long period) {
188 super(r, result);
189 this.time = ns;
190 this.period = period;
191 this.sequenceNumber = sequencer.getAndIncrement();
192 }
193
194 /**
195 * Creates a one-shot action with given nanoTime-based trigger.
196 */
197 ScheduledFutureTask(Callable<V> callable, long ns) {
198 super(callable);
199 this.time = ns;
200 this.period = 0;
201 this.sequenceNumber = sequencer.getAndIncrement();
202 }
203
204 public long getDelay(TimeUnit unit) {
205 return unit.convert(time - now(), TimeUnit.NANOSECONDS);
206 }
207
208 public int compareTo(Delayed other) {
209 if (other == this) // compare zero if same object
210 return 0;
211 if (other instanceof ScheduledFutureTask) {
212 ScheduledFutureTask<?> x = (ScheduledFutureTask<?>)other;
213 long diff = time - x.time;
214 if (diff < 0)
215 return -1;
216 else if (diff > 0)
217 return 1;
218 else if (sequenceNumber < x.sequenceNumber)
219 return -1;
220 else
221 return 1;
222 }
223 long d = (getDelay(TimeUnit.NANOSECONDS) -
224 other.getDelay(TimeUnit.NANOSECONDS));
225 return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
226 }
227
228 /**
229 * Returns true if this is a periodic (not a one-shot) action.
230 *
231 * @return true if periodic
232 */
233 public boolean isPeriodic() {
234 return period != 0;
235 }
236
237 /**
238 * Sets the next time to run for a periodic task.
239 */
240 private void setNextRunTime() {
241 long p = period;
242 if (p > 0)
243 time += p;
244 else
245 time = triggerTime(-p);
246 }
247
248 public boolean cancel(boolean mayInterruptIfRunning) {
249 boolean cancelled = super.cancel(mayInterruptIfRunning);
250 if (cancelled && removeOnCancel && heapIndex >= 0)
251 remove(this);
252 return cancelled;
253 }
254
255 /**
256 * Overrides FutureTask version so as to reset/requeue if periodic.
257 */
258 public void run() {
259 boolean periodic = isPeriodic();
260 if (!canRunInCurrentRunState(periodic))
261 cancel(false);
262 else if (!periodic)
263 ScheduledFutureTask.super.run();
264 else if (ScheduledFutureTask.super.runAndReset()) {
265 setNextRunTime();
266 reExecutePeriodic(outerTask);
267 }
268 }
269 }
270
271 /**
272 * Returns true if can run a task given current run state
273 * and run-after-shutdown parameters.
274 *
275 * @param periodic true if this task periodic, false if delayed
276 */
277 boolean canRunInCurrentRunState(boolean periodic) {
278 return isRunningOrShutdown(periodic ?
279 continueExistingPeriodicTasksAfterShutdown :
280 executeExistingDelayedTasksAfterShutdown);
281 }
282
283 /**
284 * Main execution method for delayed or periodic tasks. If pool
285 * is shut down, rejects the task. Otherwise adds task to queue
286 * and starts a thread, if necessary, to run it. (We cannot
287 * prestart the thread to run the task because the task (probably)
288 * shouldn't be run yet,) If the pool is shut down while the task
289 * is being added, cancel and remove it if required by state and
290 * run-after-shutdown parameters.
291 *
292 * @param task the task
293 */
294 private void delayedExecute(RunnableScheduledFuture<?> task) {
295 if (isShutdown())
296 reject(task);
297 else {
298 super.getQueue().add(task);
299 if (isShutdown() &&
300 !canRunInCurrentRunState(task.isPeriodic()) &&
301 remove(task))
302 task.cancel(false);
303 else
304 prestartCoreThread();
305 }
306 }
307
308 /**
309 * Requeues a periodic task unless current run state precludes it.
310 * Same idea as delayedExecute except drops task rather than rejecting.
311 *
312 * @param task the task
313 */
314 void reExecutePeriodic(RunnableScheduledFuture<?> task) {
315 if (canRunInCurrentRunState(true)) {
316 super.getQueue().add(task);
317 if (!canRunInCurrentRunState(true) && remove(task))
318 task.cancel(false);
319 else
320 prestartCoreThread();
321 }
322 }
323
324 /**
325 * Cancels and clears the queue of all tasks that should not be run
326 * due to shutdown policy. Invoked within super.shutdown.
