ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.67
Committed: Wed Aug 8 16:48:48 2007 UTC (16 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.66: +1 -13 lines
Log Message:
5017904: (coll) Collections.emptyIterator, Collections.emptyEnumeration

File Contents

# User Rev Content
1 dl 1.2 /*
2 dl 1.55 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5 dl 1.29 * http://creativecommons.org/licenses/publicdomain
6 dl 1.2 */
7    
8 tim 1.1 package java.util.concurrent;
9 dl 1.8 import java.util.concurrent.locks.*;
10 dl 1.55 import java.util.concurrent.atomic.*;
11 tim 1.1 import java.util.*;
12    
13     /**
14 jsr166 1.52 * A {@linkplain BlockingQueue blocking queue} in which each insert
15     * operation must wait for a corresponding remove operation by another
16     * thread, and vice versa. A synchronous queue does not have any
17     * internal capacity, not even a capacity of one. You cannot
18     * <tt>peek</tt> at a synchronous queue because an element is only
19     * present when you try to remove it; you cannot insert an element
20     * (using any method) unless another thread is trying to remove it;
21     * you cannot iterate as there is nothing to iterate. The
22     * <em>head</em> of the queue is the element that the first queued
23     * inserting thread is trying to add to the queue; if there is no such
24     * queued thread then no element is available for removal and
25     * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
26     * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
27     * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
28     * does not permit <tt>null</tt> elements.
29 dl 1.18 *
30     * <p>Synchronous queues are similar to rendezvous channels used in
31     * CSP and Ada. They are well suited for handoff designs, in which an
32 dl 1.30 * object running in one thread must sync up with an object running
33 dl 1.18 * in another thread in order to hand it some information, event, or
34     * task.
35 dl 1.43 *
36     * <p> This class supports an optional fairness policy for ordering
37     * waiting producer and consumer threads. By default, this ordering
38     * is not guaranteed. However, a queue constructed with fairness set
39 jsr166 1.58 * to <tt>true</tt> grants threads access in FIFO order.
40 dl 1.43 *
41 dl 1.46 * <p>This class and its iterator implement all of the
42     * <em>optional</em> methods of the {@link Collection} and {@link
43 jsr166 1.48 * Iterator} interfaces.
44 dl 1.42 *
45     * <p>This class is a member of the
46 jsr166 1.66 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
47 dl 1.42 * Java Collections Framework</a>.
48     *
49 dl 1.6 * @since 1.5
50 dl 1.56 * @author Doug Lea and Bill Scherer and Michael Scott
51 dl 1.24 * @param <E> the type of elements held in this collection
52 dl 1.23 */
53 dl 1.2 public class SynchronousQueue<E> extends AbstractQueue<E>
54 dl 1.55 implements BlockingQueue<E>, java.io.Serializable {
55 dl 1.15 private static final long serialVersionUID = -3223113410248163686L;
56 tim 1.1
57 dl 1.2 /*
58 dl 1.55 * This class implements extensions of the dual stack and dual
59     * queue algorithms described in "Nonblocking Concurrent Objects
60     * with Condition Synchronization", by W. N. Scherer III and
61     * M. L. Scott. 18th Annual Conf. on Distributed Computing,
62     * Oct. 2004 (see also
63     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65     * queue for fair mode. The performance of the two is generally
66     * similar. Fifo usually supports higher throughput under
67     * contention but Lifo maintains higher thread locality in common
68     * applications.
69     *
70     * A dual queue (and similarly stack) is one that at any given
71     * time either holds "data" -- items provided by put operations,
72     * or "requests" -- slots representing take operations, or is
73     * empty. A call to "fulfill" (i.e., a call requesting an item
74     * from a queue holding data or vice versa) dequeues a
75     * complementary node. The most interesting feature of these
76     * queues is that any operation can figure out which mode the
77     * queue is in, and act accordingly without needing locks.
78     *
79     * Both the queue and stack extend abstract class Transferer
80     * defining the single method transfer that does a put or a
81     * take. These are unified into a single method because in dual
82     * data structures, the put and take operations are symmetrical,
83     * so nearly all code can be combined. The resulting transfer
84     * methods are on the long side, but are easier to follow than
85     * they would be if broken up into nearly-duplicated parts.
86     *
87     * The queue and stack data structures share many conceptual
88     * similarities but very few concrete details. For simplicity,
89     * they are kept distinct so that they can later evolve
90     * separately.
91     *
92     * The algorithms here differ from the versions in the above paper
93     * in extending them for use in synchronous queues, as well as
94     * dealing with cancellation. The main differences include:
95     *
96 jsr166 1.59 * 1. The original algorithms used bit-marked pointers, but
97 dl 1.55 * the ones here use mode bits in nodes, leading to a number
98     * of further adaptations.
99     * 2. SynchronousQueues must block threads waiting to become
100     * fulfilled.
101 jsr166 1.58 * 3. Support for cancellation via timeout and interrupts,
102     * including cleaning out cancelled nodes/threads
103 dl 1.56 * from lists to avoid garbage retention and memory depletion.
104 dl 1.55 *
105     * Blocking is mainly accomplished using LockSupport park/unpark,
106     * except that nodes that appear to be the next ones to become
107     * fulfilled first spin a bit (on multiprocessors only). On very
108     * busy synchronous queues, spinning can dramatically improve
109     * throughput. And on less busy ones, the amount of spinning is
110     * small enough not to be noticeable.
