ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.58
Committed: Thu Aug 18 20:44:14 2005 UTC (18 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.57: +18 -18 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.2 /*
2 dl 1.55 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5 dl 1.29 * http://creativecommons.org/licenses/publicdomain
6 dl 1.2 */
7    
8 tim 1.1 package java.util.concurrent;
9 dl 1.8 import java.util.concurrent.locks.*;
10 dl 1.55 import java.util.concurrent.atomic.*;
11 tim 1.1 import java.util.*;
12    
13     /**
14 jsr166 1.52 * A {@linkplain BlockingQueue blocking queue} in which each insert
15     * operation must wait for a corresponding remove operation by another
16     * thread, and vice versa. A synchronous queue does not have any
17     * internal capacity, not even a capacity of one. You cannot
18     * <tt>peek</tt> at a synchronous queue because an element is only
19     * present when you try to remove it; you cannot insert an element
20     * (using any method) unless another thread is trying to remove it;
21     * you cannot iterate as there is nothing to iterate. The
22     * <em>head</em> of the queue is the element that the first queued
23     * inserting thread is trying to add to the queue; if there is no such
24     * queued thread then no element is available for removal and
25     * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
26     * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
27     * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
28     * does not permit <tt>null</tt> elements.
29 dl 1.18 *
30     * <p>Synchronous queues are similar to rendezvous channels used in
31     * CSP and Ada. They are well suited for handoff designs, in which an
32 dl 1.30 * object running in one thread must sync up with an object running
33 dl 1.18 * in another thread in order to hand it some information, event, or
34     * task.
35 dl 1.43 *
36     * <p> This class supports an optional fairness policy for ordering
37     * waiting producer and consumer threads. By default, this ordering
38     * is not guaranteed. However, a queue constructed with fairness set
39 jsr166 1.58 * to <tt>true</tt> grants threads access in FIFO order.
40 dl 1.43 *
41 dl 1.46 * <p>This class and its iterator implement all of the
42     * <em>optional</em> methods of the {@link Collection} and {@link
43 jsr166 1.48 * Iterator} interfaces.
44 dl 1.42 *
45     * <p>This class is a member of the
46     * <a href="{@docRoot}/../guide/collections/index.html">
47     * Java Collections Framework</a>.
48     *
49 dl 1.6 * @since 1.5
50 dl 1.56 * @author Doug Lea and Bill Scherer and Michael Scott
51 dl 1.24 * @param <E> the type of elements held in this collection
52 dl 1.23 */
53 dl 1.2 public class SynchronousQueue<E> extends AbstractQueue<E>
54 dl 1.55 implements BlockingQueue<E>, java.io.Serializable {
55 dl 1.15 private static final long serialVersionUID = -3223113410248163686L;
56 tim 1.1
57 dl 1.2 /*
58 dl 1.55 * This class implements extensions of the dual stack and dual
59     * queue algorithms described in "Nonblocking Concurrent Objects
60     * with Condition Synchronization", by W. N. Scherer III and
61     * M. L. Scott. 18th Annual Conf. on Distributed Computing,
62     * Oct. 2004 (see also
63     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65     * queue for fair mode. The performance of the two is generally
66     * similar. Fifo usually supports higher throughput under
67     * contention but Lifo maintains higher thread locality in common
68     * applications.
69     *
70     * A dual queue (and similarly stack) is one that at any given
71     * time either holds "data" -- items provided by put operations,
72     * or "requests" -- slots representing take operations, or is
73     * empty. A call to "fulfill" (i.e., a call requesting an item
74     * from a queue holding data or vice versa) dequeues a
75     * complementary node. The most interesting feature of these
76     * queues is that any operation can figure out which mode the
77     * queue is in, and act accordingly without needing locks.
78     *
79     * Both the queue and stack extend abstract class Transferer
80     * defining the single method transfer that does a put or a
81     * take. These are unified into a single method because in dual
82     * data structures, the put and take operations are symmetrical,
83     * so nearly all code can be combined. The resulting transfer
84     * methods are on the long side, but are easier to follow than
85     * they would be if broken up into nearly-duplicated parts.
86     *
87     * The queue and stack data structures share many conceptual
88     * similarities but very few concrete details. For simplicity,
89     * they are kept distinct so that they can later evolve
90     * separately.
91     *
92     * The algorithms here differ from the versions in the above paper
93     * in extending them for use in synchronous queues, as well as
94     * dealing with cancellation. The main differences include:
95     *
96     * 1. The orginal algorithms used bit-marked pointers, but
97     * the ones here use mode bits in nodes, leading to a number
98     * of further adaptations.
99     * 2. SynchronousQueues must block threads waiting to become
100     * fulfilled.
101 jsr166 1.58 * 3. Support for cancellation via timeout and interrupts,
102     * including cleaning out cancelled nodes/threads
103 dl 1.56 * from lists to avoid garbage retention and memory depletion.
104 dl 1.55 *
105     * Blocking is mainly accomplished using LockSupport park/unpark,
106     * except that nodes that appear to be the next ones to become
107     * fulfilled first spin a bit (on multiprocessors only). On very
108     * busy synchronous queues, spinning can dramatically improve
109     * throughput. And on less busy ones, the amount of spinning is
110     * small enough not to be noticeable.