327 */
328 @Override void onShutdown() {
329 BlockingQueue<Runnable> q = super.getQueue();
330 boolean keepDelayed =
331 getExecuteExistingDelayedTasksAfterShutdownPolicy();
332 boolean keepPeriodic =
333 getContinueExistingPeriodicTasksAfterShutdownPolicy();
334 if (!keepDelayed && !keepPeriodic) {
335 for (Object e : q.toArray())
336 if (e instanceof RunnableScheduledFuture<?>)
337 ((RunnableScheduledFuture<?>) e).cancel(false);
338 q.clear();
339 }
340 else {
341 // Traverse snapshot to avoid iterator exceptions
342 for (Object e : q.toArray()) {
343 if (e instanceof RunnableScheduledFuture) {
344 RunnableScheduledFuture<?> t =
345 (RunnableScheduledFuture<?>)e;
346 if ((t.isPeriodic() ? !keepPeriodic : !keepDelayed) ||
347 t.isCancelled()) { // also remove if already cancelled
348 if (q.remove(t))
349 t.cancel(false);
350 }
351 }
352 }
353 }
354 tryTerminate();
355 }
356
357 /**
358 * Modifies or replaces the task used to execute a runnable.
359 * This method can be used to override the concrete
360 * class used for managing internal tasks.
361 * The default implementation simply returns the given task.
362 *
363 * @param runnable the submitted Runnable
364 * @param task the task created to execute the runnable
365 * @return a task that can execute the runnable
366 * @since 1.6
367 */
368 protected <V> RunnableScheduledFuture<V> decorateTask(
369 Runnable runnable, RunnableScheduledFuture<V> task) {
370 return task;
371 }
372
373 /**
374 * Modifies or replaces the task used to execute a callable.
375 * This method can be used to override the concrete
376 * class used for managing internal tasks.
377 * The default implementation simply returns the given task.
378 *
379 * @param callable the submitted Callable
380 * @param task the task created to execute the callable
381 * @return a task that can execute the callable
382 * @since 1.6
383 */
384 protected <V> RunnableScheduledFuture<V> decorateTask(
385 Callable<V> callable, RunnableScheduledFuture<V> task) {
386 return task;
387 }
388
389 /**
390 * Creates a new {@code ScheduledThreadPoolExecutor} with the
391 * given core pool size.
392 *
393 * @param corePoolSize the number of threads to keep in the pool, even
394 * if they are idle, unless {@code allowCoreThreadTimeOut} is set
395 * @throws IllegalArgumentException if {@code corePoolSize < 0}
396 */
397 public ScheduledThreadPoolExecutor(int corePoolSize) {
398 super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
399 new DelayedWorkQueue());
400 }
401
402 /**
403 * Creates a new {@code ScheduledThreadPoolExecutor} with the
404 * given initial parameters.
405 *
406 * @param corePoolSize the number of threads to keep in the pool, even
407 * if they are idle, unless {@code allowCoreThreadTimeOut} is set
408 * @param threadFactory the factory to use when the executor
409 * creates a new thread
410 * @throws IllegalArgumentException if {@code corePoolSize < 0}
411 * @throws NullPointerException if {@code threadFactory} is null
412 */
413 public ScheduledThreadPoolExecutor(int corePoolSize,
414 ThreadFactory threadFactory) {
415 super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
416 new DelayedWorkQueue(), threadFactory);
417 }
418
419 /**
420 * Creates a new ScheduledThreadPoolExecutor with the given
421 * initial parameters.
422 *
423 * @param corePoolSize the number of threads to keep in the pool, even
424 * if they are idle, unless {@code allowCoreThreadTimeOut} is set
425 * @param handler the handler to use when execution is blocked
426 * because the thread bounds and queue capacities are reached
427 * @throws IllegalArgumentException if {@code corePoolSize < 0}
428 * @throws NullPointerException if {@code handler} is null
429 */
430 public ScheduledThreadPoolExecutor(int corePoolSize,
431 RejectedExecutionHandler handler) {
432 super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
433 new DelayedWorkQueue(), handler);
434 }
435
436 /**
437 * Creates a new ScheduledThreadPoolExecutor with the given
438 * initial parameters.
