ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.75
Committed: Tue Mar 15 19:47:03 2011 UTC (13 years, 2 months ago) by jsr166
Branch: MAIN
Changes since 1.74: +1 -1 lines
Log Message:
Update Creative Commons license URL in legal notices

File Contents

# User Rev Content
1 dl 1.2 /*
2 dl 1.55 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5 jsr166 1.75 * http://creativecommons.org/publicdomain/zero/1.0/
6 dl 1.2 */
7    
8 tim 1.1 package java.util.concurrent;
9 dl 1.8 import java.util.concurrent.locks.*;
10 dl 1.55 import java.util.concurrent.atomic.*;
11 tim 1.1 import java.util.*;
12    
13     /**
14 jsr166 1.52 * A {@linkplain BlockingQueue blocking queue} in which each insert
15     * operation must wait for a corresponding remove operation by another
16     * thread, and vice versa. A synchronous queue does not have any
17     * internal capacity, not even a capacity of one. You cannot
18     * <tt>peek</tt> at a synchronous queue because an element is only
19     * present when you try to remove it; you cannot insert an element
20     * (using any method) unless another thread is trying to remove it;
21     * you cannot iterate as there is nothing to iterate. The
22     * <em>head</em> of the queue is the element that the first queued
23     * inserting thread is trying to add to the queue; if there is no such
24     * queued thread then no element is available for removal and
25     * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
26     * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
27     * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
28     * does not permit <tt>null</tt> elements.
29 dl 1.18 *
30     * <p>Synchronous queues are similar to rendezvous channels used in
31     * CSP and Ada. They are well suited for handoff designs, in which an
32 dl 1.30 * object running in one thread must sync up with an object running
33 dl 1.18 * in another thread in order to hand it some information, event, or
34     * task.
35 dl 1.43 *
36     * <p> This class supports an optional fairness policy for ordering
37     * waiting producer and consumer threads. By default, this ordering
38     * is not guaranteed. However, a queue constructed with fairness set
39 jsr166 1.58 * to <tt>true</tt> grants threads access in FIFO order.
40 dl 1.43 *
41 dl 1.46 * <p>This class and its iterator implement all of the
42     * <em>optional</em> methods of the {@link Collection} and {@link
43 jsr166 1.48 * Iterator} interfaces.
44 dl 1.42 *
45     * <p>This class is a member of the
46 jsr166 1.66 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
47 dl 1.42 * Java Collections Framework</a>.
48     *
49 dl 1.6 * @since 1.5
50 dl 1.56 * @author Doug Lea and Bill Scherer and Michael Scott
51 dl 1.24 * @param <E> the type of elements held in this collection
52 dl 1.23 */
53 dl 1.2 public class SynchronousQueue<E> extends AbstractQueue<E>
54 dl 1.55 implements BlockingQueue<E>, java.io.Serializable {
55 dl 1.15 private static final long serialVersionUID = -3223113410248163686L;
56 tim 1.1
57 dl 1.2 /*
58 dl 1.55 * This class implements extensions of the dual stack and dual
59     * queue algorithms described in "Nonblocking Concurrent Objects
60     * with Condition Synchronization", by W. N. Scherer III and
61     * M. L. Scott. 18th Annual Conf. on Distributed Computing,
62     * Oct. 2004 (see also
63     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65     * queue for fair mode. The performance of the two is generally
66     * similar. Fifo usually supports higher throughput under
67     * contention but Lifo maintains higher thread locality in common
68     * applications.
69     *
70     * A dual queue (and similarly stack) is one that at any given
71     * time either holds "data" -- items provided by put operations,
72     * or "requests" -- slots representing take operations, or is
73     * empty. A call to "fulfill" (i.e., a call requesting an item
74     * from a queue holding data or vice versa) dequeues a
75     * complementary node. The most interesting feature of these
76     * queues is that any operation can figure out which mode the
77     * queue is in, and act accordingly without needing locks.
78     *
79     * Both the queue and stack extend abstract class Transferer
80     * defining the single method transfer that does a put or a
81     * take. These are unified into a single method because in dual
82     * data structures, the put and take operations are symmetrical,
83     * so nearly all code can be combined. The resulting transfer
84     * methods are on the long side, but are easier to follow than
85     * they would be if broken up into nearly-duplicated parts.
86     *
87     * The queue and stack data structures share many conceptual
88     * similarities but very few concrete details. For simplicity,
89     * they are kept distinct so that they can later evolve
90     * separately.
