ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.55
Committed: Mon Aug 1 15:26:40 2005 UTC (18 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.54: +755 -463 lines
Log Message:
Replace algorithms

File Contents

# User Rev Content
1 dl 1.2 /*
2 dl 1.55 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5 dl 1.29 * http://creativecommons.org/licenses/publicdomain
6 dl 1.2 */
7    
8 tim 1.1 package java.util.concurrent;
9 dl 1.8 import java.util.concurrent.locks.*;
10 dl 1.55 import java.util.concurrent.atomic.*;
11 tim 1.1 import java.util.*;
12    
13     /**
14 jsr166 1.52 * A {@linkplain BlockingQueue blocking queue} in which each insert
15     * operation must wait for a corresponding remove operation by another
16     * thread, and vice versa. A synchronous queue does not have any
17     * internal capacity, not even a capacity of one. You cannot
18     * <tt>peek</tt> at a synchronous queue because an element is only
19     * present when you try to remove it; you cannot insert an element
20     * (using any method) unless another thread is trying to remove it;
21     * you cannot iterate as there is nothing to iterate. The
22     * <em>head</em> of the queue is the element that the first queued
23     * inserting thread is trying to add to the queue; if there is no such
24     * queued thread then no element is available for removal and
25     * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
26     * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
27     * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
28     * does not permit <tt>null</tt> elements.
29 dl 1.18 *
30     * <p>Synchronous queues are similar to rendezvous channels used in
31     * CSP and Ada. They are well suited for handoff designs, in which an
32 dl 1.30 * object running in one thread must sync up with an object running
33 dl 1.18 * in another thread in order to hand it some information, event, or
34     * task.
35 dl 1.43 *
36     * <p> This class supports an optional fairness policy for ordering
37     * waiting producer and consumer threads. By default, this ordering
38     * is not guaranteed. However, a queue constructed with fairness set
39 dl 1.55 * to <tt>true</tt> grants threads access in FIFO order.
40 dl 1.43 *
41 dl 1.46 * <p>This class and its iterator implement all of the
42     * <em>optional</em> methods of the {@link Collection} and {@link
43 jsr166 1.48 * Iterator} interfaces.
44 dl 1.42 *
45     * <p>This class is a member of the
46     * <a href="{@docRoot}/../guide/collections/index.html">
47     * Java Collections Framework</a>.
48     *
49 dl 1.6 * @since 1.5
50     * @author Doug Lea
51 dl 1.24 * @param <E> the type of elements held in this collection
52 dl 1.23 */
53 dl 1.2 public class SynchronousQueue<E> extends AbstractQueue<E>
54 dl 1.55 implements BlockingQueue<E>, java.io.Serializable {
55 dl 1.15 private static final long serialVersionUID = -3223113410248163686L;
56 tim 1.1
57 dl 1.2 /*
58 dl 1.55 * This class implements extensions of the dual stack and dual
59     * queue algorithms described in "Nonblocking Concurrent Objects
60     * with Condition Synchronization", by W. N. Scherer III and
61     * M. L. Scott. 18th Annual Conf. on Distributed Computing,
62     * Oct. 2004 (see also
63     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65     * queue for fair mode. The performance of the two is generally
66     * similar. Fifo usually supports higher throughput under
67     * contention but Lifo maintains higher thread locality in common
68     * applications.
69     *
70     * A dual queue (and similarly stack) is one that at any given
71     * time either holds "data" -- items provided by put operations,
72     * or "requests" -- slots representing take operations, or is
73     * empty. A call to "fulfill" (i.e., a call requesting an item
74     * from a queue holding data or vice versa) dequeues a
75     * complementary node. The most interesting feature of these
76     * queues is that any operation can figure out which mode the
77     * queue is in, and act accordingly without needing locks.
78     *
79     * Both the queue and stack extend abstract class Transferer
80     * defining the single method transfer that does a put or a
81     * take. These are unified into a single method because in dual
82     * data structures, the put and take operations are symmetrical,
83     * so nearly all code can be combined. The resulting transfer
84     * methods are on the long side, but are easier to follow than
85     * they would be if broken up into nearly-duplicated parts.
86     *
87     * The queue and stack data structures share many conceptual
88     * similarities but very few concrete details. For simplicity,
89     * they are kept distinct so that they can later evolve
90     * separately.
91     *
92     * The algorithms here differ from the versions in the above paper
93     * in extending them for use in synchronous queues, as well as
94     * dealing with cancellation. The main differences include:
95     *
96     * 1. The orginal algorithms used bit-marked pointers, but
97     * the ones here use mode bits in nodes, leading to a number
98     * of further adaptations.
99     * 2. SynchronousQueues must block threads waiting to become
100     * fulfilled.
101     * 3. Nodes/threads that have been cancelled due to timeouts
102     * or interruptions are cleaned out of the lists to
103     * avoid garbage retention and memory depletion.
104     *
105     * Blocking is mainly accomplished using LockSupport park/unpark,
106     * except that nodes that appear to be the next ones to become
107     * fulfilled first spin a bit (on multiprocessors only). On very
108     * busy synchronous queues, spinning can dramatically improve
109     * throughput. And on less busy ones, the amount of spinning is
110     * small enough not to be noticeable.