439 *
440 * @param corePoolSize the number of threads to keep in the pool, even
441 * if they are idle, unless {@code allowCoreThreadTimeOut} is set
442 * @param threadFactory the factory to use when the executor
443 * creates a new thread
444 * @param handler the handler to use when execution is blocked
445 * because the thread bounds and queue capacities are reached
446 * @throws IllegalArgumentException if {@code corePoolSize < 0}
447 * @throws NullPointerException if {@code threadFactory} or
448 * {@code handler} is null
449 */
450 public ScheduledThreadPoolExecutor(int corePoolSize,
451 ThreadFactory threadFactory,
452 RejectedExecutionHandler handler) {
453 super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
454 new DelayedWorkQueue(), threadFactory, handler);
455 }
456
457 /**
458 * Returns the trigger time of a delayed action.
459 */
460 private long triggerTime(long delay, TimeUnit unit) {
461 return triggerTime(unit.toNanos((delay < 0) ? 0 : delay));
462 }
463
464 /**
465 * Returns the trigger time of a delayed action.
466 */
467 long triggerTime(long delay) {
468 return now() +
469 ((delay < (Long.MAX_VALUE >> 1)) ? delay : overflowFree(delay));
470 }
471
472 /**
473 * Constrains the values of all delays in the queue to be within
474 * Long.MAX_VALUE of each other, to avoid overflow in compareTo.
475 * This may occur if a task is eligible to be dequeued, but has
476 * not yet been, while some other task is added with a delay of
477 * Long.MAX_VALUE.
478 */
479 private long overflowFree(long delay) {
480 Delayed head = (Delayed) super.getQueue().peek();
481 if (head != null) {
482 long headDelay = head.getDelay(TimeUnit.NANOSECONDS);
483 if (headDelay < 0 && (delay - headDelay < 0))
484 delay = Long.MAX_VALUE + headDelay;
485 }
486 return delay;
487 }
488
489 /**
490 * @throws RejectedExecutionException {@inheritDoc}
491 * @throws NullPointerException {@inheritDoc}
492 */
493 public ScheduledFuture<?> schedule(Runnable command,
494 long delay,
495 TimeUnit unit) {
496 if (command == null || unit == null)
497 throw new NullPointerException();
498 RunnableScheduledFuture<?> t = decorateTask(command,
499 new ScheduledFutureTask<Void>(command, null,
500 triggerTime(delay, unit)));
501 delayedExecute(t);
502 return t;
503 }
504
505 /**
506 * @throws RejectedExecutionException {@inheritDoc}
507 * @throws NullPointerException {@inheritDoc}
508 */
509 public <V> ScheduledFuture<V> schedule(Callable<V> callable,
510 long delay,
511 TimeUnit unit) {
512 if (callable == null || unit == null)
513 throw new NullPointerException();
514 RunnableScheduledFuture<V> t = decorateTask(callable,
515 new ScheduledFutureTask<V>(callable,
516 triggerTime(delay, unit)));
517 delayedExecute(t);
518 return t;
519 }
520
521 /**
522 * @throws RejectedExecutionException {@inheritDoc}
523 * @throws NullPointerException {@inheritDoc}
524 * @throws IllegalArgumentException {@inheritDoc}
525 */
526 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
527 long initialDelay,
528 long period,
529 TimeUnit unit) {
530 if (command == null || unit == null)
531 throw new NullPointerException();
532 if (period <= 0)
533 throw new IllegalArgumentException();
534 ScheduledFutureTask<Void> sft =
535 new ScheduledFutureTask<Void>(command,
536 null,
537 triggerTime(initialDelay, unit),
538 unit.toNanos(period));
539 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
540 sft.outerTask = t;
541 delayedExecute(t);
542 return t;
543 }
544
545 /**
546 * @throws RejectedExecutionException {@inheritDoc}
547 * @throws NullPointerException {@inheritDoc}
548 * @throws IllegalArgumentException {@inheritDoc}
549 */
550 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command,
551 long initialDelay,
552 long delay,
553 TimeUnit unit) {
554 if (command == null || unit == null)
555 throw new NullPointerException();
556 if (delay <= 0)
557 throw new IllegalArgumentException();
558 ScheduledFutureTask<Void> sft =
559 new ScheduledFutureTask<Void>(command,
560 null,
561 triggerTime(initialDelay, unit),
562 unit.toNanos(-delay));
563 RunnableScheduledFuture<Void> t = decorateTask(command, sft);
564 sft.outerTask = t;
565 delayedExecute(t);
566 return t;
567 }
568
569 /**
570 * Executes {@code command} with zero required delay.
571 * This has effect equivalent to
572 * {@link #schedule(Runnable,long,TimeUnit) schedule(command, 0, anyUnit)}.