111     *
112     * Cleaning is done in different ways in queues vs stacks. For
113     * queues, we can almost always remove a node immediately in O(1)
114     * time (modulo retries for consistency checks) when it is
115     * cancelled. But if it may be pinned as the current tail, it must
116     * wait until some subsequent cancellation. For stacks, we need a
117     * potentially O(n) traversal to be sure that we can remove the
118     * node, but this can run concurrently with other threads
119     * accessing the stack.
120     *
121     * While garbage collection takes care of most node reclamation
122     * issues that otherwise complicate nonblocking algorithms, care
123     * is made to "forget" references to data, other nodes, and
124     * threads that might be held on to long-term by blocked
125     * threads. In cases where setting to null would otherwise
126     * conflict with main algorithms, this is done by changing a
127     * node's link to now point to the node itself. This doesn't arise
128     * much for Stack nodes (because blocked threads do not hang on to
129     * old head pointers), but references in Queue nodes must be
130     * agressively forgotten to avoid reachability of everything any
131     * node has ever referred to since arrival.
132     */
133 dl 1.2
134 dl 1.43 /**
135 dl 1.55 * Shared internal API for dual stacks and queues.
136 dl 1.43 */
137 dl 1.55 static abstract class Transferer {
138     /**
139     * Perform a put or take.
140     * @param e if non-null, the item to be handed to a consumer;
141     * if null, requests that transfer return an item offered by
142     * producer.
143     * @param timed if this operation should timeout
144     * @param nanos the timeout, in nanoseconds
145     * @return if nonnull, the item provided or received; if null,
146     * the operation failed due to timeout or interrupt -- the
147     * caller can distinguish which of these occurred by checking
148     * Thread.interrupted.
149     */
150     abstract Object transfer(Object e, boolean timed, long nanos);
151 dl 1.43 }
152    
153 dl 1.55 /** The number of CPUs, for spin control */
154     static final int NCPUS = Runtime.getRuntime().availableProcessors();
155    
156 dl 1.43 /**
157 dl 1.55 * The number of times to spin before blocking in timed waits.
158     * The value is empirically derived -- it works well across a
159 dl 1.56 * variety of processors and OSes. Empirically, the best value
160 dl 1.55 * seems not to vary with number of CPUs (beyond 2) so is just
161     * a constant.
162 dl 1.43 */
163 dl 1.55 static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
164 dl 1.43
165     /**
166 dl 1.55 * The number of times to spin before blocking in untimed
167     * waits. This is greater than timed value because untimed
168     * waits spin faster since they don't need to check times on
169     * each spin.
170 dl 1.43 */
171 dl 1.55 static final int maxUntimedSpins = maxTimedSpins * 16;
172 dl 1.43
173     /**
174 dl 1.55 * The number of nanoseconds for which it is faster to spin
175     * rather than to use timed park. A rough estimate suffices.
176 dl 1.43 */
177 dl 1.55 static final long spinForTimeoutThreshold = 1000L;
178    
179     /** Dual stack */
180     static final class TransferStack extends Transferer {
181     /*
182     * This extends Scherer-Scott dual stack algorithm, differing,
183     * among other ways, by using "covering" nodes rather than
184     * bit-marked pointers: Fulfilling operations push on marker
185     * nodes (with FULFILLING bit set in mode) to reserve a spot
186     * to match a waiting node.
187     */
188 dl 1.43
189 dl 1.55 /* Modes for SNodes, ORed together in node fields */
190     /** Node represents an unfulfilled consumer */
191     static final int REQUEST = 0;
192     /** Node represents an unfulfilled producer */
193     static final int DATA = 1;
194     /** Node is fulfilling another unfulfilled DATA or REQUEST */
195     static final int FULFILLING = 2;
196    
197     /** Return true if m has fulfilling bit set */
198     static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199    
200     /** Node class for TransferStacks. */
201     static final class SNode {
202     volatile SNode next; // next node in stack
203     volatile SNode match; // the node matched to this
204     volatile Thread waiter; // to control park/unpark
205     Object item; // data; or null for REQUESTs
206     int mode;
207     // Note: item and mode fields don't need to be volatile
208     // since they are always written before, and read after,
209     // other volatile/atomic operations.
210    
211     SNode(Object item) {
212     this.item = item;
213     }
214    
215     static final AtomicReferenceFieldUpdater<SNode, SNode>
216     nextUpdater = AtomicReferenceFieldUpdater.newUpdater
217     (SNode.class, SNode.class, "next");
218    
219     boolean casNext(SNode cmp, SNode val) {
220     return (cmp == next &&
221     nextUpdater.compareAndSet(this, cmp, val));
222     }
223    
224     static final AtomicReferenceFieldUpdater<SNode, SNode>
225     matchUpdater = AtomicReferenceFieldUpdater.newUpdater
226     (SNode.class, SNode.class, "match");
227    
228     /**
229     * Try to match node s to this node, if so, waking up
230     * thread. Fulfillers call tryMatch to identify their
231     * waiters. Waiters block until they have been
232     * matched.
233     * @param s the node to match
234     * @return true if successfully matched to s
235     */
236     boolean tryMatch(SNode s) {
237     if (match == null &&
238     matchUpdater.compareAndSet(this, null, s)) {
239     Thread w = waiter;
240     if (w != null) { // waiters need at most one unpark
241     waiter = null;
242     LockSupport.unpark(w);
243     }
244     return true;
245 dl 1.47 }
246 dl 1.55 return match == s;
247     }
248    
249     /**
250 jsr166 1.58 * Try to cancel a wait by matching node to itself.