91     *
92     * The algorithms here differ from the versions in the above paper
93     * in extending them for use in synchronous queues, as well as
94     * dealing with cancellation. The main differences include:
95     *
96 jsr166 1.59 * 1. The original algorithms used bit-marked pointers, but
97 dl 1.55 * the ones here use mode bits in nodes, leading to a number
98     * of further adaptations.
99     * 2. SynchronousQueues must block threads waiting to become
100     * fulfilled.
101 jsr166 1.58 * 3. Support for cancellation via timeout and interrupts,
102     * including cleaning out cancelled nodes/threads
103 dl 1.56 * from lists to avoid garbage retention and memory depletion.
104 dl 1.55 *
105     * Blocking is mainly accomplished using LockSupport park/unpark,
106     * except that nodes that appear to be the next ones to become
107     * fulfilled first spin a bit (on multiprocessors only). On very
108     * busy synchronous queues, spinning can dramatically improve
109     * throughput. And on less busy ones, the amount of spinning is
110     * small enough not to be noticeable.
111     *
112     * Cleaning is done in different ways in queues vs stacks. For
113     * queues, we can almost always remove a node immediately in O(1)
114     * time (modulo retries for consistency checks) when it is
115     * cancelled. But if it may be pinned as the current tail, it must
116     * wait until some subsequent cancellation. For stacks, we need a
117     * potentially O(n) traversal to be sure that we can remove the
118     * node, but this can run concurrently with other threads
119     * accessing the stack.
120     *
121     * While garbage collection takes care of most node reclamation
122     * issues that otherwise complicate nonblocking algorithms, care
123 jsr166 1.59 * is taken to "forget" references to data, other nodes, and
124 dl 1.55 * threads that might be held on to long-term by blocked
125     * threads. In cases where setting to null would otherwise
126     * conflict with main algorithms, this is done by changing a
127     * node's link to now point to the node itself. This doesn't arise
128     * much for Stack nodes (because blocked threads do not hang on to
129     * old head pointers), but references in Queue nodes must be
130 jsr166 1.59 * aggressively forgotten to avoid reachability of everything any
131 dl 1.55 * node has ever referred to since arrival.
132     */
133 dl 1.2
134 dl 1.43 /**
135 dl 1.55 * Shared internal API for dual stacks and queues.
136 dl 1.43 */
137 jsr166 1.71 abstract static class Transferer {
138 dl 1.55 /**
139 jsr166 1.59 * Performs a put or take.
140     *
141 dl 1.55 * @param e if non-null, the item to be handed to a consumer;
142 jsr166 1.59 * if null, requests that transfer return an item
143     * offered by producer.
144 dl 1.55 * @param timed if this operation should timeout
145     * @param nanos the timeout, in nanoseconds
146 jsr166 1.59 * @return if non-null, the item provided or received; if null,
147     * the operation failed due to timeout or interrupt --
148     * the caller can distinguish which of these occurred
149     * by checking Thread.interrupted.
150 dl 1.55 */
151     abstract Object transfer(Object e, boolean timed, long nanos);
152 dl 1.43 }
153    
154 dl 1.55 /** The number of CPUs, for spin control */
155     static final int NCPUS = Runtime.getRuntime().availableProcessors();
156    
157 dl 1.43 /**
158 dl 1.55 * The number of times to spin before blocking in timed waits.
159     * The value is empirically derived -- it works well across a
160 dl 1.56 * variety of processors and OSes. Empirically, the best value
161 dl 1.55 * seems not to vary with number of CPUs (beyond 2) so is just
162     * a constant.
163 dl 1.43 */
164 jsr166 1.72 static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
165 dl 1.43
166     /**
167 jsr166 1.60 * The number of times to spin before blocking in untimed waits.
168     * This is greater than timed value because untimed waits spin
169     * faster since they don't need to check times on each spin.
170 dl 1.43 */
171 dl 1.55 static final int maxUntimedSpins = maxTimedSpins * 16;
172 dl 1.43
173     /**
174 dl 1.55 * The number of nanoseconds for which it is faster to spin
175     * rather than to use timed park. A rough estimate suffices.
176 dl 1.43 */
177 dl 1.55 static final long spinForTimeoutThreshold = 1000L;
178    
179 jsr166 1.60 /** Dual stack */
180 dl 1.55 static final class TransferStack extends Transferer {
181     /*
182     * This extends Scherer-Scott dual stack algorithm, differing,
183     * among other ways, by using "covering" nodes rather than
184     * bit-marked pointers: Fulfilling operations push on marker
185     * nodes (with FULFILLING bit set in mode) to reserve a spot
186     * to match a waiting node.