111     *
112     * Cleaning is done in different ways in queues vs stacks. For
113     * queues, we can almost always remove a node immediately in O(1)
114     * time (modulo retries for consistency checks) when it is
115     * cancelled. But if it may be pinned as the current tail, it must
116     * wait until some subsequent cancellation. For stacks, we need a
117     * potentially O(n) traversal to be sure that we can remove the
118     * node, but this can run concurrently with other threads
119     * accessing the stack.
120     *
121     * While garbage collection takes care of most node reclamation
122     * issues that otherwise complicate nonblocking algorithms, care
123     * is made to "forget" references to data, other nodes, and
124     * threads that might be held on to long-term by blocked
125     * threads. In cases where setting to null would otherwise
126     * conflict with main algorithms, this is done by changing a
127     * node's link to now point to the node itself. This doesn't arise
128     * much for Stack nodes (because blocked threads do not hang on to
129     * old head pointers), but references in Queue nodes must be
130     * agressively forgotten to avoid reachability of everything any
131     * node has ever referred to since arrival.
132     */
133 dl 1.2
134 dl 1.43 /**
135 dl 1.55 * Shared internal API for dual stacks and queues.
136 dl 1.43 */
137 dl 1.55 static abstract class Transferer {
138     /**
139     * Perform a put or take.
140     * @param e if non-null, the item to be handed to a consumer;
141     * if null, requests that transfer return an item offered by
142     * producer.
143     * @param timed if this operation should timeout
144     * @param nanos the timeout, in nanoseconds
145     * @return if nonnull, the item provided or received; if null,
146     * the operation failed due to timeout or interrupt -- the
147     * caller can distinguish which of these occurred by checking
148     * Thread.interrupted.
149     */
150     abstract Object transfer(Object e, boolean timed, long nanos);
151 dl 1.43 }
152    
153 dl 1.55 /** The number of CPUs, for spin control */
154     static final int NCPUS = Runtime.getRuntime().availableProcessors();
155    
156 dl 1.43 /**
157 dl 1.55 * The number of times to spin before blocking in timed waits.
158     * The value is empirically derived -- it works well across a
159     * variety of processors and OSes. Emprically, the best value
160     * seems not to vary with number of CPUs (beyond 2) so is just
161     * a constant.
162 dl 1.43 */
163 dl 1.55 static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
164 dl 1.43
165     /**
166 dl 1.55 * The number of times to spin before blocking in untimed
167     * waits. This is greater than timed value because untimed
168     * waits spin faster since they don't need to check times on
169     * each spin.
170 dl 1.43 */
171 dl 1.55 static final int maxUntimedSpins = maxTimedSpins * 16;
172 dl 1.43
173     /**
174 dl 1.55 * The number of nanoseconds for which it is faster to spin
175     * rather than to use timed park. A rough estimate suffices.
176 dl 1.43 */
177 dl 1.55 static final long spinForTimeoutThreshold = 1000L;
178    
179     /** Dual stack */
180     static final class TransferStack extends Transferer {
181     /*
182     * This extends Scherer-Scott dual stack algorithm, differing,
183     * among other ways, by using "covering" nodes rather than
184     * bit-marked pointers: Fulfilling operations push on marker
185     * nodes (with FULFILLING bit set in mode) to reserve a spot
186     * to match a waiting node.
187     */
188 dl 1.43
189 dl 1.55 /* Modes for SNodes, ORed together in node fields */
190     /** Node represents an unfulfilled consumer */
191     static final int REQUEST = 0;
192     /** Node represents an unfulfilled producer */
193     static final int DATA = 1;
194     /** Node is fulfilling another unfulfilled DATA or REQUEST */
195     static final int FULFILLING = 2;
196    
197     /** Return true if m has fulfilling bit set */
198     static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199    
200     /** Node class for TransferStacks. */
201     static final class SNode {
202     volatile SNode next; // next node in stack
203     volatile SNode match; // the node matched to this
204     volatile Thread waiter; // to control park/unpark
205     Object item; // data; or null for REQUESTs
206     int mode;
207     // Note: item and mode fields don't need to be volatile
208     // since they are always written before, and read after,
209     // other volatile/atomic operations.
210    
211     SNode(Object item) {
212     this.item = item;
213     }
214    
215     static final AtomicReferenceFieldUpdater<SNode, SNode>
216     nextUpdater = AtomicReferenceFieldUpdater.newUpdater
217     (SNode.class, SNode.class, "next");
218    
219     boolean casNext(SNode cmp, SNode val) {
220     return (cmp == next &&
221     nextUpdater.compareAndSet(this, cmp, val));
222     }
223    
224     static final AtomicReferenceFieldUpdater<SNode, SNode>
225     matchUpdater = AtomicReferenceFieldUpdater.newUpdater
226     (SNode.class, SNode.class, "match");
227    
228     /**
229     * Try to match node s to this node, if so, waking up
230     * thread. Fulfillers call tryMatch to identify their
231     * waiters. Waiters block until they have been
232     * matched.