111     *
112     * Cleaning is done in different ways in queues vs stacks. For
113     * queues, we can almost always remove a node immediately in O(1)
114     * time (modulo retries for consistency checks) when it is
115     * cancelled. But if it may be pinned as the current tail, it must
116     * wait until some subsequent cancellation. For stacks, we need a
117     * potentially O(n) traversal to be sure that we can remove the
118     * node, but this can run concurrently with other threads
119     * accessing the stack.
120     *
121     * While garbage collection takes care of most node reclamation
122     * issues that otherwise complicate nonblocking algorithms, care
123 jsr166 1.59 * is taken to "forget" references to data, other nodes, and
124 dl 1.55 * threads that might be held on to long-term by blocked
125     * threads. In cases where setting to null would otherwise
126     * conflict with main algorithms, this is done by changing a
127     * node's link to now point to the node itself. This doesn't arise
128     * much for Stack nodes (because blocked threads do not hang on to
129     * old head pointers), but references in Queue nodes must be
130 jsr166 1.59 * aggressively forgotten to avoid reachability of everything any
131 dl 1.55 * node has ever referred to since arrival.
132     */
133 dl 1.2
134 dl 1.43 /**
135 dl 1.55 * Shared internal API for dual stacks and queues.
136 dl 1.43 */
137 dl 1.55 static abstract class Transferer {
138     /**
139 jsr166 1.59 * Performs a put or take.
140     *
141 dl 1.55 * @param e if non-null, the item to be handed to a consumer;
142 jsr166 1.59 * if null, requests that transfer return an item
143     * offered by producer.
144 dl 1.55 * @param timed if this operation should timeout
145     * @param nanos the timeout, in nanoseconds
146 jsr166 1.59 * @return if non-null, the item provided or received; if null,
147     * the operation failed due to timeout or interrupt --
148     * the caller can distinguish which of these occurred
149     * by checking Thread.interrupted.
150 dl 1.55 */
151     abstract Object transfer(Object e, boolean timed, long nanos);
152 dl 1.43 }
153    
154 dl 1.55 /** The number of CPUs, for spin control */
155     static final int NCPUS = Runtime.getRuntime().availableProcessors();
156    
157 dl 1.43 /**
158 dl 1.55 * The number of times to spin before blocking in timed waits.
159     * The value is empirically derived -- it works well across a
160 dl 1.56 * variety of processors and OSes. Empirically, the best value
161 dl 1.55 * seems not to vary with number of CPUs (beyond 2) so is just
162     * a constant.
163 dl 1.43 */
164 dl 1.55 static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
165 dl 1.43
166     /**
167 jsr166 1.60 * The number of times to spin before blocking in untimed waits.
168     * This is greater than timed value because untimed waits spin
169     * faster since they don't need to check times on each spin.
170 dl 1.43 */
171 dl 1.55 static final int maxUntimedSpins = maxTimedSpins * 16;
172 dl 1.43
173     /**
174 dl 1.55 * The number of nanoseconds for which it is faster to spin
175     * rather than to use timed park. A rough estimate suffices.
176 dl 1.43 */
177 dl 1.55 static final long spinForTimeoutThreshold = 1000L;
178    
179 jsr166 1.60 /** Dual stack */
180 dl 1.55 static final class TransferStack extends Transferer {
181     /*
182     * This extends Scherer-Scott dual stack algorithm, differing,
183     * among other ways, by using "covering" nodes rather than
184     * bit-marked pointers: Fulfilling operations push on marker
185     * nodes (with FULFILLING bit set in mode) to reserve a spot
186     * to match a waiting node.
187     */
188 dl 1.43
189 dl 1.55 /* Modes for SNodes, ORed together in node fields */
190     /** Node represents an unfulfilled consumer */
191     static final int REQUEST = 0;
192     /** Node represents an unfulfilled producer */
193     static final int DATA = 1;
194     /** Node is fulfilling another unfulfilled DATA or REQUEST */
195     static final int FULFILLING = 2;
196    
197     /** Return true if m has fulfilling bit set */
198     static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199    
200     /** Node class for TransferStacks. */
201     static final class SNode {
202     volatile SNode next; // next node in stack
203     volatile SNode match; // the node matched to this
204     volatile Thread waiter; // to control park/unpark
205     Object item; // data; or null for REQUESTs
206     int mode;
207     // Note: item and mode fields don't need to be volatile
208     // since they are always written before, and read after,
209     // other volatile/atomic operations.
210    
211     SNode(Object item) {
212     this.item = item;
213     }
214    
215     static final AtomicReferenceFieldUpdater<SNode, SNode>
216     nextUpdater = AtomicReferenceFieldUpdater.newUpdater
217     (SNode.class, SNode.class, "next");
218    
219     boolean casNext(SNode cmp, SNode val) {
220     return (cmp == next &&
221     nextUpdater.compareAndSet(this, cmp, val));
222     }
223    
224     static final AtomicReferenceFieldUpdater<SNode, SNode>
225     matchUpdater = AtomicReferenceFieldUpdater.newUpdater
226     (SNode.class, SNode.class, "match");
227    
228     /**
229 jsr166 1.63 * Tries to match node s to this node, if so, waking up thread.
230     * Fulfillers call tryMatch to identify their waiters.
231     * Waiters block until they have been matched.