573 * Note that inspections of the queue and of the list returned by
574 * {@code shutdownNow} will access the zero-delayed
575 * {@link ScheduledFuture}, not the {@code command} itself.
576 *
577 * <p>A consequence of the use of {@code ScheduledFuture} objects is
578 * that {@link ThreadPoolExecutor#afterExecute afterExecute} is always
579 * called with a null second {@code Throwable} argument, even if the
580 * {@code command} terminated abruptly. Instead, the {@code Throwable}
581 * thrown by such a task can be obtained via {@link Future#get}.
582 *
583 * @throws RejectedExecutionException at discretion of
584 * {@code RejectedExecutionHandler}, if the task
585 * cannot be accepted for execution because the
586 * executor has been shut down
587 * @throws NullPointerException {@inheritDoc}
588 */
589 public void execute(Runnable command) {
590 schedule(command, 0, TimeUnit.NANOSECONDS);
591 }
592
593 // Override AbstractExecutorService methods
594
595 /**
596 * @throws RejectedExecutionException {@inheritDoc}
597 * @throws NullPointerException {@inheritDoc}
598 */
599 public Future<?> submit(Runnable task) {
600 return schedule(task, 0, TimeUnit.NANOSECONDS);
601 }
602
603 /**
604 * @throws RejectedExecutionException {@inheritDoc}
605 * @throws NullPointerException {@inheritDoc}
606 */
607 public <T> Future<T> submit(Runnable task, T result) {
608 return schedule(Executors.callable(task, result),
609 0, TimeUnit.NANOSECONDS);
610 }
611
612 /**
613 * @throws RejectedExecutionException {@inheritDoc}
614 * @throws NullPointerException {@inheritDoc}
615 */
616 public <T> Future<T> submit(Callable<T> task) {
617 return schedule(task, 0, TimeUnit.NANOSECONDS);
618 }
619
620 /**
621 * Sets the policy on whether to continue executing existing
622 * periodic tasks even when this executor has been {@code shutdown}.
623 * In this case, these tasks will only terminate upon
624 * {@code shutdownNow} or after setting the policy to
625 * {@code false} when already shutdown.
626 * This value is by default {@code false}.
627 *
628 * @param value if {@code true}, continue after shutdown, else don't.
629 * @see #getContinueExistingPeriodicTasksAfterShutdownPolicy
630 */
631 public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value) {
632 continueExistingPeriodicTasksAfterShutdown = value;
633 if (!value && isShutdown())
634 onShutdown();
635 }
636
637 /**
638 * Gets the policy on whether to continue executing existing
639 * periodic tasks even when this executor has been {@code shutdown}.
640 * In this case, these tasks will only terminate upon
641 * {@code shutdownNow} or after setting the policy to
642 * {@code false} when already shutdown.
643 * This value is by default {@code false}.
644 *
645 * @return {@code true} if will continue after shutdown
646 * @see #setContinueExistingPeriodicTasksAfterShutdownPolicy
647 */
648 public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy() {
649 return continueExistingPeriodicTasksAfterShutdown;
650 }
651
652 /**
653 * Sets the policy on whether to execute existing delayed
654 * tasks even when this executor has been {@code shutdown}.
655 * In this case, these tasks will only terminate upon
656 * {@code shutdownNow}, or after setting the policy to
657 * {@code false} when already shutdown.
658 * This value is by default {@code true}.
659 *
660 * @param value if {@code true}, execute after shutdown, else don't.
661 * @see #getExecuteExistingDelayedTasksAfterShutdownPolicy
662 */
663 public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value) {
664 executeExistingDelayedTasksAfterShutdown = value;
665 if (!value && isShutdown())
666 onShutdown();
667 }
668
669 /**
670 * Gets the policy on whether to execute existing delayed
671 * tasks even when this executor has been {@code shutdown}.
672 * In this case, these tasks will only terminate upon
673 * {@code shutdownNow}, or after setting the policy to
674 * {@code false} when already shutdown.
675 * This value is by default {@code true}.
676 *
677 * @return {@code true} if will execute after shutdown
678 * @see #setExecuteExistingDelayedTasksAfterShutdownPolicy
679 */
680 public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy() {
681 return executeExistingDelayedTasksAfterShutdown;
682 }
683
684 /**
685 * Sets the policy on whether cancelled tasks should be immediately
686 * removed from the work queue at time of cancellation. This value is
687 * by default {@code false}.