233     * @param s the node to match
234     * @return true if successfully matched to s
235     */
236     boolean tryMatch(SNode s) {
237     if (match == null &&
238     matchUpdater.compareAndSet(this, null, s)) {
239     Thread w = waiter;
240     if (w != null) { // waiters need at most one unpark
241     waiter = null;
242     LockSupport.unpark(w);
243     }
244     return true;
245 dl 1.47 }
246 dl 1.55 return match == s;
247     }
248    
249     /**
250     * Try to cancel a wait by matching node to itself.
251     */
252     void tryCancel() {
253     matchUpdater.compareAndSet(this, null, this);
254     }
255    
256     boolean isCancelled() {
257     return match == this;
258 dl 1.47 }
259     }
260 dl 1.43
261 dl 1.55 /** The head (top) of the stack */
262     volatile SNode head;
263    
264     static final AtomicReferenceFieldUpdater<TransferStack, SNode>
265     headUpdater = AtomicReferenceFieldUpdater.newUpdater
266     (TransferStack.class, SNode.class, "head");
267    
268     boolean casHead(SNode h, SNode nh) {
269     return h == head && headUpdater.compareAndSet(this, h, nh);
270     }
271 dl 1.2
272 dl 1.55 /**
273     * Create or reset fields of a node. Called only from transfer
274     * where the node to push on stack is lazily created and
275     * reused when possible to help reduce intervals between reads
276     * and CASes of head and to avoid surges of garbage when CASes
277     * to push nodes fail due to contention.
278     */
279     static SNode snode(SNode s, Object e, SNode next, int mode) {
280     if (s == null) s = new SNode(e);
281     s.mode = mode;
282     s.next = next;
283     return s;
284 dl 1.43 }
285    
286 dl 1.55 /**
287     * Put or take an item.
288     */
289     Object transfer(Object e, boolean timed, long nanos) {
290     /*
291     * Basic algorithm is to loop trying one of three actions:
292     *
293     * 1. If apparently empty or already containing nodes of same
294     * mode, try to push node on stack and wait for a match,
295     * returning it, or null if cancelled.
296     *
297     * 2. If apparently containing node of complementary mode,
298     * try to push a fulfilling node on to stack, match
299     * with corresponding waiting node, pop both from
300     * stack, and return matched item. The matching or
301     * unlinking might not actually be necessary because of
302     * another threads performing action 3:
303     *
304     * 3. If top of stack already holds another fulfilling node,
305     * help it out by doing its match and/or pop
306     * operations, and then continue. The code for helping
307     * is essentially the same as for fulfilling, except
308     * that it doesn't return the item.
309     */
310    
311     SNode s = null; // constructed/reused as needed
312     int mode = (e == null)? REQUEST : DATA;
313    
314     for (;;) {
315     SNode h = head;
316     if (h == null || h.mode == mode) { // empty or same-mode
317     if (timed && nanos <= 0) { // can't wait
318     if (h != null && h.isCancelled())
319     casHead(h, h.next); // pop cancelled node
320     else
321     return null;
322     } else if (casHead(h, s = snode(s, e, h, mode))) {
323     SNode m = awaitFulfill(s, timed, nanos);
324     if (m == s) { // wait was cancelled
325     clean(s);
326     return null;
327     }
328     if ((h = head) != null && h.next == s)
329     casHead(h, s.next); // help s's fulfiller
330     return mode == REQUEST? m.item : s.item;
331     }
332     } else if (!isFulfilling(h.mode)) { // try to fulfill
333     if (h.isCancelled()) // already cancelled
334     casHead(h, h.next); // pop and retry
335     else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
336     for (;;) { // loop until matched or waiters disappear
337     SNode m = s.next; // m is s's match
338     if (m == null) { // all waiters are gone
339     casHead(s, null); // pop fulfill node
340     s = null; // use new node next time
341     break; // restart main loop
342     }
343     SNode mn = m.next;
344     if (m.tryMatch(s)) {
345     casHead(s, mn); // pop both s and m
346     return (mode == REQUEST)? m.item : s.item;
347     } else // lost match
348     s.casNext(m, mn); // help unlink
349     }
350     }
351     } else { // help a fulfiller
352     SNode m = h.next; // m is h's match
353     if (m == null) // waiter is gone
354     casHead(h, null); // pop fulfilling node
355     else {
356     SNode mn = m.next;
357     if (m.tryMatch(h)) // help match
358     casHead(h, mn); // pop both h and m
359     else // lost match
360     h.casNext(m, mn); // help unlink
361     }
362 dl 1.47 }
363     }
364     }
365    
366 dl 1.55 /**
367     * Spin/block until node s is matched by a fulfill operation.
368     * @param s the waiting node
369     * @param timed true if timed wait
370     * @param nanos timeout value
371     * @return matched node, or s if cancelled
372     */
373     SNode awaitFulfill(SNode s, boolean timed, long nanos) {
374     /*
375     * When a node/thread is about to block, it sets its waiter
376     * field and then rechecks state at least one more time
377     * before actually parking, thus covering race vs
378     * fulfiller noticing that waiter is nonnull so should be
379     * woken.