232     *
233 dl 1.55 * @param s the node to match
234     * @return true if successfully matched to s
235     */
236     boolean tryMatch(SNode s) {
237     if (match == null &&
238     matchUpdater.compareAndSet(this, null, s)) {
239     Thread w = waiter;
240     if (w != null) { // waiters need at most one unpark
241     waiter = null;
242     LockSupport.unpark(w);
243     }
244     return true;
245 dl 1.47 }
246 dl 1.55 return match == s;
247     }
248    
249     /**
250 jsr166 1.59 * Tries to cancel a wait by matching node to itself.
251 dl 1.55 */
252     void tryCancel() {
253     matchUpdater.compareAndSet(this, null, this);
254     }
255    
256     boolean isCancelled() {
257     return match == this;
258 dl 1.47 }
259     }
260 dl 1.43
261 dl 1.55 /** The head (top) of the stack */
262     volatile SNode head;
263    
264     static final AtomicReferenceFieldUpdater<TransferStack, SNode>
265     headUpdater = AtomicReferenceFieldUpdater.newUpdater
266     (TransferStack.class, SNode.class, "head");
267    
268     boolean casHead(SNode h, SNode nh) {
269     return h == head && headUpdater.compareAndSet(this, h, nh);
270     }
271 dl 1.2
272 dl 1.55 /**
273 jsr166 1.57 * Creates or resets fields of a node. Called only from transfer
274 dl 1.55 * where the node to push on stack is lazily created and
275     * reused when possible to help reduce intervals between reads
276     * and CASes of head and to avoid surges of garbage when CASes
277     * to push nodes fail due to contention.
278     */
279     static SNode snode(SNode s, Object e, SNode next, int mode) {
280     if (s == null) s = new SNode(e);
281     s.mode = mode;
282     s.next = next;
283     return s;
284 dl 1.43 }
285    
286 dl 1.55 /**
287 jsr166 1.57 * Puts or takes an item.
288 dl 1.55 */
289     Object transfer(Object e, boolean timed, long nanos) {
290     /*
291     * Basic algorithm is to loop trying one of three actions:
292     *
293     * 1. If apparently empty or already containing nodes of same
294     * mode, try to push node on stack and wait for a match,
295     * returning it, or null if cancelled.
296     *
297     * 2. If apparently containing node of complementary mode,
298     * try to push a fulfilling node on to stack, match
299     * with corresponding waiting node, pop both from
300     * stack, and return matched item. The matching or
301     * unlinking might not actually be necessary because of
302 dl 1.62 * other threads performing action 3:
303 dl 1.55 *
304     * 3. If top of stack already holds another fulfilling node,
305     * help it out by doing its match and/or pop
306     * operations, and then continue. The code for helping
307     * is essentially the same as for fulfilling, except
308     * that it doesn't return the item.
309     */
310    
311     SNode s = null; // constructed/reused as needed
312     int mode = (e == null)? REQUEST : DATA;
313    
314     for (;;) {
315     SNode h = head;
316     if (h == null || h.mode == mode) { // empty or same-mode
317     if (timed && nanos <= 0) { // can't wait
318 jsr166 1.58 if (h != null && h.isCancelled())
319 dl 1.55 casHead(h, h.next); // pop cancelled node
320     else
321 jsr166 1.58 return null;
322 dl 1.55 } else if (casHead(h, s = snode(s, e, h, mode))) {
323     SNode m = awaitFulfill(s, timed, nanos);
324     if (m == s) { // wait was cancelled
325     clean(s);
326     return null;
327     }
328     if ((h = head) != null && h.next == s)
329     casHead(h, s.next); // help s's fulfiller
330     return mode == REQUEST? m.item : s.item;
331     }
332     } else if (!isFulfilling(h.mode)) { // try to fulfill
333     if (h.isCancelled()) // already cancelled
334     casHead(h, h.next); // pop and retry
335     else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
336     for (;;) { // loop until matched or waiters disappear
337     SNode m = s.next; // m is s's match
338     if (m == null) { // all waiters are gone
339     casHead(s, null); // pop fulfill node
340     s = null; // use new node next time
341     break; // restart main loop
342     }
343     SNode mn = m.next;
344     if (m.tryMatch(s)) {
345     casHead(s, mn); // pop both s and m
346     return (mode == REQUEST)? m.item : s.item;
347     } else // lost match
348     s.casNext(m, mn); // help unlink
349     }
350     }
351     } else { // help a fulfiller
352     SNode m = h.next; // m is h's match
353     if (m == null) // waiter is gone
354     casHead(h, null); // pop fulfilling node
355     else {
356     SNode mn = m.next;
357     if (m.tryMatch(h)) // help match
358     casHead(h, mn); // pop both h and m
359     else // lost match
360     h.casNext(m, mn); // help unlink
361     }
362 dl 1.47 }
363     }
364     }
365    
366 dl 1.55 /**
367 jsr166 1.57 * Spins/blocks until node s is matched by a fulfill operation.
368 jsr166 1.63 *
369 dl 1.55 * @param s the waiting node
370     * @param timed true if timed wait
371     * @param nanos timeout value
372     * @return matched node, or s if cancelled
373     */
374     SNode awaitFulfill(SNode s, boolean timed, long nanos) {
375     /*
376     * When a node/thread is about to block, it sets its waiter
377     * field and then rechecks state at least one more time
378     * before actually parking, thus covering race vs
379 jsr166 1.59 * fulfiller noticing that waiter is non-null so should be
380 dl 1.55 * woken.