251 dl 1.55 */
252     void tryCancel() {
253     matchUpdater.compareAndSet(this, null, this);
254     }
255    
256     boolean isCancelled() {
257     return match == this;
258 dl 1.47 }
259     }
260 dl 1.43
261 dl 1.55 /** The head (top) of the stack */
262     volatile SNode head;
263    
264     static final AtomicReferenceFieldUpdater<TransferStack, SNode>
265     headUpdater = AtomicReferenceFieldUpdater.newUpdater
266     (TransferStack.class, SNode.class, "head");
267    
268     boolean casHead(SNode h, SNode nh) {
269     return h == head && headUpdater.compareAndSet(this, h, nh);
270     }
271 dl 1.2
272 dl 1.55 /**
273 jsr166 1.57 * Creates or resets fields of a node. Called only from transfer
274 dl 1.55 * where the node to push on stack is lazily created and
275     * reused when possible to help reduce intervals between reads
276     * and CASes of head and to avoid surges of garbage when CASes
277     * to push nodes fail due to contention.
278     */
279     static SNode snode(SNode s, Object e, SNode next, int mode) {
280     if (s == null) s = new SNode(e);
281     s.mode = mode;
282     s.next = next;
283     return s;
284 dl 1.43 }
285    
286 dl 1.55 /**
287 jsr166 1.57 * Puts or takes an item.
288 dl 1.55 */
289     Object transfer(Object e, boolean timed, long nanos) {
290     /*
291     * Basic algorithm is to loop trying one of three actions:
292     *
293     * 1. If apparently empty or already containing nodes of same
294     * mode, try to push node on stack and wait for a match,
295     * returning it, or null if cancelled.
296     *
297     * 2. If apparently containing node of complementary mode,
298     * try to push a fulfilling node on to stack, match
299     * with corresponding waiting node, pop both from
300     * stack, and return matched item. The matching or
301     * unlinking might not actually be necessary because of
302     * another threads performing action 3:
303     *
304     * 3. If top of stack already holds another fulfilling node,
305     * help it out by doing its match and/or pop
306     * operations, and then continue. The code for helping
307     * is essentially the same as for fulfilling, except
308     * that it doesn't return the item.
309     */
310    
311     SNode s = null; // constructed/reused as needed
312     int mode = (e == null)? REQUEST : DATA;
313    
314     for (;;) {
315     SNode h = head;
316     if (h == null || h.mode == mode) { // empty or same-mode
317     if (timed && nanos <= 0) { // can't wait
318 jsr166 1.58 if (h != null && h.isCancelled())
319 dl 1.55 casHead(h, h.next); // pop cancelled node
320     else
321 jsr166 1.58 return null;
322 dl 1.55 } else if (casHead(h, s = snode(s, e, h, mode))) {
323     SNode m = awaitFulfill(s, timed, nanos);
324     if (m == s) { // wait was cancelled
325     clean(s);
326     return null;
327     }
328     if ((h = head) != null && h.next == s)
329     casHead(h, s.next); // help s's fulfiller
330     return mode == REQUEST? m.item : s.item;
331     }
332     } else if (!isFulfilling(h.mode)) { // try to fulfill
333     if (h.isCancelled()) // already cancelled
334     casHead(h, h.next); // pop and retry
335     else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
336     for (;;) { // loop until matched or waiters disappear
337     SNode m = s.next; // m is s's match
338     if (m == null) { // all waiters are gone
339     casHead(s, null); // pop fulfill node
340     s = null; // use new node next time
341     break; // restart main loop
342     }
343     SNode mn = m.next;
344     if (m.tryMatch(s)) {
345     casHead(s, mn); // pop both s and m
346     return (mode == REQUEST)? m.item : s.item;
347     } else // lost match
348     s.casNext(m, mn); // help unlink
349     }
350     }
351     } else { // help a fulfiller
352     SNode m = h.next; // m is h's match
353     if (m == null) // waiter is gone
354     casHead(h, null); // pop fulfilling node
355     else {
356     SNode mn = m.next;
357     if (m.tryMatch(h)) // help match
358     casHead(h, mn); // pop both h and m
359     else // lost match
360     h.casNext(m, mn); // help unlink
361     }
362 dl 1.47 }
363     }
364     }
365    
366 dl 1.55 /**
367 jsr166 1.57 * Spins/blocks until node s is matched by a fulfill operation.
368 dl 1.55 * @param s the waiting node
369     * @param timed true if timed wait
370     * @param nanos timeout value
371     * @return matched node, or s if cancelled
372     */
373     SNode awaitFulfill(SNode s, boolean timed, long nanos) {
374     /*
375     * When a node/thread is about to block, it sets its waiter
376     * field and then rechecks state at least one more time
377     * before actually parking, thus covering race vs
378     * fulfiller noticing that waiter is nonnull so should be
379     * woken.
380     *
381     * When invoked by nodes that appear at the point of call
382     * to be at the head of the stack, calls to park are
383     * preceded by spins to avoid blocking when producers and
384     * consumers are arriving very close in time. This can
385     * happen enough to bother only on multiprocessors.