688 *
689 * @param value if {@code true}, remove on cancellation, else don't
690 * @see #getRemoveOnCancelPolicy
691 * @since 1.7
692 */
693 public void setRemoveOnCancelPolicy(boolean value) {
694 removeOnCancel = value;
695 }
696
697 /**
698 * Gets the policy on whether cancelled tasks should be immediately
699 * removed from the work queue at time of cancellation. This value is
700 * by default {@code false}.
701 *
702 * @return {@code true} if cancelled tasks are immediately removed
703 * from the queue
704 * @see #setRemoveOnCancelPolicy
705 * @since 1.7
706 */
707 public boolean getRemoveOnCancelPolicy() {
708 return removeOnCancel;
709 }
710
711 /**
712 * Initiates an orderly shutdown in which previously submitted
713 * tasks are executed, but no new tasks will be accepted.
714 * Invocation has no additional effect if already shut down.
715 *
716 * <p>This method does not wait for previously submitted tasks to
717 * complete execution. Use {@link #awaitTermination awaitTermination}
718 * to do that.
719 *
720 * <p>If the {@code ExecuteExistingDelayedTasksAfterShutdownPolicy}
721 * has been set {@code false}, existing delayed tasks whose delays
722 * have not yet elapsed are cancelled. And unless the {@code
723 * ContinueExistingPeriodicTasksAfterShutdownPolicy} has been set
724 * {@code true}, future executions of existing periodic tasks will
725 * be cancelled.
726 *
727 * @throws SecurityException {@inheritDoc}
728 */
729 public void shutdown() {
730 super.shutdown();
731 }
732
733 /**
734 * Attempts to stop all actively executing tasks, halts the
735 * processing of waiting tasks, and returns a list of the tasks
736 * that were awaiting execution.
737 *
738 * <p>This method does not wait for actively executing tasks to
739 * terminate. Use {@link #awaitTermination awaitTermination} to
740 * do that.
741 *
742 * <p>There are no guarantees beyond best-effort attempts to stop
743 * processing actively executing tasks. This implementation
744 * cancels tasks via {@link Thread#interrupt}, so any task that
745 * fails to respond to interrupts may never terminate.
746 *
747 * @return list of tasks that never commenced execution.
748 * Each element of this list is a {@link ScheduledFuture},
749 * including those tasks submitted using {@code execute},
750 * which are for scheduling purposes used as the basis of a
751 * zero-delay {@code ScheduledFuture}.
752 * @throws SecurityException {@inheritDoc}
753 */
754 public List<Runnable> shutdownNow() {
755 return super.shutdownNow();
756 }
757
758 /**
759 * Returns the task queue used by this executor. Each element of
760 * this queue is a {@link ScheduledFuture}, including those
761 * tasks submitted using {@code execute} which are for scheduling
762 * purposes used as the basis of a zero-delay
763 * {@code ScheduledFuture}. Iteration over this queue is
764 * <em>not</em> guaranteed to traverse tasks in the order in
765 * which they will execute.
766 *
767 * @return the task queue
768 */
769 public BlockingQueue<Runnable> getQueue() {
770 return super.getQueue();
771 }
772
773 /**
774 * Specialized delay queue. To mesh with TPE declarations, this
775 * class must be declared as a BlockingQueue<Runnable> even though
776 * it can only hold RunnableScheduledFutures.
777 */
778 static class DelayedWorkQueue extends AbstractQueue<Runnable>
779 implements BlockingQueue<Runnable> {
780
781 /*
782 * A DelayedWorkQueue is based on a heap-based data structure
783 * like those in DelayQueue and PriorityQueue, except that
784 * every ScheduledFutureTask also records its index into the
785 * heap array. This eliminates the need to find a task upon
786 * cancellation, greatly speeding up removal (down from O(n)
787 * to O(log n)), and reducing garbage retention that would
788 * otherwise occur by waiting for the element to rise to top
789 * before clearing. But because the queue may also hold
790 * RunnableScheduledFutures that are not ScheduledFutureTasks,
791 * we are not guaranteed to have such indices available, in
792 * which case we fall back to linear search. (We expect that
793 * most tasks will not be decorated, and that the faster cases
794 * will be much more common.)
795 *
796 * All heap operations must record index changes -- mainly
797 * within siftUp and siftDown. Upon removal, a task's
798 * heapIndex is set to -1. Note that ScheduledFutureTasks can
799 * appear at most once in the queue (this need not be true for
800 * other kinds of tasks or work queues), so are uniquely
801 * identified by heapIndex.