187     */
188 dl 1.43
189 dl 1.55 /* Modes for SNodes, ORed together in node fields */
190     /** Node represents an unfulfilled consumer */
191     static final int REQUEST = 0;
192     /** Node represents an unfulfilled producer */
193     static final int DATA = 1;
194     /** Node is fulfilling another unfulfilled DATA or REQUEST */
195     static final int FULFILLING = 2;
196    
197     /** Return true if m has fulfilling bit set */
198     static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199    
200     /** Node class for TransferStacks. */
201     static final class SNode {
202     volatile SNode next; // next node in stack
203     volatile SNode match; // the node matched to this
204     volatile Thread waiter; // to control park/unpark
205     Object item; // data; or null for REQUESTs
206     int mode;
207     // Note: item and mode fields don't need to be volatile
208     // since they are always written before, and read after,
209     // other volatile/atomic operations.
210    
211     SNode(Object item) {
212     this.item = item;
213     }
214    
215     boolean casNext(SNode cmp, SNode val) {
216 dl 1.69 return cmp == next &&
217     UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
218 dl 1.55 }
219    
220     /**
221 jsr166 1.63 * Tries to match node s to this node, if so, waking up thread.
222     * Fulfillers call tryMatch to identify their waiters.
223     * Waiters block until they have been matched.
224     *
225 dl 1.55 * @param s the node to match
226     * @return true if successfully matched to s
227     */
228     boolean tryMatch(SNode s) {
229     if (match == null &&
230 dl 1.69 UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
231 dl 1.55 Thread w = waiter;
232     if (w != null) { // waiters need at most one unpark
233     waiter = null;
234     LockSupport.unpark(w);
235     }
236     return true;
237 dl 1.47 }
238 dl 1.55 return match == s;
239     }
240    
241     /**
242 jsr166 1.59 * Tries to cancel a wait by matching node to itself.
243 dl 1.55 */
244     void tryCancel() {
245 dl 1.69 UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
246 dl 1.55 }
247    
248     boolean isCancelled() {
249     return match == this;
250 dl 1.47 }
251 dl 1.69
252     // Unsafe mechanics
253 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
254     private static final long matchOffset;
255     private static final long nextOffset;
256 dl 1.74
257 dl 1.73 static {
258     try {
259     UNSAFE = sun.misc.Unsafe.getUnsafe();
260     Class k = SNode.class;
261     matchOffset = UNSAFE.objectFieldOffset
262     (k.getDeclaredField("match"));
263     nextOffset = UNSAFE.objectFieldOffset
264     (k.getDeclaredField("next"));
265     } catch (Exception e) {
266     throw new Error(e);
267     }
268     }
269 dl 1.47 }
270 dl 1.43
271 dl 1.55 /** The head (top) of the stack */
272     volatile SNode head;
273 jsr166 1.70
274 dl 1.55 boolean casHead(SNode h, SNode nh) {
275 jsr166 1.70 return h == head &&
276 dl 1.69 UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
277 dl 1.55 }
278 dl 1.2
279 dl 1.55 /**
280 jsr166 1.57 * Creates or resets fields of a node. Called only from transfer
281 dl 1.55 * where the node to push on stack is lazily created and
282     * reused when possible to help reduce intervals between reads
283     * and CASes of head and to avoid surges of garbage when CASes
284     * to push nodes fail due to contention.
285     */
286     static SNode snode(SNode s, Object e, SNode next, int mode) {
287     if (s == null) s = new SNode(e);
288     s.mode = mode;
289     s.next = next;
290     return s;
291 dl 1.43 }
292    
293 dl 1.55 /**
294 jsr166 1.57 * Puts or takes an item.
295 dl 1.55 */
296     Object transfer(Object e, boolean timed, long nanos) {
297     /*
298     * Basic algorithm is to loop trying one of three actions:
299     *
300     * 1. If apparently empty or already containing nodes of same
301     * mode, try to push node on stack and wait for a match,
302     * returning it, or null if cancelled.
303     *
304     * 2. If apparently containing node of complementary mode,
305     * try to push a fulfilling node on to stack, match
306     * with corresponding waiting node, pop both from
307     * stack, and return matched item. The matching or
308     * unlinking might not actually be necessary because of
309 dl 1.62 * other threads performing action 3:
310 dl 1.55 *
311     * 3. If top of stack already holds another fulfilling node,
312     * help it out by doing its match and/or pop
313     * operations, and then continue. The code for helping
314     * is essentially the same as for fulfilling, except
315     * that it doesn't return the item.