386     *
387     * The order of checks for returning out of main loop
388     * reflects fact that interrupts have precedence over
389     * normal returns, which have precedence over
390     * timeouts. (So, on timeout, one last check for match is
391     * done before giving up.) Except that calls from untimed
392     * SynchronousQueue.{poll/offer} don't check interrupts
393     * and don't wait at all, so are trapped in transfer
394     * method rather than calling awaitFulfill.
395     */
396     long lastTime = (timed)? System.nanoTime() : 0;
397     Thread w = Thread.currentThread();
398     SNode h = head;
399     int spins = (shouldSpin(s)?
400     (timed? maxTimedSpins : maxUntimedSpins) : 0);
401     for (;;) {
402     if (w.isInterrupted())
403     s.tryCancel();
404     SNode m = s.match;
405     if (m != null)
406     return m;
407     if (timed) {
408     long now = System.nanoTime();
409 jsr166 1.58 nanos -= now - lastTime;
410 dl 1.55 lastTime = now;
411     if (nanos <= 0) {
412     s.tryCancel();
413     continue;
414     }
415     }
416     if (spins > 0)
417     spins = shouldSpin(s)? (spins-1) : 0;
418     else if (s.waiter == null)
419     s.waiter = w; // establish waiter so can park next iter
420     else if (!timed)
421     LockSupport.park(this);
422     else if (nanos > spinForTimeoutThreshold)
423     LockSupport.parkNanos(this, nanos);
424 dl 1.47 }
425     }
426 dl 1.2
427 dl 1.55 /**
428 jsr166 1.57 * Returns true if node s is at head or there is an active
429 dl 1.55 * fulfiller.
430     */
431     boolean shouldSpin(SNode s) {
432     SNode h = head;
433 dl 1.56 return (h == s || h == null || isFulfilling(h.mode));
434 dl 1.55 }
435    
436     /**
437 jsr166 1.57 * Unlinks s from the stack.
438 dl 1.55 */
439     void clean(SNode s) {
440 jsr166 1.58 s.item = null; // forget item
441 dl 1.55 s.waiter = null; // forget thread
442    
443     /*
444     * At worst we may need to traverse entire stack to unlink
445     * s. If there are multiple concurrent calls to clean, we
446     * might not see s if another thread has already removed
447     * it. But we can stop when we see any node known to
448     * follow s. We use s.next unless it too is cancelled, in
449     * which case we try the node one past. We don't check any
450     * futher because we don't want to doubly traverse just to
451     * find sentinel.
452     */
453    
454     SNode past = s.next;
455     if (past != null && past.isCancelled())
456     past = past.next;
457    
458     // Absorb cancelled nodes at head
459     SNode p;
460     while ((p = head) != null && p != past && p.isCancelled())
461     casHead(p, p.next);
462    
463     // Unsplice embedded nodes
464     while (p != null && p != past) {
465     SNode n = p.next;
466     if (n != null && n.isCancelled())
467     p.casNext(n, n.next);
468     else
469     p = n;
470 dl 1.47 }
471     }
472     }
473 jsr166 1.48
474 dl 1.55 /** Dual Queue. */
475     static final class TransferQueue extends Transferer {
476     /*
477     * This extends Scherer-Scott dual queue algorithm, differing,
478     * among other ways, by using modes within nodes rather than
479     * marked pointers. The algorithm is a little simpler than
480     * that for stacks because fulfillers do not need explicit
481     * nodes, and matching is done by CAS'ing QNode.item field
482     * from nonnull to null (for put) or vice versa (for take).
483     */
484 dl 1.53
485 dl 1.55 /** Node class for TransferQueue. */
486     static final class QNode {
487     volatile QNode next; // next node in queue
488     volatile Object item; // CAS'ed to or from null
489     volatile Thread waiter; // to control park/unpark
490 jsr166 1.58 final boolean isData;
491 dl 1.35
492 dl 1.55 QNode(Object item, boolean isData) {
493     this.item = item;
494     this.isData = isData;
495     }
496 dl 1.35
497 dl 1.55 static final AtomicReferenceFieldUpdater<QNode, QNode>
498     nextUpdater = AtomicReferenceFieldUpdater.newUpdater
499     (QNode.class, QNode.class, "next");
500 dl 1.31
501 dl 1.55 boolean casNext(QNode cmp, QNode val) {
502     return (next == cmp &&
503     nextUpdater.compareAndSet(this, cmp, val));
504     }
505    
506     static final AtomicReferenceFieldUpdater<QNode, Object>
507     itemUpdater = AtomicReferenceFieldUpdater.newUpdater
508     (QNode.class, Object.class, "item");
509 dl 1.43
510 dl 1.55 boolean casItem(Object cmp, Object val) {
511     return (item == cmp &&
512     itemUpdater.compareAndSet(this, cmp, val));
513     }
514    
515     /**
516 jsr166 1.58 * Try to cancel by CAS'ing ref to this as item.
517 dl 1.55 */
518     void tryCancel(Object cmp) {
519     itemUpdater.compareAndSet(this, cmp, this);
520     }
521    
522     boolean isCancelled() {
523     return item == this;
524     }
525 dl 1.56
526 jsr166 1.58 /**
527 jsr166 1.57 * Returns true if this node is known to be off the queue
528 dl 1.56 * because its next pointer has been forgotten due to
529     * an advanceHead operation.