802 */
803
804 private static final int INITIAL_CAPACITY = 16;
805 private RunnableScheduledFuture[] queue =
806 new RunnableScheduledFuture[INITIAL_CAPACITY];
807 private final ReentrantLock lock = new ReentrantLock();
808 private int size = 0;
809
810 /**
811 * Thread designated to wait for the task at the head of the
812 * queue. This variant of the Leader-Follower pattern
813 * (http://www.cs.wustl.edu/~schmidt/POSA/POSA2/) serves to
814 * minimize unnecessary timed waiting. When a thread becomes
815 * the leader, it waits only for the next delay to elapse, but
816 * other threads await indefinitely. The leader thread must
817 * signal some other thread before returning from take() or
818 * poll(...), unless some other thread becomes leader in the
819 * interim. Whenever the head of the queue is replaced with a
820 * task with an earlier expiration time, the leader field is
821 * invalidated by being reset to null, and some waiting
822 * thread, but not necessarily the current leader, is
823 * signalled. So waiting threads must be prepared to acquire
824 * and lose leadership while waiting.
825 */
826 private Thread leader = null;
827
828 /**
829 * Condition signalled when a newer task becomes available at the
830 * head of the queue or a new thread may need to become leader.
831 */
832 private final Condition available = lock.newCondition();
833
834 /**
835 * Set f's heapIndex if it is a ScheduledFutureTask.
836 */
837 private void setIndex(RunnableScheduledFuture f, int idx) {
838 if (f instanceof ScheduledFutureTask)
839 ((ScheduledFutureTask)f).heapIndex = idx;
840 }
841
842 /**
843 * Sift element added at bottom up to its heap-ordered spot.
844 * Call only when holding lock.
845 */
846 private void siftUp(int k, RunnableScheduledFuture key) {
847 while (k > 0) {
848 int parent = (k - 1) >>> 1;
849 RunnableScheduledFuture e = queue[parent];
850 if (key.compareTo(e) >= 0)
851 break;
852 queue[k] = e;
853 setIndex(e, k);
854 k = parent;
855 }
856 queue[k] = key;
857 setIndex(key, k);
858 }
859
860 /**
861 * Sift element added at top down to its heap-ordered spot.
862 * Call only when holding lock.
863 */
864 private void siftDown(int k, RunnableScheduledFuture key) {
865 int half = size >>> 1;
866 while (k < half) {
867 int child = (k << 1) + 1;
868 RunnableScheduledFuture c = queue[child];
869 int right = child + 1;
870 if (right < size && c.compareTo(queue[right]) > 0)
871 c = queue[child = right];
872 if (key.compareTo(c) <= 0)
873 break;
874 queue[k] = c;
875 setIndex(c, k);
876 k = child;
877 }
878 queue[k] = key;
879 setIndex(key, k);
880 }
881
882 /**
883 * Resize the heap array. Call only when holding lock.
884 */
885 private void grow() {
886 int oldCapacity = queue.length;
887 int newCapacity = oldCapacity + (oldCapacity >> 1); // grow 50%
888 if (newCapacity < 0) // overflow
889 newCapacity = Integer.MAX_VALUE;
890 queue = Arrays.copyOf(queue, newCapacity);
891 }
892
893 /**
894 * Find index of given object, or -1 if absent
895 */
896 private int indexOf(Object x) {
897 if (x != null) {
898 if (x instanceof ScheduledFutureTask) {
899 int i = ((ScheduledFutureTask) x).heapIndex;
900 // Sanity check; x could conceivably be a
901 // ScheduledFutureTask from some other pool.