381     *
382     * When invoked by nodes that appear at the point of call
383     * to be at the head of the stack, calls to park are
384     * preceded by spins to avoid blocking when producers and
385     * consumers are arriving very close in time. This can
386     * happen enough to bother only on multiprocessors.
387     *
388     * The order of checks for returning out of main loop
389     * reflects fact that interrupts have precedence over
390     * normal returns, which have precedence over
391     * timeouts. (So, on timeout, one last check for match is
392     * done before giving up.) Except that calls from untimed
393     * SynchronousQueue.{poll/offer} don't check interrupts
394     * and don't wait at all, so are trapped in transfer
395     * method rather than calling awaitFulfill.
396     */
397     long lastTime = (timed)? System.nanoTime() : 0;
398     Thread w = Thread.currentThread();
399     SNode h = head;
400     int spins = (shouldSpin(s)?
401     (timed? maxTimedSpins : maxUntimedSpins) : 0);
402     for (;;) {
403     if (w.isInterrupted())
404     s.tryCancel();
405     SNode m = s.match;
406     if (m != null)
407     return m;
408     if (timed) {
409     long now = System.nanoTime();
410 jsr166 1.58 nanos -= now - lastTime;
411 dl 1.55 lastTime = now;
412     if (nanos <= 0) {
413     s.tryCancel();
414     continue;
415     }
416     }
417     if (spins > 0)
418     spins = shouldSpin(s)? (spins-1) : 0;
419     else if (s.waiter == null)
420     s.waiter = w; // establish waiter so can park next iter
421     else if (!timed)
422     LockSupport.park(this);
423     else if (nanos > spinForTimeoutThreshold)
424     LockSupport.parkNanos(this, nanos);
425 dl 1.47 }
426     }
427 dl 1.2
428 dl 1.55 /**
429 jsr166 1.57 * Returns true if node s is at head or there is an active
430 dl 1.55 * fulfiller.
431     */
432     boolean shouldSpin(SNode s) {
433     SNode h = head;
434 dl 1.56 return (h == s || h == null || isFulfilling(h.mode));
435 dl 1.55 }
436    
437     /**
438 jsr166 1.57 * Unlinks s from the stack.
439 dl 1.55 */
440     void clean(SNode s) {
441 jsr166 1.58 s.item = null; // forget item
442 dl 1.55 s.waiter = null; // forget thread
443    
444     /*
445     * At worst we may need to traverse entire stack to unlink
446     * s. If there are multiple concurrent calls to clean, we
447     * might not see s if another thread has already removed
448     * it. But we can stop when we see any node known to
449     * follow s. We use s.next unless it too is cancelled, in
450     * which case we try the node one past. We don't check any
451 jsr166 1.59 * further because we don't want to doubly traverse just to
452 dl 1.55 * find sentinel.
453     */
454    
455     SNode past = s.next;
456     if (past != null && past.isCancelled())
457     past = past.next;
458    
459     // Absorb cancelled nodes at head
460     SNode p;
461     while ((p = head) != null && p != past && p.isCancelled())
462     casHead(p, p.next);
463    
464     // Unsplice embedded nodes
465     while (p != null && p != past) {
466     SNode n = p.next;
467     if (n != null && n.isCancelled())
468     p.casNext(n, n.next);
469     else
470     p = n;
471 dl 1.47 }
472     }
473     }
474 jsr166 1.48
475 jsr166 1.61 /** Dual Queue */
476 dl 1.55 static final class TransferQueue extends Transferer {
477     /*
478     * This extends Scherer-Scott dual queue algorithm, differing,
479     * among other ways, by using modes within nodes rather than
480     * marked pointers. The algorithm is a little simpler than
481     * that for stacks because fulfillers do not need explicit
482     * nodes, and matching is done by CAS'ing QNode.item field
483 jsr166 1.59 * from non-null to null (for put) or vice versa (for take).
484 dl 1.55 */
485 dl 1.53
486 dl 1.55 /** Node class for TransferQueue. */
487     static final class QNode {
488     volatile QNode next; // next node in queue
489     volatile Object item; // CAS'ed to or from null
490     volatile Thread waiter; // to control park/unpark
491 jsr166 1.58 final boolean isData;
492 dl 1.35
493 dl 1.55 QNode(Object item, boolean isData) {
494     this.item = item;
495     this.isData = isData;
496     }
497 dl 1.35
498 dl 1.55 static final AtomicReferenceFieldUpdater<QNode, QNode>
499     nextUpdater = AtomicReferenceFieldUpdater.newUpdater
500     (QNode.class, QNode.class, "next");
501 dl 1.31
502 dl 1.55 boolean casNext(QNode cmp, QNode val) {
503     return (next == cmp &&
504     nextUpdater.compareAndSet(this, cmp, val));
505     }
506    
507     static final AtomicReferenceFieldUpdater<QNode, Object>
508     itemUpdater = AtomicReferenceFieldUpdater.newUpdater
509     (QNode.class, Object.class, "item");
510 dl 1.43
511 dl 1.55 boolean casItem(Object cmp, Object val) {
512     return (item == cmp &&
513     itemUpdater.compareAndSet(this, cmp, val));
514     }
515    
516     /**
517 jsr166 1.59 * Tries to cancel by CAS'ing ref to this as item.