380     *
381     * When invoked by nodes that appear at the point of call
382     * to be at the head of the stack, calls to park are
383     * preceded by spins to avoid blocking when producers and
384     * consumers are arriving very close in time. This can
385     * happen enough to bother only on multiprocessors.
386     *
387     * The order of checks for returning out of main loop
388     * reflects fact that interrupts have precedence over
389     * normal returns, which have precedence over
390     * timeouts. (So, on timeout, one last check for match is
391     * done before giving up.) Except that calls from untimed
392     * SynchronousQueue.{poll/offer} don't check interrupts
393     * and don't wait at all, so are trapped in transfer
394     * method rather than calling awaitFulfill.
395     */
396     long lastTime = (timed)? System.nanoTime() : 0;
397     Thread w = Thread.currentThread();
398     SNode h = head;
399     int spins = (shouldSpin(s)?
400     (timed? maxTimedSpins : maxUntimedSpins) : 0);
401     for (;;) {
402     if (w.isInterrupted())
403     s.tryCancel();
404     SNode m = s.match;
405     if (m != null)
406     return m;
407     if (timed) {
408     long now = System.nanoTime();
409     nanos -= now - lastTime;
410     lastTime = now;
411     if (nanos <= 0) {
412     s.tryCancel();
413     continue;
414     }
415     }
416     if (spins > 0)
417     spins = shouldSpin(s)? (spins-1) : 0;
418     else if (s.waiter == null)
419     s.waiter = w; // establish waiter so can park next iter
420     else if (!timed)
421     LockSupport.park(this);
422     else if (nanos > spinForTimeoutThreshold)
423     LockSupport.parkNanos(this, nanos);
424 dl 1.47 }
425     }
426 dl 1.2
427 dl 1.55 /**
428     * Return true if node s is at head or there is an active
429     * fulfiller.
430     */
431     boolean shouldSpin(SNode s) {
432     SNode h = head;
433     return (h == null || h == s || isFulfilling(h.mode));
434     }
435    
436     /**
437     * Unlink s from the stack
438     */
439     void clean(SNode s) {
440     s.item = null; // forget item
441     s.waiter = null; // forget thread
442    
443     /*
444     * At worst we may need to traverse entire stack to unlink
445     * s. If there are multiple concurrent calls to clean, we
446     * might not see s if another thread has already removed
447     * it. But we can stop when we see any node known to
448     * follow s. We use s.next unless it too is cancelled, in
449     * which case we try the node one past. We don't check any
450     * futher because we don't want to doubly traverse just to
451     * find sentinel.
452     */
453    
454     SNode past = s.next;
455     if (past != null && past.isCancelled())
456     past = past.next;
457    
458     // Absorb cancelled nodes at head
459     SNode p;
460     while ((p = head) != null && p != past && p.isCancelled())
461     casHead(p, p.next);
462    
463     // Unsplice embedded nodes
464     while (p != null && p != past) {
465     SNode n = p.next;
466     if (n != null && n.isCancelled())
467     p.casNext(n, n.next);
468     else
469     p = n;
470 dl 1.47 }
471     }
472     }
473 jsr166 1.48
474 dl 1.55 /** Dual Queue. */
475     static final class TransferQueue extends Transferer {
476     /*
477     * This extends Scherer-Scott dual queue algorithm, differing,
478     * among other ways, by using modes within nodes rather than
479     * marked pointers. The algorithm is a little simpler than
480     * that for stacks because fulfillers do not need explicit
481     * nodes, and matching is done by CAS'ing QNode.item field
482     * from nonnull to null (for put) or vice versa (for take).
483     */
484 dl 1.53
485 dl 1.55 /** Node class for TransferQueue. */
486     static final class QNode {
487     volatile QNode next; // next node in queue
488     volatile Object item; // CAS'ed to or from null
489     volatile Thread waiter; // to control park/unpark
490     final boolean isData;
491 dl 1.35
492 dl 1.55 QNode(Object item, boolean isData) {
493     this.item = item;
494     this.isData = isData;
495     }
496 dl 1.35
497 dl 1.55 static final AtomicReferenceFieldUpdater<QNode, QNode>
498     nextUpdater = AtomicReferenceFieldUpdater.newUpdater
499     (QNode.class, QNode.class, "next");
500 dl 1.31
501 dl 1.55 boolean casNext(QNode cmp, QNode val) {
502     return (next == cmp &&
503     nextUpdater.compareAndSet(this, cmp, val));
504     }
505    
506     static final AtomicReferenceFieldUpdater<QNode, Object>
507     itemUpdater = AtomicReferenceFieldUpdater.newUpdater
508     (QNode.class, Object.class, "item");
509 dl 1.43
510 dl 1.55 boolean casItem(Object cmp, Object val) {
511     return (item == cmp &&
512     itemUpdater.compareAndSet(this, cmp, val));
513     }
514    
515     /**
516     * Try to cancel by CAS'ing ref to this as item.
517     */
518     void tryCancel(Object cmp) {
519     itemUpdater.compareAndSet(this, cmp, this);
520     }
521    
522     boolean isCancelled() {
523     return item == this;
524     }
525 dl 1.31 }
526    
527 dl 1.55 /** Head of queue */
528     transient volatile QNode head;
529     /** Tail of queue */
530     transient volatile QNode tail;
531 dl 1.31 /**
532 dl 1.55 * Reference to a cancelled node that might not yet have been
533     * unlinked from queue because it was the last inserted node
534     * when it cancelled.