902 if (i >= 0 && i < size && queue[i] == x)
903 return i;
904 } else {
905 for (int i = 0; i < size; i++)
906 if (x.equals(queue[i]))
907 return i;
908 }
909 }
910 return -1;
911 }
912
913 public boolean contains(Object x) {
914 final ReentrantLock lock = this.lock;
915 lock.lock();
916 try {
917 return indexOf(x) != -1;
918 } finally {
919 lock.unlock();
920 }
921 }
922
923 public boolean remove(Object x) {
924 final ReentrantLock lock = this.lock;
925 lock.lock();
926 try {
927 int i = indexOf(x);
928 if (i < 0)
929 return false;
930
931 setIndex(queue[i], -1);
932 int s = --size;
933 RunnableScheduledFuture replacement = queue[s];
934 queue[s] = null;
935 if (s != i) {
936 siftDown(i, replacement);
937 if (queue[i] == replacement)
938 siftUp(i, replacement);
939 }
940 return true;
941 } finally {
942 lock.unlock();
943 }
944 }
945
946 public int size() {
947 final ReentrantLock lock = this.lock;
948 lock.lock();
949 try {
950 return size;
951 } finally {
952 lock.unlock();
953 }
954 }
955
956 public boolean isEmpty() {
957 return size() == 0;
958 }
959
960 public int remainingCapacity() {
961 return Integer.MAX_VALUE;
962 }
963
964 public RunnableScheduledFuture peek() {
965 final ReentrantLock lock = this.lock;
966 lock.lock();
967 try {
968 return queue[0];
969 } finally {
970 lock.unlock();
971 }
972 }
973
974 public boolean offer(Runnable x) {
975 if (x == null)
976 throw new NullPointerException();
977 RunnableScheduledFuture e = (RunnableScheduledFuture)x;
978 final ReentrantLock lock = this.lock;
979 lock.lock();
980 try {
981 int i = size;
982 if (i >= queue.length)
983 grow();
984 size = i + 1;
985 if (i == 0) {
986 queue[0] = e;
987 setIndex(e, 0);
988 } else {
989 siftUp(i, e);
990 }
991 if (queue[0] == e) {
992 leader = null;
993 available.signal();
994 }
995 } finally {
996 lock.unlock();
997 }
998 return true;
999 }
1000
1001 public void put(Runnable e) {
1002 offer(e);
1003 }
1004
1005 public boolean add(Runnable e) {
1006 return offer(e);
1007 }
1008
1009 public boolean offer(Runnable e, long timeout, TimeUnit unit) {
1010 return offer(e);
1011 }
1012
1013 /**
1014 * Performs common bookkeeping for poll and take: Replaces
1015 * first element with last and sifts it down. Call only when
1016 * holding lock.
1017 * @param f the task to remove and return
1018 */
1019 private RunnableScheduledFuture finishPoll(RunnableScheduledFuture f) {
1020 int s = --size;
1021 RunnableScheduledFuture x = queue[s];
1022 queue[s] = null;
1023 if (s != 0)
1024 siftDown(0, x);
1025 setIndex(f, -1);
1026 return f;
1027 }
1028
1029 public RunnableScheduledFuture poll() {
1030 final ReentrantLock lock = this.lock;
1031 lock.lock();
1032 try {
1033 RunnableScheduledFuture first = queue[0];
1034 if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0)
1035 return null;
1036 else
1037 return finishPoll(first);
1038 } finally {
1039 lock.unlock();
1040 }
1041 }
1042
1043 public RunnableScheduledFuture take() throws InterruptedException {
1044 final ReentrantLock lock = this.lock;
1045 lock.lockInterruptibly();
1046 try {
1047 for (;;) {
1048 RunnableScheduledFuture first = queue[0];
1049 if (first == null)
1050 available.await();
1051 else {
1052 long delay = first.getDelay(TimeUnit.NANOSECONDS);
1053 if (delay <= 0)
1054 return finishPoll(first);
1055 else if (leader != null)
1056 available.await();
1057 else {
1058 Thread thisThread = Thread.currentThread();
1059 leader = thisThread;
1060 try {
1061 available.awaitNanos(delay);
1062 } finally {
1063 if (leader == thisThread)
1064 leader = null;
1065 }
1066 }
1067 }
1068 }
1069 } finally {
1070 if (leader == null && queue[0] != null)
1071 available.signal();
1072 lock.unlock();
1073 }
1074 }
1075
1076 public RunnableScheduledFuture poll(long timeout, TimeUnit unit)
1077 throws InterruptedException {
1078 long nanos = unit.toNanos(timeout);
1079 final ReentrantLock lock = this.lock;
1080 lock.lockInterruptibly();
1081 try {
1082 for (;;) {
1083 RunnableScheduledFuture first = queue[0];
1084 if (first == null) {
1085 if (nanos <= 0)
1086 return null;
1087 else
1088 nanos = available.awaitNanos(nanos);
1089 } else {
1090 long delay = first.getDelay(TimeUnit.NANOSECONDS);
1091 if (delay <= 0)
1092 return finishPoll(first);
1093 if (nanos <= 0)
1094 return null;
1095 if (nanos < delay || leader != null)
1096 nanos = available.awaitNanos(nanos);
1097 else {
1098 Thread thisThread = Thread.currentThread();
1099 leader = thisThread;
1100 try {
1101 long timeLeft = available.awaitNanos(delay);
1102 nanos -= delay - timeLeft;
1103 } finally {
1104 if (leader == thisThread)
1105 leader = null;
1106 }
1107 }
1108 }
1109 }
1110 } finally {
1111 if (leader == null && queue[0] != null)
1112 available.signal();
1113 lock.unlock();
1114 }
1115 }
1116
1117 public void clear() {
1118 final ReentrantLock lock = this.lock;
1119 lock.lock();
1120 try {
1121 for (int i = 0; i < size; i++) {
1122 RunnableScheduledFuture t = queue[i];
1123 if (t != null) {
1124 queue[i] = null;
1125 setIndex(t, -1);
1126 }
1127 }
1128 size = 0;
1129 } finally {
1130 lock.unlock();
1131 }
1132 }
1133
1134 /**
1135 * Return and remove first element only if it is expired.