518 dl 1.55 */
519     void tryCancel(Object cmp) {
520     itemUpdater.compareAndSet(this, cmp, this);
521     }
522    
523     boolean isCancelled() {
524     return item == this;
525     }
526 dl 1.56
527 jsr166 1.58 /**
528 jsr166 1.57 * Returns true if this node is known to be off the queue
529 dl 1.56 * because its next pointer has been forgotten due to
530     * an advanceHead operation.
531     */
532     boolean isOffList() {
533     return next == this;
534     }
535 dl 1.31 }
536    
537 dl 1.55 /** Head of queue */
538     transient volatile QNode head;
539     /** Tail of queue */
540     transient volatile QNode tail;
541 dl 1.31 /**
542 dl 1.55 * Reference to a cancelled node that might not yet have been
543     * unlinked from queue because it was the last inserted node
544     * when it cancelled.
545 dl 1.31 */
546 dl 1.55 transient volatile QNode cleanMe;
547    
548     TransferQueue() {
549     QNode h = new QNode(null, false); // initialize to dummy node.
550     head = h;
551     tail = h;
552 dl 1.31 }
553    
554 dl 1.55 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
555     headUpdater = AtomicReferenceFieldUpdater.newUpdater
556     (TransferQueue.class, QNode.class, "head");
557    
558 dl 1.31 /**
559 jsr166 1.59 * Tries to cas nh as new head; if successful, unlink
560 dl 1.55 * old head's next node to avoid garbage retention.
561 dl 1.31 */
562 dl 1.55 void advanceHead(QNode h, QNode nh) {
563     if (h == head && headUpdater.compareAndSet(this, h, nh))
564     h.next = h; // forget old next
565 dl 1.31 }
566    
567 dl 1.55 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
568     tailUpdater = AtomicReferenceFieldUpdater.newUpdater
569     (TransferQueue.class, QNode.class, "tail");
570    
571 dl 1.31 /**
572 jsr166 1.57 * Tries to cas nt as new tail.
573 dl 1.31 */
574 dl 1.55 void advanceTail(QNode t, QNode nt) {
575     if (tail == t)
576     tailUpdater.compareAndSet(this, t, nt);
577 dl 1.31 }
578 dl 1.2
579 dl 1.55 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
580     cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
581     (TransferQueue.class, QNode.class, "cleanMe");
582 dl 1.2
583     /**
584 jsr166 1.57 * Tries to CAS cleanMe slot.
585 dl 1.2 */
586 dl 1.55 boolean casCleanMe(QNode cmp, QNode val) {
587     return (cleanMe == cmp &&
588     cleanMeUpdater.compareAndSet(this, cmp, val));
589 dl 1.35 }
590    
591     /**
592 jsr166 1.57 * Puts or takes an item.
593 dl 1.35 */
594 dl 1.55 Object transfer(Object e, boolean timed, long nanos) {
595 jsr166 1.58 /* Basic algorithm is to loop trying to take either of
596 dl 1.55 * two actions:
597     *
598 jsr166 1.58 * 1. If queue apparently empty or holding same-mode nodes,
599 dl 1.55 * try to add node to queue of waiters, wait to be
600     * fulfilled (or cancelled) and return matching item.
601     *
602     * 2. If queue apparently contains waiting items, and this
603     * call is of complementary mode, try to fulfill by CAS'ing
604     * item field of waiting node and dequeuing it, and then
605     * returning matching item.
606     *
607     * In each case, along the way, check for and try to help
608     * advance head and tail on behalf of other stalled/slow
609     * threads.
610     *
611     * The loop starts off with a null check guarding against
612     * seeing uninitialized head or tail values. This never
613     * happens in current SynchronousQueue, but could if
614     * callers held non-volatile/final ref to the
615     * transferer. The check is here anyway because it places
616     * null checks at top of loop, which is usually faster
617     * than having them implicitly interspersed.
618     */
619    
620     QNode s = null; // constructed/reused as needed
621     boolean isData = (e != null);
622    
623     for (;;) {
624     QNode t = tail;
625     QNode h = head;
626 dl 1.62 if (t == null || h == null) // saw uninitialized value
627 dl 1.55 continue; // spin
628    
629     if (h == t || t.isData == isData) { // empty or same-mode
630     QNode tn = t.next;
631     if (t != tail) // inconsistent read
632     continue;
633     if (tn != null) { // lagging tail
634     advanceTail(t, tn);
635     continue;
636     }
637     if (timed && nanos <= 0) // can't wait
638     return null;
639     if (s == null)
640     s = new QNode(e, isData);
641     if (!t.casNext(null, s)) // failed to link in
642     continue;
643    
644     advanceTail(t, s); // swing tail and wait
645     Object x = awaitFulfill(s, e, timed, nanos);
646     if (x == s) { // wait was cancelled
647     clean(t, s);
648     return null;
649     }
650    
651 dl 1.56 if (!s.isOffList()) { // not already unlinked
652     advanceHead(t, s); // unlink if head
653 dl 1.55 if (x != null) // and forget fields
654     s.item = s;
655     s.waiter = null;
656     }
657     return (x != null)? x : e;
658    
659     } else { // complementary-mode
660     QNode m = h.next; // node to fulfill
661     if (t != tail || m == null || h != head)
662     continue; // inconsistent read
663    
664     Object x = m.item;
665     if (isData == (x != null) || // m already fulfilled
666     x == m || // m cancelled
667     !m.casItem(x, e)) { // lost CAS
668     advanceHead(h, m); // dequeue and retry
669     continue;
670     }
671    
672     advanceHead(h, m); // successfully fulfilled
673     LockSupport.unpark(m.waiter);
674     return (x != null)? x : e;
675     }
676 dl 1.35 }
677     }
678    
679     /**
680 jsr166 1.57 * Spins/blocks until node s is fulfilled.