316     */
317    
318     SNode s = null; // constructed/reused as needed
319 jsr166 1.72 int mode = (e == null) ? REQUEST : DATA;
320 dl 1.55
321     for (;;) {
322     SNode h = head;
323     if (h == null || h.mode == mode) { // empty or same-mode
324     if (timed && nanos <= 0) { // can't wait
325 jsr166 1.58 if (h != null && h.isCancelled())
326 dl 1.55 casHead(h, h.next); // pop cancelled node
327     else
328 jsr166 1.58 return null;
329 dl 1.55 } else if (casHead(h, s = snode(s, e, h, mode))) {
330     SNode m = awaitFulfill(s, timed, nanos);
331     if (m == s) { // wait was cancelled
332     clean(s);
333     return null;
334     }
335     if ((h = head) != null && h.next == s)
336     casHead(h, s.next); // help s's fulfiller
337 jsr166 1.72 return (mode == REQUEST) ? m.item : s.item;
338 dl 1.55 }
339     } else if (!isFulfilling(h.mode)) { // try to fulfill
340     if (h.isCancelled()) // already cancelled
341     casHead(h, h.next); // pop and retry
342     else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
343     for (;;) { // loop until matched or waiters disappear
344     SNode m = s.next; // m is s's match
345     if (m == null) { // all waiters are gone
346     casHead(s, null); // pop fulfill node
347     s = null; // use new node next time
348     break; // restart main loop
349     }
350     SNode mn = m.next;
351     if (m.tryMatch(s)) {
352     casHead(s, mn); // pop both s and m
353 jsr166 1.72 return (mode == REQUEST) ? m.item : s.item;
354 dl 1.55 } else // lost match
355     s.casNext(m, mn); // help unlink
356     }
357     }
358     } else { // help a fulfiller
359     SNode m = h.next; // m is h's match
360     if (m == null) // waiter is gone
361     casHead(h, null); // pop fulfilling node
362     else {
363     SNode mn = m.next;
364     if (m.tryMatch(h)) // help match
365     casHead(h, mn); // pop both h and m
366     else // lost match
367     h.casNext(m, mn); // help unlink
368     }
369 dl 1.47 }
370     }
371     }
372    
373 dl 1.55 /**
374 jsr166 1.57 * Spins/blocks until node s is matched by a fulfill operation.
375 jsr166 1.63 *
376 dl 1.55 * @param s the waiting node
377     * @param timed true if timed wait
378     * @param nanos timeout value
379     * @return matched node, or s if cancelled
380     */
381     SNode awaitFulfill(SNode s, boolean timed, long nanos) {
382     /*
383     * When a node/thread is about to block, it sets its waiter
384     * field and then rechecks state at least one more time
385     * before actually parking, thus covering race vs
386 jsr166 1.59 * fulfiller noticing that waiter is non-null so should be
387 dl 1.55 * woken.
388     *
389     * When invoked by nodes that appear at the point of call
390     * to be at the head of the stack, calls to park are
391     * preceded by spins to avoid blocking when producers and
392     * consumers are arriving very close in time. This can
393     * happen enough to bother only on multiprocessors.
394     *
395     * The order of checks for returning out of main loop
396     * reflects fact that interrupts have precedence over
397     * normal returns, which have precedence over
398     * timeouts. (So, on timeout, one last check for match is
399     * done before giving up.) Except that calls from untimed
400     * SynchronousQueue.{poll/offer} don't check interrupts
401     * and don't wait at all, so are trapped in transfer
402     * method rather than calling awaitFulfill.
403     */
404 jsr166 1.72 long lastTime = timed ? System.nanoTime() : 0;
405 dl 1.55 Thread w = Thread.currentThread();
406     SNode h = head;
407 jsr166 1.72 int spins = (shouldSpin(s) ?
408     (timed ? maxTimedSpins : maxUntimedSpins) : 0);
409 dl 1.55 for (;;) {
410     if (w.isInterrupted())
411     s.tryCancel();
412     SNode m = s.match;
413     if (m != null)
414     return m;
415     if (timed) {
416     long now = System.nanoTime();
417 jsr166 1.58 nanos -= now - lastTime;
418 dl 1.55 lastTime = now;
419     if (nanos <= 0) {
420     s.tryCancel();
421     continue;
422     }
423     }
424     if (spins > 0)
425 jsr166 1.72 spins = shouldSpin(s) ? (spins-1) : 0;
426 dl 1.55 else if (s.waiter == null)
427     s.waiter = w; // establish waiter so can park next iter
428     else if (!timed)
429     LockSupport.park(this);
430     else if (nanos > spinForTimeoutThreshold)
431     LockSupport.parkNanos(this, nanos);
432 dl 1.47 }
433     }
434 dl 1.2
435 dl 1.55 /**
436 jsr166 1.57 * Returns true if node s is at head or there is an active
437 dl 1.55 * fulfiller.