530     */
531     boolean isOffList() {
532     return next == this;
533     }
534 dl 1.31 }
535    
536 dl 1.55 /** Head of queue */
537     transient volatile QNode head;
538     /** Tail of queue */
539     transient volatile QNode tail;
540 dl 1.31 /**
541 dl 1.55 * Reference to a cancelled node that might not yet have been
542     * unlinked from queue because it was the last inserted node
543     * when it cancelled.
544 dl 1.31 */
545 dl 1.55 transient volatile QNode cleanMe;
546    
547     TransferQueue() {
548     QNode h = new QNode(null, false); // initialize to dummy node.
549     head = h;
550     tail = h;
551 dl 1.31 }
552    
553 dl 1.55 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
554     headUpdater = AtomicReferenceFieldUpdater.newUpdater
555     (TransferQueue.class, QNode.class, "head");
556    
557 dl 1.31 /**
558 jsr166 1.57 * Tries to cas nh as new head; if successful unlink
559 dl 1.55 * old head's next node to avoid garbage retention.
560 dl 1.31 */
561 dl 1.55 void advanceHead(QNode h, QNode nh) {
562     if (h == head && headUpdater.compareAndSet(this, h, nh))
563     h.next = h; // forget old next
564 dl 1.31 }
565    
566 dl 1.55 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
567     tailUpdater = AtomicReferenceFieldUpdater.newUpdater
568     (TransferQueue.class, QNode.class, "tail");
569    
570 dl 1.31 /**
571 jsr166 1.57 * Tries to cas nt as new tail.
572 dl 1.31 */
573 dl 1.55 void advanceTail(QNode t, QNode nt) {
574     if (tail == t)
575     tailUpdater.compareAndSet(this, t, nt);
576 dl 1.31 }
577 dl 1.2
578 dl 1.55 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
579     cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
580     (TransferQueue.class, QNode.class, "cleanMe");
581 dl 1.2
582     /**
583 jsr166 1.57 * Tries to CAS cleanMe slot.
584 dl 1.2 */
585 dl 1.55 boolean casCleanMe(QNode cmp, QNode val) {
586     return (cleanMe == cmp &&
587     cleanMeUpdater.compareAndSet(this, cmp, val));
588 dl 1.35 }
589    
590     /**
591 jsr166 1.57 * Puts or takes an item.
592 dl 1.35 */
593 dl 1.55 Object transfer(Object e, boolean timed, long nanos) {
594 jsr166 1.58 /* Basic algorithm is to loop trying to take either of
595 dl 1.55 * two actions:
596     *
597 jsr166 1.58 * 1. If queue apparently empty or holding same-mode nodes,
598 dl 1.55 * try to add node to queue of waiters, wait to be
599     * fulfilled (or cancelled) and return matching item.
600     *
601     * 2. If queue apparently contains waiting items, and this
602     * call is of complementary mode, try to fulfill by CAS'ing
603     * item field of waiting node and dequeuing it, and then
604     * returning matching item.
605     *
606     * In each case, along the way, check for and try to help
607     * advance head and tail on behalf of other stalled/slow
608     * threads.
609     *
610     * The loop starts off with a null check guarding against
611     * seeing uninitialized head or tail values. This never
612     * happens in current SynchronousQueue, but could if
613     * callers held non-volatile/final ref to the
614     * transferer. The check is here anyway because it places
615     * null checks at top of loop, which is usually faster
616     * than having them implicitly interspersed.
617     */
618    
619     QNode s = null; // constructed/reused as needed
620     boolean isData = (e != null);
621    
622     for (;;) {
623     QNode t = tail;
624     QNode h = head;
625     if (t == null || h == null) // saw unitialized values
626     continue; // spin
627    
628     if (h == t || t.isData == isData) { // empty or same-mode
629     QNode tn = t.next;
630     if (t != tail) // inconsistent read
631     continue;
632     if (tn != null) { // lagging tail
633     advanceTail(t, tn);
634     continue;
635     }
636     if (timed && nanos <= 0) // can't wait
637     return null;
638     if (s == null)
639     s = new QNode(e, isData);
640     if (!t.casNext(null, s)) // failed to link in
641     continue;
642    
643     advanceTail(t, s); // swing tail and wait
644     Object x = awaitFulfill(s, e, timed, nanos);
645     if (x == s) { // wait was cancelled
646     clean(t, s);
647     return null;
648     }
649    
650 dl 1.56 if (!s.isOffList()) { // not already unlinked
651     advanceHead(t, s); // unlink if head
652 dl 1.55 if (x != null) // and forget fields
653     s.item = s;
654     s.waiter = null;
655     }
656     return (x != null)? x : e;
657    
658     } else { // complementary-mode
659     QNode m = h.next; // node to fulfill
660     if (t != tail || m == null || h != head)
661     continue; // inconsistent read
662    
663     Object x = m.item;
664     if (isData == (x != null) || // m already fulfilled
665     x == m || // m cancelled
666     !m.casItem(x, e)) { // lost CAS
667     advanceHead(h, m); // dequeue and retry
668     continue;
669     }
670    
671     advanceHead(h, m); // successfully fulfilled
672     LockSupport.unpark(m.waiter);
673     return (x != null)? x : e;
674     }
675 dl 1.35 }
676     }
677    
678     /**
679 jsr166 1.57 * Spins/blocks until node s is fulfilled.