681 jsr166 1.63 *
682 dl 1.55 * @param s the waiting node
683     * @param e the comparison value for checking match
684     * @param timed true if timed wait
685     * @param nanos timeout value
686     * @return matched item, or s if cancelled
687 dl 1.35 */
688 dl 1.55 Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
689     /* Same idea as TransferStack.awaitFulfill */
690     long lastTime = (timed)? System.nanoTime() : 0;
691     Thread w = Thread.currentThread();
692     int spins = ((head.next == s) ?
693     (timed? maxTimedSpins : maxUntimedSpins) : 0);
694     for (;;) {
695     if (w.isInterrupted())
696     s.tryCancel(e);
697     Object x = s.item;
698     if (x != e)
699     return x;
700     if (timed) {
701     long now = System.nanoTime();
702 jsr166 1.58 nanos -= now - lastTime;
703 dl 1.55 lastTime = now;
704     if (nanos <= 0) {
705     s.tryCancel(e);
706     continue;
707     }
708     }
709     if (spins > 0)
710     --spins;
711     else if (s.waiter == null)
712     s.waiter = w;
713     else if (!timed)
714     LockSupport.park(this);
715     else if (nanos > spinForTimeoutThreshold)
716     LockSupport.parkNanos(this, nanos);
717 dl 1.35 }
718 dl 1.31 }
719    
720     /**
721 jsr166 1.57 * Gets rid of cancelled node s with original predecessor pred.
722 dl 1.31 */
723 dl 1.55 void clean(QNode pred, QNode s) {
724     s.waiter = null; // forget thread
725     /*
726     * At any given time, exactly one node on list cannot be
727     * deleted -- the last inserted node. To accommodate this,
728     * if we cannot delete s, we save its predecessor as
729     * "cleanMe", deleting the previously saved version
730     * first. At least one of node s or the node previously
731     * saved can always be deleted, so this always terminates.
732     */
733     while (pred.next == s) { // Return early if already unlinked
734     QNode h = head;
735     QNode hn = h.next; // Absorb cancelled first node as head
736     if (hn != null && hn.isCancelled()) {
737     advanceHead(h, hn);
738     continue;
739     }
740     QNode t = tail; // Ensure consistent read for tail
741     if (t == h)
742     return;
743     QNode tn = t.next;
744     if (t != tail)
745     continue;
746     if (tn != null) {
747     advanceTail(t, tn);
748     continue;
749     }
750     if (s != t) { // If not tail, try to unsplice
751     QNode sn = s.next;
752     if (sn == s || pred.casNext(s, sn))
753     return;
754     }
755     QNode dp = cleanMe;
756     if (dp != null) { // Try unlinking previous cancelled node
757     QNode d = dp.next;
758     QNode dn;
759     if (d == null || // d is gone or
760     d == dp || // d is off list or
761     !d.isCancelled() || // d not cancelled or
762     (d != t && // d not tail and
763     (dn = d.next) != null && // has successor
764     dn != d && // that is on list
765     dp.casNext(d, dn))) // d unspliced
766 jsr166 1.58 casCleanMe(dp, null);
767     if (dp == pred)
768 dl 1.55 return; // s is already saved node
769 jsr166 1.58 } else if (casCleanMe(null, pred))
770 dl 1.55 return; // Postpone cleaning s
771 dl 1.2 }
772     }
773 dl 1.55 }
774    
775     /**
776     * The transferer. Set only in constructor, but cannot be declared
777     * as final without further complicating serialization. Since
778 dl 1.56 * this is accessed only at most once per public method, there
779     * isn't a noticeable performance penalty for using volatile
780     * instead of final here.
781 dl 1.55 */
782     private transient volatile Transferer transferer;
783    
784     /**
785     * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
786     */
787     public SynchronousQueue() {
788     this(false);
789     }
790 dl 1.2
791 dl 1.55 /**
792 jsr166 1.63 * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
793     *
794     * @param fair if true, waiting threads contend in FIFO order for
795     * access; otherwise the order is unspecified.
796 dl 1.55 */
797     public SynchronousQueue(boolean fair) {
798     transferer = (fair)? new TransferQueue() : new TransferStack();
799 dl 1.2 }
800    
801     /**
802 dl 1.35 * Adds the specified element to this queue, waiting if necessary for
803     * another thread to receive it.
804 jsr166 1.50 *
805     * @throws InterruptedException {@inheritDoc}
806     * @throws NullPointerException {@inheritDoc}
807 tim 1.10 */
808 dl 1.55 public void put(E o) throws InterruptedException {
809     if (o == null) throw new NullPointerException();
810 dl 1.64 if (transferer.transfer(o, false, 0) == null) {
811 jsr166 1.65 Thread.interrupted();
812 dl 1.55 throw new InterruptedException();
813 jsr166 1.65 }
814 tim 1.1 }
815    
816 dholmes 1.11 /**
817 dl 1.20 * Inserts the specified element into this queue, waiting if necessary
818 dl 1.18 * up to the specified wait time for another thread to receive it.
819 jsr166 1.50 *
820     * @return <tt>true</tt> if successful, or <tt>false</tt> if the
821     * specified waiting time elapses before a consumer appears.