438     */
439     boolean shouldSpin(SNode s) {
440     SNode h = head;
441 dl 1.56 return (h == s || h == null || isFulfilling(h.mode));
442 dl 1.55 }
443    
444     /**
445 jsr166 1.57 * Unlinks s from the stack.
446 dl 1.55 */
447     void clean(SNode s) {
448 jsr166 1.58 s.item = null; // forget item
449 dl 1.55 s.waiter = null; // forget thread
450    
451     /*
452     * At worst we may need to traverse entire stack to unlink
453     * s. If there are multiple concurrent calls to clean, we
454     * might not see s if another thread has already removed
455     * it. But we can stop when we see any node known to
456     * follow s. We use s.next unless it too is cancelled, in
457     * which case we try the node one past. We don't check any
458 jsr166 1.59 * further because we don't want to doubly traverse just to
459 dl 1.55 * find sentinel.
460     */
461    
462     SNode past = s.next;
463     if (past != null && past.isCancelled())
464     past = past.next;
465    
466     // Absorb cancelled nodes at head
467     SNode p;
468     while ((p = head) != null && p != past && p.isCancelled())
469     casHead(p, p.next);
470    
471     // Unsplice embedded nodes
472     while (p != null && p != past) {
473     SNode n = p.next;
474     if (n != null && n.isCancelled())
475     p.casNext(n, n.next);
476     else
477     p = n;
478 dl 1.47 }
479     }
480 dl 1.69
481     // Unsafe mechanics
482 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
483     private static final long headOffset;
484     static {
485     try {
486     UNSAFE = sun.misc.Unsafe.getUnsafe();
487     Class k = TransferStack.class;
488     headOffset = UNSAFE.objectFieldOffset
489     (k.getDeclaredField("head"));
490     } catch (Exception e) {
491     throw new Error(e);
492     }
493     }
494 dl 1.47 }
495 jsr166 1.48
496 jsr166 1.61 /** Dual Queue */
497 dl 1.55 static final class TransferQueue extends Transferer {
498     /*
499     * This extends Scherer-Scott dual queue algorithm, differing,
500     * among other ways, by using modes within nodes rather than
501     * marked pointers. The algorithm is a little simpler than
502     * that for stacks because fulfillers do not need explicit
503     * nodes, and matching is done by CAS'ing QNode.item field
504 jsr166 1.59 * from non-null to null (for put) or vice versa (for take).
505 dl 1.55 */
506 dl 1.53
507 dl 1.55 /** Node class for TransferQueue. */
508     static final class QNode {
509     volatile QNode next; // next node in queue
510     volatile Object item; // CAS'ed to or from null
511     volatile Thread waiter; // to control park/unpark
512 jsr166 1.58 final boolean isData;
513 dl 1.35
514 dl 1.55 QNode(Object item, boolean isData) {
515     this.item = item;
516     this.isData = isData;
517     }
518 dl 1.35
519 dl 1.55 boolean casNext(QNode cmp, QNode val) {
520 dl 1.69 return next == cmp &&
521     UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
522 dl 1.55 }
523    
524     boolean casItem(Object cmp, Object val) {
525 dl 1.69 return item == cmp &&
526     UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
527 dl 1.55 }
528    
529     /**
530 jsr166 1.59 * Tries to cancel by CAS'ing ref to this as item.
531 dl 1.55 */
532     void tryCancel(Object cmp) {
533 dl 1.69 UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
534 dl 1.55 }
535 jsr166 1.70
536 dl 1.55 boolean isCancelled() {
537     return item == this;
538     }
539 dl 1.56
540 jsr166 1.58 /**
541 jsr166 1.57 * Returns true if this node is known to be off the queue
542 dl 1.56 * because its next pointer has been forgotten due to
543     * an advanceHead operation.
544     */
545     boolean isOffList() {
546     return next == this;
547     }
548 dl 1.74
549 dl 1.69 // Unsafe mechanics
550 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
551     private static final long itemOffset;
552     private static final long nextOffset;
553 dl 1.74
554 dl 1.73 static {
555     try {
556     UNSAFE = sun.misc.Unsafe.getUnsafe();
557     Class k = QNode.class;
558     itemOffset = UNSAFE.objectFieldOffset
559     (k.getDeclaredField("item"));
560     nextOffset = UNSAFE.objectFieldOffset
561     (k.getDeclaredField("next"));
562     } catch (Exception e) {
563     throw new Error(e);
564     }
565     }
566 dl 1.31 }
567    
568 dl 1.55 /** Head of queue */
569     transient volatile QNode head;
570     /** Tail of queue */
571     transient volatile QNode tail;
572 dl 1.31 /**
573 dl 1.55 * Reference to a cancelled node that might not yet have been
574     * unlinked from queue because it was the last inserted node
575     * when it cancelled.