1136 * Used only by drainTo. Call only when holding lock.
1137 */
1138 private RunnableScheduledFuture pollExpired() {
1139 RunnableScheduledFuture first = queue[0];
1140 if (first == null || first.getDelay(TimeUnit.NANOSECONDS) > 0)
1141 return null;
1142 return finishPoll(first);
1143 }
1144
1145 public int drainTo(Collection<? super Runnable> c) {
1146 if (c == null)
1147 throw new NullPointerException();
1148 if (c == this)
1149 throw new IllegalArgumentException();
1150 final ReentrantLock lock = this.lock;
1151 lock.lock();
1152 try {
1153 RunnableScheduledFuture first;
1154 int n = 0;
1155 while ((first = pollExpired()) != null) {
1156 c.add(first);
1157 ++n;
1158 }
1159 return n;
1160 } finally {
1161 lock.unlock();
1162 }
1163 }
1164
1165 public int drainTo(Collection<? super Runnable> c, int maxElements) {
1166 if (c == null)
1167 throw new NullPointerException();
1168 if (c == this)
1169 throw new IllegalArgumentException();
1170 if (maxElements <= 0)
1171 return 0;
1172 final ReentrantLock lock = this.lock;
1173 lock.lock();
1174 try {
1175 RunnableScheduledFuture first;
1176 int n = 0;
1177 while (n < maxElements && (first = pollExpired()) != null) {
1178 c.add(first);
1179 ++n;
1180 }
1181 return n;
1182 } finally {
1183 lock.unlock();
1184 }
1185 }
1186
1187 public Object[] toArray() {
1188 final ReentrantLock lock = this.lock;
1189 lock.lock();
1190 try {
1191 return Arrays.copyOf(queue, size, Object[].class);
1192 } finally {
1193 lock.unlock();
1194 }
1195 }
1196
1197 @SuppressWarnings("unchecked")
1198 public <T> T[] toArray(T[] a) {
1199 final ReentrantLock lock = this.lock;
1200 lock.lock();
1201 try {
1202 if (a.length < size)
1203 return (T[]) Arrays.copyOf(queue, size, a.getClass());
1204 System.arraycopy(queue, 0, a, 0, size);
1205 if (a.length > size)
1206 a[size] = null;
1207 return a;
1208 } finally {
1209 lock.unlock();
1210 }
1211 }
1212
1213 public Iterator<Runnable> iterator() {
1214 return new Itr(Arrays.copyOf(queue, size));
1215 }
1216
1217 /**
1218 * Snapshot iterator that works off copy of underlying q array.
1219 */
1220 private class Itr implements Iterator<Runnable> {
1221 final RunnableScheduledFuture[] array;
1222 int cursor = 0; // index of next element to return
1223 int lastRet = -1; // index of last element, or -1 if no such
1224
1225 Itr(RunnableScheduledFuture[] array) {
1226 this.array = array;
1227 }
1228
1229 public boolean hasNext() {
1230 return cursor < array.length;
1231 }
1232
1233 public Runnable next() {
1234 if (cursor >= array.length)
1235 throw new NoSuchElementException();
1236 lastRet = cursor;
1237 return array[cursor++];
1238 }
1239
1240 public void remove() {
1241 if (lastRet < 0)
1242 throw new IllegalStateException();
1243 DelayedWorkQueue.this.remove(array[lastRet]);
1244 lastRet = -1;
1245 }
1246 }
1247 }
1248 }