822     * @throws InterruptedException {@inheritDoc}
823     * @throws NullPointerException {@inheritDoc}
824 dholmes 1.11 */
825 jsr166 1.58 public boolean offer(E o, long timeout, TimeUnit unit)
826 dl 1.55 throws InterruptedException {
827     if (o == null) throw new NullPointerException();
828     if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
829     return true;
830     if (!Thread.interrupted())
831     return false;
832     throw new InterruptedException();
833     }
834    
835     /**
836     * Inserts the specified element into this queue, if another thread is
837     * waiting to receive it.
838     *
839     * @param e the element to add
840     * @return <tt>true</tt> if the element was added to this queue, else
841     * <tt>false</tt>
842     * @throws NullPointerException if the specified element is null
843     */
844     public boolean offer(E e) {
845 jsr166 1.49 if (e == null) throw new NullPointerException();
846 dl 1.55 return transferer.transfer(e, true, 0) != null;
847 tim 1.1 }
848    
849 dholmes 1.11 /**
850     * Retrieves and removes the head of this queue, waiting if necessary
851     * for another thread to insert it.
852 jsr166 1.50 *
853 dholmes 1.11 * @return the head of this queue
854 jsr166 1.50 * @throws InterruptedException {@inheritDoc}
855 dholmes 1.11 */
856 dl 1.2 public E take() throws InterruptedException {
857 dl 1.55 Object e = transferer.transfer(null, false, 0);
858     if (e != null)
859     return (E)e;
860 jsr166 1.65 Thread.interrupted();
861 dl 1.55 throw new InterruptedException();
862 tim 1.1 }
863 dl 1.2
864 dholmes 1.11 /**
865     * Retrieves and removes the head of this queue, waiting
866     * if necessary up to the specified wait time, for another thread
867     * to insert it.
868 jsr166 1.50 *
869 dl 1.18 * @return the head of this queue, or <tt>null</tt> if the
870 jsr166 1.50 * specified waiting time elapses before an element is present.
871     * @throws InterruptedException {@inheritDoc}
872 dholmes 1.11 */
873 dl 1.2 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
874 dl 1.55 Object e = transferer.transfer(null, true, unit.toNanos(timeout));
875     if (e != null || !Thread.interrupted())
876     return (E)e;
877     throw new InterruptedException();
878 tim 1.1 }
879 dl 1.2
880 dl 1.18 /**
881     * Retrieves and removes the head of this queue, if another thread
882     * is currently making an element available.
883     *
884     * @return the head of this queue, or <tt>null</tt> if no
885     * element is available.
886     */
887 dl 1.2 public E poll() {
888 dl 1.55 return (E)transferer.transfer(null, true, 0);
889 tim 1.1 }
890 dl 1.2
891 dl 1.5 /**
892 jsr166 1.48 * Always returns <tt>true</tt>.
893 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
894 jsr166 1.63 *
895 dholmes 1.11 * @return <tt>true</tt>
896 dl 1.5 */
897     public boolean isEmpty() {
898     return true;
899     }
900    
901     /**
902 dholmes 1.11 * Always returns zero.
903     * A <tt>SynchronousQueue</tt> has no internal capacity.
904 jsr166 1.63 *
905 dl 1.55 * @return zero.
906 dl 1.5 */
907     public int size() {
908     return 0;
909 tim 1.1 }
910 dl 1.2
911 dl 1.5 /**
912 dholmes 1.11 * Always returns zero.
913     * A <tt>SynchronousQueue</tt> has no internal capacity.
914 jsr166 1.63 *
915 dl 1.55 * @return zero.
916 dl 1.5 */
917     public int remainingCapacity() {
918     return 0;
919     }
920    
921     /**
922 dholmes 1.11 * Does nothing.
923     * A <tt>SynchronousQueue</tt> has no internal capacity.
924     */
925 dl 1.55 public void clear() {
926     }
927 dholmes 1.11
928     /**
929     * Always returns <tt>false</tt>.
930     * A <tt>SynchronousQueue</tt> has no internal capacity.
931 jsr166 1.63 *
932 dl 1.55 * @param o the element
933 dholmes 1.11 * @return <tt>false</tt>
934     */
935     public boolean contains(Object o) {
936     return false;
937     }
938    
939     /**
940 dl 1.18 * Always returns <tt>false</tt>.
941     * A <tt>SynchronousQueue</tt> has no internal capacity.
942     *
943     * @param o the element to remove
944     * @return <tt>false</tt>
945     */
946     public boolean remove(Object o) {
947     return false;
948     }
949    
950     /**
951 jsr166 1.59 * Returns <tt>false</tt> unless the given collection is empty.
952 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
953 jsr166 1.63 *
954 dl 1.18 * @param c the collection
955 dl 1.55 * @return <tt>false</tt> unless given collection is empty
956 dholmes 1.11 */
957 dl 1.12 public boolean containsAll(Collection<?> c) {
958 dl 1.16 return c.isEmpty();
959 dholmes 1.11 }
960    
961     /**
962     * Always returns <tt>false</tt>.
963     * A <tt>SynchronousQueue</tt> has no internal capacity.
964 jsr166 1.63 *
965 dl 1.18 * @param c the collection
966 dholmes 1.11 * @return <tt>false</tt>
967     */
968 dl 1.12 public boolean removeAll(Collection<?> c) {
969 dholmes 1.11 return false;
970     }
971    
972     /**
973     * Always returns <tt>false</tt>.