535 dl 1.31 */
536 dl 1.55 transient volatile QNode cleanMe;
537    
538     TransferQueue() {
539     QNode h = new QNode(null, false); // initialize to dummy node.
540     head = h;
541     tail = h;
542 dl 1.31 }
543    
544 dl 1.55 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
545     headUpdater = AtomicReferenceFieldUpdater.newUpdater
546     (TransferQueue.class, QNode.class, "head");
547    
548 dl 1.31 /**
549 dl 1.55 * Try to cas nh as new head; if successful unlink
550     * old head's next node to avoid garbage retention.
551 dl 1.31 */
552 dl 1.55 void advanceHead(QNode h, QNode nh) {
553     if (h == head && headUpdater.compareAndSet(this, h, nh))
554     h.next = h; // forget old next
555 dl 1.31 }
556    
557 dl 1.55 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
558     tailUpdater = AtomicReferenceFieldUpdater.newUpdater
559     (TransferQueue.class, QNode.class, "tail");
560    
561 dl 1.31 /**
562 dl 1.55 * Try to cas nt as new tail.
563 dl 1.31 */
564 dl 1.55 void advanceTail(QNode t, QNode nt) {
565     if (tail == t)
566     tailUpdater.compareAndSet(this, t, nt);
567 dl 1.31 }
568 dl 1.2
569 dl 1.55 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
570     cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
571     (TransferQueue.class, QNode.class, "cleanMe");
572 dl 1.2
573     /**
574 dl 1.55 * Try to CAS cleanMe slot
575 dl 1.2 */
576 dl 1.55 boolean casCleanMe(QNode cmp, QNode val) {
577     return (cleanMe == cmp &&
578     cleanMeUpdater.compareAndSet(this, cmp, val));
579 dl 1.35 }
580    
581     /**
582 dl 1.55 * Put or take an item.
583 dl 1.35 */
584 dl 1.55 Object transfer(Object e, boolean timed, long nanos) {
585     /* Basic algorithm is to loop trying to take either of
586     * two actions:
587     *
588     * 1. If queue apparently empty or holding same-mode nodes,
589     * try to add node to queue of waiters, wait to be
590     * fulfilled (or cancelled) and return matching item.
591     *
592     * 2. If queue apparently contains waiting items, and this
593     * call is of complementary mode, try to fulfill by CAS'ing
594     * item field of waiting node and dequeuing it, and then
595     * returning matching item.
596     *
597     * In each case, along the way, check for and try to help
598     * advance head and tail on behalf of other stalled/slow
599     * threads.
600     *
601     * The loop starts off with a null check guarding against
602     * seeing uninitialized head or tail values. This never
603     * happens in current SynchronousQueue, but could if
604     * callers held non-volatile/final ref to the
605     * transferer. The check is here anyway because it places
606     * null checks at top of loop, which is usually faster
607     * than having them implicitly interspersed.
608     */
609    
610     QNode s = null; // constructed/reused as needed
611     boolean isData = (e != null);
612    
613     for (;;) {
614     QNode t = tail;
615     QNode h = head;
616     if (t == null || h == null) // saw unitialized values
617     continue; // spin
618    
619     if (h == t || t.isData == isData) { // empty or same-mode
620     QNode tn = t.next;
621     if (t != tail) // inconsistent read
622     continue;
623     if (tn != null) { // lagging tail
624     advanceTail(t, tn);
625     continue;
626     }
627     if (timed && nanos <= 0) // can't wait
628     return null;
629     if (s == null)
630     s = new QNode(e, isData);
631     if (!t.casNext(null, s)) // failed to link in
632     continue;
633    
634     advanceTail(t, s); // swing tail and wait
635     Object x = awaitFulfill(s, e, timed, nanos);
636     if (x == s) { // wait was cancelled
637     clean(t, s);
638     return null;
639     }
640    
641     if (s.next != s) { // not already unlinked
642     advanceHead(t, s); // unlink
643     if (x != null) // and forget fields
644     s.item = s;
645     s.waiter = null;
646     }
647     return (x != null)? x : e;
648    
649     } else { // complementary-mode
650     QNode m = h.next; // node to fulfill
651     if (t != tail || m == null || h != head)
652     continue; // inconsistent read
653    
654     Object x = m.item;
655     if (isData == (x != null) || // m already fulfilled
656     x == m || // m cancelled
657     !m.casItem(x, e)) { // lost CAS
658     advanceHead(h, m); // dequeue and retry
659     continue;
660     }
661    
662     advanceHead(h, m); // successfully fulfilled
663     LockSupport.unpark(m.waiter);
664     return (x != null)? x : e;
665     }
666 dl 1.35 }
667     }
668    
669     /**
670 dl 1.55 * Spin/block until node s is fulfilled.