576 dl 1.31 */
577 dl 1.55 transient volatile QNode cleanMe;
578    
579     TransferQueue() {
580     QNode h = new QNode(null, false); // initialize to dummy node.
581     head = h;
582     tail = h;
583 dl 1.31 }
584    
585     /**
586 jsr166 1.59 * Tries to cas nh as new head; if successful, unlink
587 dl 1.55 * old head's next node to avoid garbage retention.
588 dl 1.31 */
589 dl 1.55 void advanceHead(QNode h, QNode nh) {
590 jsr166 1.70 if (h == head &&
591 dl 1.69 UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
592 dl 1.55 h.next = h; // forget old next
593 dl 1.31 }
594    
595     /**
596 jsr166 1.57 * Tries to cas nt as new tail.
597 dl 1.31 */
598 dl 1.55 void advanceTail(QNode t, QNode nt) {
599     if (tail == t)
600 dl 1.69 UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
601 dl 1.31 }
602 dl 1.2
603     /**
604 jsr166 1.57 * Tries to CAS cleanMe slot.
605 dl 1.2 */
606 dl 1.55 boolean casCleanMe(QNode cmp, QNode val) {
607 dl 1.69 return cleanMe == cmp &&
608     UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
609 dl 1.35 }
610    
611     /**
612 jsr166 1.57 * Puts or takes an item.
613 dl 1.35 */
614 dl 1.55 Object transfer(Object e, boolean timed, long nanos) {
615 jsr166 1.58 /* Basic algorithm is to loop trying to take either of
616 dl 1.55 * two actions:
617     *
618 jsr166 1.58 * 1. If queue apparently empty or holding same-mode nodes,
619 dl 1.55 * try to add node to queue of waiters, wait to be
620     * fulfilled (or cancelled) and return matching item.
621     *
622     * 2. If queue apparently contains waiting items, and this
623     * call is of complementary mode, try to fulfill by CAS'ing
624     * item field of waiting node and dequeuing it, and then
625     * returning matching item.
626     *
627     * In each case, along the way, check for and try to help
628     * advance head and tail on behalf of other stalled/slow
629     * threads.
630     *
631     * The loop starts off with a null check guarding against
632     * seeing uninitialized head or tail values. This never
633     * happens in current SynchronousQueue, but could if
634     * callers held non-volatile/final ref to the
635     * transferer. The check is here anyway because it places
636     * null checks at top of loop, which is usually faster
637     * than having them implicitly interspersed.
638     */
639    
640     QNode s = null; // constructed/reused as needed
641     boolean isData = (e != null);
642    
643     for (;;) {
644     QNode t = tail;
645     QNode h = head;
646 dl 1.62 if (t == null || h == null) // saw uninitialized value
647 dl 1.55 continue; // spin
648    
649     if (h == t || t.isData == isData) { // empty or same-mode
650     QNode tn = t.next;
651     if (t != tail) // inconsistent read
652     continue;
653     if (tn != null) { // lagging tail
654     advanceTail(t, tn);
655     continue;
656     }
657     if (timed && nanos <= 0) // can't wait
658     return null;
659     if (s == null)
660     s = new QNode(e, isData);
661     if (!t.casNext(null, s)) // failed to link in
662     continue;
663    
664     advanceTail(t, s); // swing tail and wait
665     Object x = awaitFulfill(s, e, timed, nanos);
666     if (x == s) { // wait was cancelled
667     clean(t, s);
668     return null;
669     }
670    
671 dl 1.56 if (!s.isOffList()) { // not already unlinked
672     advanceHead(t, s); // unlink if head
673 dl 1.55 if (x != null) // and forget fields
674     s.item = s;
675     s.waiter = null;
676     }
677 jsr166 1.72 return (x != null) ? x : e;
678 dl 1.55
679     } else { // complementary-mode
680     QNode m = h.next; // node to fulfill
681     if (t != tail || m == null || h != head)
682     continue; // inconsistent read
683    
684     Object x = m.item;
685     if (isData == (x != null) || // m already fulfilled
686     x == m || // m cancelled
687     !m.casItem(x, e)) { // lost CAS
688     advanceHead(h, m); // dequeue and retry
689     continue;
690     }
691    
692     advanceHead(h, m); // successfully fulfilled
693     LockSupport.unpark(m.waiter);
694 jsr166 1.72 return (x != null) ? x : e;
695 dl 1.55 }
696 dl 1.35 }
697     }
698    
699     /**
700 jsr166 1.57 * Spins/blocks until node s is fulfilled.