974     * A <tt>SynchronousQueue</tt> has no internal capacity.
975 jsr166 1.63 *
976 dl 1.18 * @param c the collection
977 dholmes 1.11 * @return <tt>false</tt>
978     */
979 dl 1.12 public boolean retainAll(Collection<?> c) {
980 dholmes 1.11 return false;
981     }
982    
983     /**
984 jsr166 1.48 * Always returns <tt>null</tt>.
985 dholmes 1.11 * A <tt>SynchronousQueue</tt> does not return elements
986 dl 1.5 * unless actively waited on.
987 jsr166 1.63 *
988 dholmes 1.11 * @return <tt>null</tt>
989 dl 1.5 */
990     public E peek() {
991     return null;
992     }
993    
994     /**
995 dl 1.18 * Returns an empty iterator in which <tt>hasNext</tt> always returns
996 tim 1.13 * <tt>false</tt>.
997     *
998 dholmes 1.11 * @return an empty iterator
999 dl 1.5 */
1000 dl 1.2 public Iterator<E> iterator() {
1001 jsr166 1.67 return Collections.emptyIterator();
1002 tim 1.1 }
1003    
1004 dl 1.5 /**
1005 dholmes 1.11 * Returns a zero-length array.
1006     * @return a zero-length array
1007 dl 1.5 */
1008 dl 1.3 public Object[] toArray() {
1009 dl 1.25 return new Object[0];
1010 tim 1.1 }
1011    
1012 dholmes 1.11 /**
1013     * Sets the zeroeth element of the specified array to <tt>null</tt>
1014     * (if the array has non-zero length) and returns it.
1015 jsr166 1.50 *
1016 dl 1.40 * @param a the array
1017 dholmes 1.11 * @return the specified array
1018 jsr166 1.50 * @throws NullPointerException if the specified array is null
1019 dholmes 1.11 */
1020 dl 1.2 public <T> T[] toArray(T[] a) {
1021     if (a.length > 0)
1022     a[0] = null;
1023     return a;
1024     }
1025 dl 1.21
1026 jsr166 1.50 /**
1027     * @throws UnsupportedOperationException {@inheritDoc}
1028     * @throws ClassCastException {@inheritDoc}
1029     * @throws NullPointerException {@inheritDoc}
1030     * @throws IllegalArgumentException {@inheritDoc}
1031     */
1032 dl 1.21 public int drainTo(Collection<? super E> c) {
1033     if (c == null)
1034     throw new NullPointerException();
1035     if (c == this)
1036     throw new IllegalArgumentException();
1037     int n = 0;
1038     E e;
1039     while ( (e = poll()) != null) {
1040     c.add(e);
1041     ++n;
1042     }
1043     return n;
1044     }
1045    
1046 jsr166 1.50 /**
1047     * @throws UnsupportedOperationException {@inheritDoc}
1048     * @throws ClassCastException {@inheritDoc}
1049     * @throws NullPointerException {@inheritDoc}
1050     * @throws IllegalArgumentException {@inheritDoc}
1051     */
1052 dl 1.21 public int drainTo(Collection<? super E> c, int maxElements) {
1053     if (c == null)
1054     throw new NullPointerException();
1055     if (c == this)
1056     throw new IllegalArgumentException();
1057     int n = 0;
1058     E e;
1059     while (n < maxElements && (e = poll()) != null) {
1060     c.add(e);
1061     ++n;
1062     }
1063     return n;
1064     }
1065 dl 1.55
1066     /*
1067     * To cope with serialization strategy in the 1.5 version of
1068     * SynchronousQueue, we declare some unused classes and fields
1069     * that exist solely to enable serializability across versions.
1070     * These fields are never used, so are initialized only if this
1071     * object is ever serialized or deserialized.
1072     */
1073    
1074     static class WaitQueue implements java.io.Serializable { }
1075     static class LifoWaitQueue extends WaitQueue {
1076     private static final long serialVersionUID = -3633113410248163686L;
1077     }
1078     static class FifoWaitQueue extends WaitQueue {
1079     private static final long serialVersionUID = -3623113410248163686L;
1080     }
1081     private ReentrantLock qlock;
1082     private WaitQueue waitingProducers;
1083     private WaitQueue waitingConsumers;
1084    
1085     /**
1086     * Save the state to a stream (that is, serialize it).
1087     *
1088     * @param s the stream
1089     */
1090     private void writeObject(java.io.ObjectOutputStream s)
1091     throws java.io.IOException {
1092     boolean fair = transferer instanceof TransferQueue;
1093     if (fair) {
1094     qlock = new ReentrantLock(true);
1095     waitingProducers = new FifoWaitQueue();
1096     waitingConsumers = new FifoWaitQueue();
1097     }
1098     else {
1099     qlock = new ReentrantLock();
1100     waitingProducers = new LifoWaitQueue();
1101     waitingConsumers = new LifoWaitQueue();
1102     }
1103     s.defaultWriteObject();
1104     }
1105    
1106     private void readObject(final java.io.ObjectInputStream s)
1107     throws java.io.IOException, ClassNotFoundException {
1108     s.defaultReadObject();
1109     if (waitingProducers instanceof FifoWaitQueue)
1110     transferer = new TransferQueue();
1111     else
1112     transferer = new TransferStack();
1113     }
1114    
1115 tim 1.1 }