671     * @param s the waiting node
672     * @param e the comparison value for checking match
673     * @param timed true if timed wait
674     * @param nanos timeout value
675     * @return matched item, or s if cancelled
676 dl 1.35 */
677 dl 1.55 Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
678     /* Same idea as TransferStack.awaitFulfill */
679     long lastTime = (timed)? System.nanoTime() : 0;
680     Thread w = Thread.currentThread();
681     int spins = ((head.next == s) ?
682     (timed? maxTimedSpins : maxUntimedSpins) : 0);
683     for (;;) {
684     if (w.isInterrupted())
685     s.tryCancel(e);
686     Object x = s.item;
687     if (x != e)
688     return x;
689     if (timed) {
690     long now = System.nanoTime();
691     nanos -= now - lastTime;
692     lastTime = now;
693     if (nanos <= 0) {
694     s.tryCancel(e);
695     continue;
696     }
697     }
698     if (spins > 0)
699     --spins;
700     else if (s.waiter == null)
701     s.waiter = w;
702     else if (!timed)
703     LockSupport.park(this);
704     else if (nanos > spinForTimeoutThreshold)
705     LockSupport.parkNanos(this, nanos);
706 dl 1.35 }
707 dl 1.31 }
708    
709     /**
710 dl 1.55 * Get rid of cancelled node s with original predecessor pred.
711 dl 1.31 */
712 dl 1.55 void clean(QNode pred, QNode s) {
713     s.waiter = null; // forget thread
714     /*
715     * At any given time, exactly one node on list cannot be
716     * deleted -- the last inserted node. To accommodate this,
717     * if we cannot delete s, we save its predecessor as
718     * "cleanMe", deleting the previously saved version
719     * first. At least one of node s or the node previously
720     * saved can always be deleted, so this always terminates.
721     */
722     while (pred.next == s) { // Return early if already unlinked
723     QNode h = head;
724     QNode hn = h.next; // Absorb cancelled first node as head
725     if (hn != null && hn.isCancelled()) {
726     advanceHead(h, hn);
727     continue;
728     }
729     QNode t = tail; // Ensure consistent read for tail
730     if (t == h)
731     return;
732     QNode tn = t.next;
733     if (t != tail)
734     continue;
735     if (tn != null) {
736     advanceTail(t, tn);
737     continue;
738     }
739     if (s != t) { // If not tail, try to unsplice
740     QNode sn = s.next;
741     if (sn == s || pred.casNext(s, sn))
742     return;
743     }
744     QNode dp = cleanMe;
745     if (dp != null) { // Try unlinking previous cancelled node
746     QNode d = dp.next;
747     QNode dn;
748     if (d == null || // d is gone or
749     d == dp || // d is off list or
750     !d.isCancelled() || // d not cancelled or
751     (d != t && // d not tail and
752     (dn = d.next) != null && // has successor
753     dn != d && // that is on list
754     dp.casNext(d, dn))) // d unspliced
755     casCleanMe(dp, null);
756     if (dp == pred)
757     return; // s is already saved node
758     } else if (casCleanMe(null, pred))
759     return; // Postpone cleaning s
760 dl 1.2 }
761     }
762 dl 1.55 }
763    
764     /**
765     * The transferer. Set only in constructor, but cannot be declared
766     * as final without further complicating serialization. Since
767     * this is accessed only once per public method, there isn't a
768     * noticeable performance penalty for using volatile instead of
769     * final here.
770     */
771     private transient volatile Transferer transferer;
772    
773     /**
774     * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
775     */
776     public SynchronousQueue() {
777     this(false);
778     }
779 dl 1.2
780 dl 1.55 /**
781     * Creates a <tt>SynchronousQueue</tt> with specified fairness policy.
782     * @param fair if true, waiting threads contend in FIFO order for access;
783     * otherwise the order is unspecified.
784     */
785     public SynchronousQueue(boolean fair) {
786     transferer = (fair)? new TransferQueue() : new TransferStack();
787 dl 1.2 }
788    
789     /**
790 dl 1.35 * Adds the specified element to this queue, waiting if necessary for
791     * another thread to receive it.
792 jsr166 1.50 *
793     * @throws InterruptedException {@inheritDoc}
794     * @throws NullPointerException {@inheritDoc}
795 tim 1.10 */
796 dl 1.55 public void put(E o) throws InterruptedException {
797     if (o == null) throw new NullPointerException();
798     if (transferer.transfer(o, false, 0) == null)
799     throw new InterruptedException();
800 tim 1.1 }
801    
802 dholmes 1.11 /**
803 dl 1.20 * Inserts the specified element into this queue, waiting if necessary
804 dl 1.18 * up to the specified wait time for another thread to receive it.
805 jsr166 1.50 *
806     * @return <tt>true</tt> if successful, or <tt>false</tt> if the
807     * specified waiting time elapses before a consumer appears.
808     * @throws InterruptedException {@inheritDoc}
809     * @throws NullPointerException {@inheritDoc}
810 dholmes 1.11 */
811 dl 1.55 public boolean offer(E o, long timeout, TimeUnit unit)
812     throws InterruptedException {
813     if (o == null) throw new NullPointerException();
814     if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
815     return true;
816     if (!Thread.interrupted())
817     return false;
818     throw new InterruptedException();
819     }
820    
821     /**
822     * Inserts the specified element into this queue, if another thread is
823     * waiting to receive it.