701 jsr166 1.63 *
702 dl 1.55 * @param s the waiting node
703     * @param e the comparison value for checking match
704     * @param timed true if timed wait
705     * @param nanos timeout value
706     * @return matched item, or s if cancelled
707 dl 1.35 */
708 dl 1.55 Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
709     /* Same idea as TransferStack.awaitFulfill */
710 jsr166 1.72 long lastTime = timed ? System.nanoTime() : 0;
711 dl 1.55 Thread w = Thread.currentThread();
712     int spins = ((head.next == s) ?
713 jsr166 1.72 (timed ? maxTimedSpins : maxUntimedSpins) : 0);
714 dl 1.55 for (;;) {
715     if (w.isInterrupted())
716     s.tryCancel(e);
717     Object x = s.item;
718     if (x != e)
719     return x;
720     if (timed) {
721     long now = System.nanoTime();
722 jsr166 1.58 nanos -= now - lastTime;
723 dl 1.55 lastTime = now;
724     if (nanos <= 0) {
725     s.tryCancel(e);
726     continue;
727     }
728     }
729     if (spins > 0)
730     --spins;
731     else if (s.waiter == null)
732     s.waiter = w;
733     else if (!timed)
734     LockSupport.park(this);
735     else if (nanos > spinForTimeoutThreshold)
736     LockSupport.parkNanos(this, nanos);
737 dl 1.35 }
738 dl 1.31 }
739    
740     /**
741 jsr166 1.57 * Gets rid of cancelled node s with original predecessor pred.
742 dl 1.31 */
743 dl 1.55 void clean(QNode pred, QNode s) {
744     s.waiter = null; // forget thread
745     /*
746     * At any given time, exactly one node on list cannot be
747     * deleted -- the last inserted node. To accommodate this,
748     * if we cannot delete s, we save its predecessor as
749     * "cleanMe", deleting the previously saved version
750     * first. At least one of node s or the node previously
751     * saved can always be deleted, so this always terminates.
752     */
753     while (pred.next == s) { // Return early if already unlinked
754     QNode h = head;
755     QNode hn = h.next; // Absorb cancelled first node as head
756     if (hn != null && hn.isCancelled()) {
757     advanceHead(h, hn);
758     continue;
759     }
760 jsr166 1.68 QNode t = tail; // Ensure consistent read for tail
761 dl 1.55 if (t == h)
762     return;
763 jsr166 1.68 QNode tn = t.next;
764     if (t != tail)
765 dl 1.55 continue;
766     if (tn != null) {
767     advanceTail(t, tn);
768     continue;
769     }
770     if (s != t) { // If not tail, try to unsplice
771     QNode sn = s.next;
772     if (sn == s || pred.casNext(s, sn))
773     return;
774     }
775     QNode dp = cleanMe;
776     if (dp != null) { // Try unlinking previous cancelled node
777     QNode d = dp.next;
778     QNode dn;
779     if (d == null || // d is gone or
780     d == dp || // d is off list or
781     !d.isCancelled() || // d not cancelled or
782     (d != t && // d not tail and
783     (dn = d.next) != null && // has successor
784     dn != d && // that is on list
785     dp.casNext(d, dn))) // d unspliced
786 jsr166 1.58 casCleanMe(dp, null);
787     if (dp == pred)
788 dl 1.55 return; // s is already saved node
789 jsr166 1.58 } else if (casCleanMe(null, pred))
790 dl 1.55 return; // Postpone cleaning s
791 dl 1.2 }
792     }
793 dl 1.69
794 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
795     private static final long headOffset;
796     private static final long tailOffset;
797     private static final long cleanMeOffset;
798     static {
799     try {
800     UNSAFE = sun.misc.Unsafe.getUnsafe();
801     Class k = TransferQueue.class;
802     headOffset = UNSAFE.objectFieldOffset
803     (k.getDeclaredField("head"));
804     tailOffset = UNSAFE.objectFieldOffset
805     (k.getDeclaredField("tail"));
806     cleanMeOffset = UNSAFE.objectFieldOffset
807     (k.getDeclaredField("cleanMe"));
808     } catch (Exception e) {
809     throw new Error(e);
810     }
811     }
812 dl 1.55 }
813    
814     /**
815     * The transferer. Set only in constructor, but cannot be declared
816     * as final without further complicating serialization. Since
817 dl 1.56 * this is accessed only at most once per public method, there
818     * isn't a noticeable performance penalty for using volatile
819     * instead of final here.