680 dl 1.55 * @param s the waiting node
681     * @param e the comparison value for checking match
682     * @param timed true if timed wait
683     * @param nanos timeout value
684     * @return matched item, or s if cancelled
685 dl 1.35 */
686 dl 1.55 Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
687     /* Same idea as TransferStack.awaitFulfill */
688     long lastTime = (timed)? System.nanoTime() : 0;
689     Thread w = Thread.currentThread();
690     int spins = ((head.next == s) ?
691     (timed? maxTimedSpins : maxUntimedSpins) : 0);
692     for (;;) {
693     if (w.isInterrupted())
694     s.tryCancel(e);
695     Object x = s.item;
696     if (x != e)
697     return x;
698     if (timed) {
699     long now = System.nanoTime();
700 jsr166 1.58 nanos -= now - lastTime;
701 dl 1.55 lastTime = now;
702     if (nanos <= 0) {
703     s.tryCancel(e);
704     continue;
705     }
706     }
707     if (spins > 0)
708     --spins;
709     else if (s.waiter == null)
710     s.waiter = w;
711     else if (!timed)
712     LockSupport.park(this);
713     else if (nanos > spinForTimeoutThreshold)
714     LockSupport.parkNanos(this, nanos);
715 dl 1.35 }
716 dl 1.31 }
717    
718     /**
719 jsr166 1.57 * Gets rid of cancelled node s with original predecessor pred.
720 dl 1.31 */
721 dl 1.55 void clean(QNode pred, QNode s) {
722     s.waiter = null; // forget thread
723     /*
724     * At any given time, exactly one node on list cannot be
725     * deleted -- the last inserted node. To accommodate this,
726     * if we cannot delete s, we save its predecessor as
727     * "cleanMe", deleting the previously saved version
728     * first. At least one of node s or the node previously
729     * saved can always be deleted, so this always terminates.
730     */
731     while (pred.next == s) { // Return early if already unlinked
732     QNode h = head;
733     QNode hn = h.next; // Absorb cancelled first node as head
734     if (hn != null && hn.isCancelled()) {
735     advanceHead(h, hn);
736     continue;
737     }
738     QNode t = tail; // Ensure consistent read for tail
739     if (t == h)
740     return;
741     QNode tn = t.next;
742     if (t != tail)
743     continue;
744     if (tn != null) {
745     advanceTail(t, tn);
746     continue;
747     }
748     if (s != t) { // If not tail, try to unsplice
749     QNode sn = s.next;
750     if (sn == s || pred.casNext(s, sn))
751     return;
752     }
753     QNode dp = cleanMe;
754     if (dp != null) { // Try unlinking previous cancelled node
755     QNode d = dp.next;
756     QNode dn;
757     if (d == null || // d is gone or
758     d == dp || // d is off list or
759     !d.isCancelled() || // d not cancelled or
760     (d != t && // d not tail and
761     (dn = d.next) != null && // has successor
762     dn != d && // that is on list
763     dp.casNext(d, dn))) // d unspliced
764 jsr166 1.58 casCleanMe(dp, null);
765     if (dp == pred)
766 dl 1.55 return; // s is already saved node
767 jsr166 1.58 } else if (casCleanMe(null, pred))
768 dl 1.55 return; // Postpone cleaning s
769 dl 1.2 }
770     }
771 dl 1.55 }
772    
773     /**
774     * The transferer. Set only in constructor, but cannot be declared
775     * as final without further complicating serialization. Since
776 dl 1.56 * this is accessed only at most once per public method, there
777     * isn't a noticeable performance penalty for using volatile
778     * instead of final here.
779 dl 1.55 */
780     private transient volatile Transferer transferer;
781    
782     /**
783     * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
784     */
785     public SynchronousQueue() {
786     this(false);
787     }
788 dl 1.2
789 dl 1.55 /**
790     * Creates a <tt>SynchronousQueue</tt> with specified fairness policy.
791     * @param fair if true, waiting threads contend in FIFO order for access;
792     * otherwise the order is unspecified.
793     */
794     public SynchronousQueue(boolean fair) {
795     transferer = (fair)? new TransferQueue() : new TransferStack();
796 dl 1.2 }
797    
798     /**
799 dl 1.35 * Adds the specified element to this queue, waiting if necessary for
800     * another thread to receive it.
801 jsr166 1.50 *
802     * @throws InterruptedException {@inheritDoc}
803     * @throws NullPointerException {@inheritDoc}
804 tim 1.10 */
805 dl 1.55 public void put(E o) throws InterruptedException {
806     if (o == null) throw new NullPointerException();
807     if (transferer.transfer(o, false, 0) == null)
808     throw new InterruptedException();
809 tim 1.1 }
810    
811 dholmes 1.11 /**
812 dl 1.20 * Inserts the specified element into this queue, waiting if necessary
813 dl 1.18 * up to the specified wait time for another thread to receive it.
814 jsr166 1.50 *
815     * @return <tt>true</tt> if successful, or <tt>false</tt> if the
816     * specified waiting time elapses before a consumer appears.