824     *
825     * @param e the element to add
826     * @return <tt>true</tt> if the element was added to this queue, else
827     * <tt>false</tt>
828     * @throws NullPointerException if the specified element is null
829     */
830     public boolean offer(E e) {
831 jsr166 1.49 if (e == null) throw new NullPointerException();
832 dl 1.55 return transferer.transfer(e, true, 0) != null;
833 tim 1.1 }
834    
835 dholmes 1.11 /**
836     * Retrieves and removes the head of this queue, waiting if necessary
837     * for another thread to insert it.
838 jsr166 1.50 *
839 dholmes 1.11 * @return the head of this queue
840 jsr166 1.50 * @throws InterruptedException {@inheritDoc}
841 dholmes 1.11 */
842 dl 1.2 public E take() throws InterruptedException {
843 dl 1.55 Object e = transferer.transfer(null, false, 0);
844     if (e != null)
845     return (E)e;
846     throw new InterruptedException();
847 tim 1.1 }
848 dl 1.2
849 dholmes 1.11 /**
850     * Retrieves and removes the head of this queue, waiting
851     * if necessary up to the specified wait time, for another thread
852     * to insert it.
853 jsr166 1.50 *
854 dl 1.18 * @return the head of this queue, or <tt>null</tt> if the
855 jsr166 1.50 * specified waiting time elapses before an element is present.
856     * @throws InterruptedException {@inheritDoc}
857 dholmes 1.11 */
858 dl 1.2 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
859 dl 1.55 Object e = transferer.transfer(null, true, unit.toNanos(timeout));
860     if (e != null || !Thread.interrupted())
861     return (E)e;
862     throw new InterruptedException();
863 tim 1.1 }
864 dl 1.2
865 dl 1.18 /**
866     * Retrieves and removes the head of this queue, if another thread
867     * is currently making an element available.
868     *
869     * @return the head of this queue, or <tt>null</tt> if no
870     * element is available.
871     */
872 dl 1.2 public E poll() {
873 dl 1.55 return (E)transferer.transfer(null, true, 0);
874 tim 1.1 }
875 dl 1.2
876 dl 1.5 /**
877 jsr166 1.48 * Always returns <tt>true</tt>.
878 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
879     * @return <tt>true</tt>
880 dl 1.5 */
881     public boolean isEmpty() {
882     return true;
883     }
884    
885     /**
886 dholmes 1.11 * Always returns zero.
887     * A <tt>SynchronousQueue</tt> has no internal capacity.
888 dl 1.55 * @return zero.
889 dl 1.5 */
890     public int size() {
891     return 0;
892 tim 1.1 }
893 dl 1.2
894 dl 1.5 /**
895 dholmes 1.11 * Always returns zero.
896     * A <tt>SynchronousQueue</tt> has no internal capacity.
897 dl 1.55 * @return zero.
898 dl 1.5 */
899     public int remainingCapacity() {
900     return 0;
901     }
902    
903     /**
904 dholmes 1.11 * Does nothing.
905     * A <tt>SynchronousQueue</tt> has no internal capacity.
906     */
907 dl 1.55 public void clear() {
908     }
909 dholmes 1.11
910     /**
911     * Always returns <tt>false</tt>.
912     * A <tt>SynchronousQueue</tt> has no internal capacity.
913 dl 1.55 * @param o the element
914 dholmes 1.11 * @return <tt>false</tt>
915     */
916     public boolean contains(Object o) {
917     return false;
918     }
919    
920     /**
921 dl 1.18 * Always returns <tt>false</tt>.
922     * A <tt>SynchronousQueue</tt> has no internal capacity.
923     *
924     * @param o the element to remove
925     * @return <tt>false</tt>
926     */
927     public boolean remove(Object o) {
928     return false;
929     }
930    
931     /**
932 dl 1.55 * Returns <tt>false</tt> unless given collection is empty.
933 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
934 dl 1.18 * @param c the collection
935 dl 1.55 * @return <tt>false</tt> unless given collection is empty
936 dholmes 1.11 */
937 dl 1.12 public boolean containsAll(Collection<?> c) {
938 dl 1.16 return c.isEmpty();
939 dholmes 1.11 }
940    
941     /**
942     * Always returns <tt>false</tt>.
943     * A <tt>SynchronousQueue</tt> has no internal capacity.
944 dl 1.18 * @param c the collection
945 dholmes 1.11 * @return <tt>false</tt>
946     */
947 dl 1.12 public boolean removeAll(Collection<?> c) {
948 dholmes 1.11 return false;
949     }
950    
951     /**
952     * Always returns <tt>false</tt>.
953     * A <tt>SynchronousQueue</tt> has no internal capacity.
954 dl 1.18 * @param c the collection
955 dholmes 1.11 * @return <tt>false</tt>
956     */
957 dl 1.12 public boolean retainAll(Collection<?> c) {
958 dholmes 1.11 return false;
959     }
960    
961     /**
962 jsr166 1.48 * Always returns <tt>null</tt>.