817     * @throws InterruptedException {@inheritDoc}
818     * @throws NullPointerException {@inheritDoc}
819 dholmes 1.11 */
820 jsr166 1.58 public boolean offer(E o, long timeout, TimeUnit unit)
821 dl 1.55 throws InterruptedException {
822     if (o == null) throw new NullPointerException();
823     if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
824     return true;
825     if (!Thread.interrupted())
826     return false;
827     throw new InterruptedException();
828     }
829    
830     /**
831     * Inserts the specified element into this queue, if another thread is
832     * waiting to receive it.
833     *
834     * @param e the element to add
835     * @return <tt>true</tt> if the element was added to this queue, else
836     * <tt>false</tt>
837     * @throws NullPointerException if the specified element is null
838     */
839     public boolean offer(E e) {
840 jsr166 1.49 if (e == null) throw new NullPointerException();
841 dl 1.55 return transferer.transfer(e, true, 0) != null;
842 tim 1.1 }
843    
844 dholmes 1.11 /**
845     * Retrieves and removes the head of this queue, waiting if necessary
846     * for another thread to insert it.
847 jsr166 1.50 *
848 dholmes 1.11 * @return the head of this queue
849 jsr166 1.50 * @throws InterruptedException {@inheritDoc}
850 dholmes 1.11 */
851 dl 1.2 public E take() throws InterruptedException {
852 dl 1.55 Object e = transferer.transfer(null, false, 0);
853     if (e != null)
854     return (E)e;
855     throw new InterruptedException();
856 tim 1.1 }
857 dl 1.2
858 dholmes 1.11 /**
859     * Retrieves and removes the head of this queue, waiting
860     * if necessary up to the specified wait time, for another thread
861     * to insert it.
862 jsr166 1.50 *
863 dl 1.18 * @return the head of this queue, or <tt>null</tt> if the
864 jsr166 1.50 * specified waiting time elapses before an element is present.
865     * @throws InterruptedException {@inheritDoc}
866 dholmes 1.11 */
867 dl 1.2 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
868 dl 1.55 Object e = transferer.transfer(null, true, unit.toNanos(timeout));
869     if (e != null || !Thread.interrupted())
870     return (E)e;
871     throw new InterruptedException();
872 tim 1.1 }
873 dl 1.2
874 dl 1.18 /**
875     * Retrieves and removes the head of this queue, if another thread
876     * is currently making an element available.
877     *
878     * @return the head of this queue, or <tt>null</tt> if no
879     * element is available.
880     */
881 dl 1.2 public E poll() {
882 dl 1.55 return (E)transferer.transfer(null, true, 0);
883 tim 1.1 }
884 dl 1.2
885 dl 1.5 /**
886 jsr166 1.48 * Always returns <tt>true</tt>.
887 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
888     * @return <tt>true</tt>
889 dl 1.5 */
890     public boolean isEmpty() {
891     return true;
892     }
893    
894     /**
895 dholmes 1.11 * Always returns zero.
896     * A <tt>SynchronousQueue</tt> has no internal capacity.
897 dl 1.55 * @return zero.
898 dl 1.5 */
899     public int size() {
900     return 0;
901 tim 1.1 }
902 dl 1.2
903 dl 1.5 /**
904 dholmes 1.11 * Always returns zero.
905     * A <tt>SynchronousQueue</tt> has no internal capacity.
906 dl 1.55 * @return zero.
907 dl 1.5 */
908     public int remainingCapacity() {
909     return 0;
910     }
911    
912     /**
913 dholmes 1.11 * Does nothing.
914     * A <tt>SynchronousQueue</tt> has no internal capacity.
915     */
916 dl 1.55 public void clear() {
917     }
918 dholmes 1.11
919     /**
920     * Always returns <tt>false</tt>.
921     * A <tt>SynchronousQueue</tt> has no internal capacity.
922 dl 1.55 * @param o the element
923 dholmes 1.11 * @return <tt>false</tt>
924     */
925     public boolean contains(Object o) {
926     return false;
927     }
928    
929     /**
930 dl 1.18 * Always returns <tt>false</tt>.
931     * A <tt>SynchronousQueue</tt> has no internal capacity.
932     *
933     * @param o the element to remove
934     * @return <tt>false</tt>
935     */
936     public boolean remove(Object o) {
937     return false;
938     }
939    
940     /**
941 dl 1.55 * Returns <tt>false</tt> unless given collection is empty.
942 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
943 dl 1.18 * @param c the collection
944 dl 1.55 * @return <tt>false</tt> unless given collection is empty
945 dholmes 1.11 */
946 dl 1.12 public boolean containsAll(Collection<?> c) {
947 dl 1.16 return c.isEmpty();
948 dholmes 1.11 }
949    
950     /**
951     * Always returns <tt>false</tt>.
952     * A <tt>SynchronousQueue</tt> has no internal capacity.
953 dl 1.18 * @param c the collection
954 dholmes 1.11 * @return <tt>false</tt>
955     */
956 dl 1.12 public boolean removeAll(Collection<?> c) {
957 dholmes 1.11 return false;
958     }
959    
960     /**
961     * Always returns <tt>false</tt>.
962     * A <tt>SynchronousQueue</tt> has no internal capacity.
963 dl 1.18 * @param c the collection
964 dholmes 1.11 * @return <tt>false</tt>
965     */
966 dl 1.12 public boolean retainAll(Collection<?> c) {
967 dholmes 1.11 return false;
968     }
969    
970     /**
971 jsr166 1.48 * Always returns <tt>null</tt>.