963 dholmes 1.11 * A <tt>SynchronousQueue</tt> does not return elements
964 dl 1.5 * unless actively waited on.
965 dholmes 1.11 * @return <tt>null</tt>
966 dl 1.5 */
967     public E peek() {
968     return null;
969     }
970    
971     static class EmptyIterator<E> implements Iterator<E> {
972 dl 1.2 public boolean hasNext() {
973     return false;
974     }
975     public E next() {
976     throw new NoSuchElementException();
977     }
978     public void remove() {
979 dl 1.17 throw new IllegalStateException();
980 dl 1.2 }
981 tim 1.1 }
982 dl 1.2
983 dl 1.5 /**
984 dl 1.18 * Returns an empty iterator in which <tt>hasNext</tt> always returns
985 tim 1.13 * <tt>false</tt>.
986     *
987 dholmes 1.11 * @return an empty iterator
988 dl 1.5 */
989 dl 1.2 public Iterator<E> iterator() {
990 dl 1.5 return new EmptyIterator<E>();
991 tim 1.1 }
992    
993 dl 1.5 /**
994 dholmes 1.11 * Returns a zero-length array.
995     * @return a zero-length array
996 dl 1.5 */
997 dl 1.3 public Object[] toArray() {
998 dl 1.25 return new Object[0];
999 tim 1.1 }
1000    
1001 dholmes 1.11 /**
1002     * Sets the zeroeth element of the specified array to <tt>null</tt>
1003     * (if the array has non-zero length) and returns it.
1004 jsr166 1.50 *
1005 dl 1.40 * @param a the array
1006 dholmes 1.11 * @return the specified array
1007 jsr166 1.50 * @throws NullPointerException if the specified array is null
1008 dholmes 1.11 */
1009 dl 1.2 public <T> T[] toArray(T[] a) {
1010     if (a.length > 0)
1011     a[0] = null;
1012     return a;
1013     }
1014 dl 1.21
1015 jsr166 1.50 /**
1016     * @throws UnsupportedOperationException {@inheritDoc}
1017     * @throws ClassCastException {@inheritDoc}
1018     * @throws NullPointerException {@inheritDoc}
1019     * @throws IllegalArgumentException {@inheritDoc}
1020     */
1021 dl 1.21 public int drainTo(Collection<? super E> c) {
1022     if (c == null)
1023     throw new NullPointerException();
1024     if (c == this)
1025     throw new IllegalArgumentException();
1026     int n = 0;
1027     E e;
1028     while ( (e = poll()) != null) {
1029     c.add(e);
1030     ++n;
1031     }
1032     return n;
1033     }
1034    
1035 jsr166 1.50 /**
1036     * @throws UnsupportedOperationException {@inheritDoc}
1037     * @throws ClassCastException {@inheritDoc}
1038     * @throws NullPointerException {@inheritDoc}
1039     * @throws IllegalArgumentException {@inheritDoc}
1040     */
1041 dl 1.21 public int drainTo(Collection<? super E> c, int maxElements) {
1042     if (c == null)
1043     throw new NullPointerException();
1044     if (c == this)
1045     throw new IllegalArgumentException();
1046     int n = 0;
1047     E e;
1048     while (n < maxElements && (e = poll()) != null) {
1049     c.add(e);
1050     ++n;
1051     }
1052     return n;
1053     }
1054 dl 1.55
1055     /*
1056     * To cope with serialization strategy in the 1.5 version of
1057     * SynchronousQueue, we declare some unused classes and fields
1058     * that exist solely to enable serializability across versions.
1059     * These fields are never used, so are initialized only if this
1060     * object is ever serialized or deserialized.
1061     */
1062    
1063     static class WaitQueue implements java.io.Serializable { }
1064     static class LifoWaitQueue extends WaitQueue {
1065     private static final long serialVersionUID = -3633113410248163686L;
1066     }
1067     static class FifoWaitQueue extends WaitQueue {
1068     private static final long serialVersionUID = -3623113410248163686L;
1069     }
1070     private ReentrantLock qlock;
1071     private WaitQueue waitingProducers;
1072     private WaitQueue waitingConsumers;
1073    
1074     /**
1075     * Save the state to a stream (that is, serialize it).
1076     *
1077     * @param s the stream
1078     */
1079     private void writeObject(java.io.ObjectOutputStream s)
1080     throws java.io.IOException {
1081     boolean fair = transferer instanceof TransferQueue;
1082     if (fair) {
1083     qlock = new ReentrantLock(true);
1084     waitingProducers = new FifoWaitQueue();
1085     waitingConsumers = new FifoWaitQueue();
1086     }
1087     else {
1088     qlock = new ReentrantLock();
1089     waitingProducers = new LifoWaitQueue();
1090     waitingConsumers = new LifoWaitQueue();
1091     }
1092     s.defaultWriteObject();
1093     }
1094    
1095     private void readObject(final java.io.ObjectInputStream s)
1096     throws java.io.IOException, ClassNotFoundException {
1097     s.defaultReadObject();
1098     if (waitingProducers instanceof FifoWaitQueue)
1099     transferer = new TransferQueue();
1100     else
1101     transferer = new TransferStack();
1102     }
1103    
1104 tim 1.1 }