972 dholmes 1.11 * A <tt>SynchronousQueue</tt> does not return elements
973 dl 1.5 * unless actively waited on.
974 dholmes 1.11 * @return <tt>null</tt>
975 dl 1.5 */
976     public E peek() {
977     return null;
978     }
979    
980     static class EmptyIterator<E> implements Iterator<E> {
981 dl 1.2 public boolean hasNext() {
982     return false;
983     }
984     public E next() {
985     throw new NoSuchElementException();
986     }
987     public void remove() {
988 dl 1.17 throw new IllegalStateException();
989 dl 1.2 }
990 tim 1.1 }
991 dl 1.2
992 dl 1.5 /**
993 dl 1.18 * Returns an empty iterator in which <tt>hasNext</tt> always returns
994 tim 1.13 * <tt>false</tt>.
995     *
996 dholmes 1.11 * @return an empty iterator
997 dl 1.5 */
998 dl 1.2 public Iterator<E> iterator() {
999 dl 1.5 return new EmptyIterator<E>();
1000 tim 1.1 }
1001    
1002 dl 1.5 /**
1003 dholmes 1.11 * Returns a zero-length array.
1004     * @return a zero-length array
1005 dl 1.5 */
1006 dl 1.3 public Object[] toArray() {
1007 dl 1.25 return new Object[0];
1008 tim 1.1 }
1009    
1010 dholmes 1.11 /**
1011     * Sets the zeroeth element of the specified array to <tt>null</tt>
1012     * (if the array has non-zero length) and returns it.
1013 jsr166 1.50 *
1014 dl 1.40 * @param a the array
1015 dholmes 1.11 * @return the specified array
1016 jsr166 1.50 * @throws NullPointerException if the specified array is null
1017 dholmes 1.11 */
1018 dl 1.2 public <T> T[] toArray(T[] a) {
1019     if (a.length > 0)
1020     a[0] = null;
1021     return a;
1022     }
1023 dl 1.21
1024 jsr166 1.50 /**
1025     * @throws UnsupportedOperationException {@inheritDoc}
1026     * @throws ClassCastException {@inheritDoc}
1027     * @throws NullPointerException {@inheritDoc}
1028     * @throws IllegalArgumentException {@inheritDoc}
1029     */
1030 dl 1.21 public int drainTo(Collection<? super E> c) {
1031     if (c == null)
1032     throw new NullPointerException();
1033     if (c == this)
1034     throw new IllegalArgumentException();
1035     int n = 0;
1036     E e;
1037     while ( (e = poll()) != null) {
1038     c.add(e);
1039     ++n;
1040     }
1041     return n;
1042     }
1043    
1044 jsr166 1.50 /**
1045     * @throws UnsupportedOperationException {@inheritDoc}
1046     * @throws ClassCastException {@inheritDoc}
1047     * @throws NullPointerException {@inheritDoc}
1048     * @throws IllegalArgumentException {@inheritDoc}
1049     */
1050 dl 1.21 public int drainTo(Collection<? super E> c, int maxElements) {
1051     if (c == null)
1052     throw new NullPointerException();
1053     if (c == this)
1054     throw new IllegalArgumentException();
1055     int n = 0;
1056     E e;
1057     while (n < maxElements && (e = poll()) != null) {
1058     c.add(e);
1059     ++n;
1060     }
1061     return n;
1062     }
1063 dl 1.55
1064     /*
1065     * To cope with serialization strategy in the 1.5 version of
1066     * SynchronousQueue, we declare some unused classes and fields
1067     * that exist solely to enable serializability across versions.
1068     * These fields are never used, so are initialized only if this
1069     * object is ever serialized or deserialized.
1070     */
1071    
1072     static class WaitQueue implements java.io.Serializable { }
1073     static class LifoWaitQueue extends WaitQueue {
1074     private static final long serialVersionUID = -3633113410248163686L;
1075     }
1076     static class FifoWaitQueue extends WaitQueue {
1077     private static final long serialVersionUID = -3623113410248163686L;
1078     }
1079     private ReentrantLock qlock;
1080     private WaitQueue waitingProducers;
1081     private WaitQueue waitingConsumers;
1082    
1083     /**
1084     * Save the state to a stream (that is, serialize it).
1085     *
1086     * @param s the stream
1087     */
1088     private void writeObject(java.io.ObjectOutputStream s)
1089     throws java.io.IOException {
1090     boolean fair = transferer instanceof TransferQueue;
1091     if (fair) {
1092     qlock = new ReentrantLock(true);
1093     waitingProducers = new FifoWaitQueue();
1094     waitingConsumers = new FifoWaitQueue();
1095     }
1096     else {
1097     qlock = new ReentrantLock();
1098     waitingProducers = new LifoWaitQueue();
1099     waitingConsumers = new LifoWaitQueue();
1100     }
1101     s.defaultWriteObject();
1102     }
1103    
1104     private void readObject(final java.io.ObjectInputStream s)
1105     throws java.io.IOException, ClassNotFoundException {
1106     s.defaultReadObject();
1107     if (waitingProducers instanceof FifoWaitQueue)
1108     transferer = new TransferQueue();
1109     else
1110     transferer = new TransferStack();
1111     }
1112    
1113 tim 1.1 }