820 dl 1.55 */
821     private transient volatile Transferer transferer;
822    
823     /**
824     * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
825     */
826     public SynchronousQueue() {
827     this(false);
828     }
829 dl 1.2
830 dl 1.55 /**
831 jsr166 1.63 * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
832     *
833     * @param fair if true, waiting threads contend in FIFO order for
834     * access; otherwise the order is unspecified.
835 dl 1.55 */
836     public SynchronousQueue(boolean fair) {
837 jsr166 1.72 transferer = fair ? new TransferQueue() : new TransferStack();
838 dl 1.2 }
839    
840     /**
841 dl 1.35 * Adds the specified element to this queue, waiting if necessary for
842     * another thread to receive it.
843 jsr166 1.50 *
844     * @throws InterruptedException {@inheritDoc}
845     * @throws NullPointerException {@inheritDoc}
846 tim 1.10 */
847 dl 1.55 public void put(E o) throws InterruptedException {
848     if (o == null) throw new NullPointerException();
849 dl 1.64 if (transferer.transfer(o, false, 0) == null) {
850 jsr166 1.68 Thread.interrupted();
851 dl 1.55 throw new InterruptedException();
852 jsr166 1.68 }
853 tim 1.1 }
854    
855 dholmes 1.11 /**
856 dl 1.20 * Inserts the specified element into this queue, waiting if necessary
857 dl 1.18 * up to the specified wait time for another thread to receive it.
858 jsr166 1.50 *
859     * @return <tt>true</tt> if successful, or <tt>false</tt> if the
860     * specified waiting time elapses before a consumer appears.
861     * @throws InterruptedException {@inheritDoc}
862     * @throws NullPointerException {@inheritDoc}
863 dholmes 1.11 */
864 jsr166 1.58 public boolean offer(E o, long timeout, TimeUnit unit)
865 dl 1.55 throws InterruptedException {
866     if (o == null) throw new NullPointerException();
867     if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
868     return true;
869     if (!Thread.interrupted())
870     return false;
871     throw new InterruptedException();
872     }
873    
874     /**
875     * Inserts the specified element into this queue, if another thread is
876     * waiting to receive it.
877     *
878     * @param e the element to add
879     * @return <tt>true</tt> if the element was added to this queue, else
880     * <tt>false</tt>
881     * @throws NullPointerException if the specified element is null
882     */
883     public boolean offer(E e) {
884 jsr166 1.49 if (e == null) throw new NullPointerException();
885 dl 1.55 return transferer.transfer(e, true, 0) != null;
886 tim 1.1 }
887    
888 dholmes 1.11 /**
889     * Retrieves and removes the head of this queue, waiting if necessary
890     * for another thread to insert it.
891 jsr166 1.50 *
892 dholmes 1.11 * @return the head of this queue
893 jsr166 1.50 * @throws InterruptedException {@inheritDoc}
894 dholmes 1.11 */
895 dl 1.2 public E take() throws InterruptedException {
896 dl 1.55 Object e = transferer.transfer(null, false, 0);
897     if (e != null)
898     return (E)e;
899 jsr166 1.68 Thread.interrupted();
900 dl 1.55 throw new InterruptedException();
901 tim 1.1 }
902 dl 1.2
903 dholmes 1.11 /**
904     * Retrieves and removes the head of this queue, waiting
905     * if necessary up to the specified wait time, for another thread
906     * to insert it.
907 jsr166 1.50 *
908 dl 1.18 * @return the head of this queue, or <tt>null</tt> if the
909 jsr166 1.50 * specified waiting time elapses before an element is present.
910     * @throws InterruptedException {@inheritDoc}
911 dholmes 1.11 */
912 dl 1.2 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
913 dl 1.55 Object e = transferer.transfer(null, true, unit.toNanos(timeout));
914     if (e != null || !Thread.interrupted())
915     return (E)e;
916     throw new InterruptedException();
917 tim 1.1 }
918 dl 1.2
919 dl 1.18 /**
920     * Retrieves and removes the head of this queue, if another thread
921     * is currently making an element available.
922     *
923     * @return the head of this queue, or <tt>null</tt> if no
924     * element is available.
925     */
926 dl 1.2 public E poll() {
927 dl 1.55 return (E)transferer.transfer(null, true, 0);
928 tim 1.1 }
929 dl 1.2
930 dl 1.5 /**
931 jsr166 1.48 * Always returns <tt>true</tt>.
932 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
933 jsr166 1.63 *
934 dholmes 1.11 * @return <tt>true</tt>
935 dl 1.5 */
936     public boolean isEmpty() {
937     return true;
938     }
939    
940     /**
941 dholmes 1.11 * Always returns zero.
942     * A <tt>SynchronousQueue</tt> has no internal capacity.
943 jsr166 1.63 *
944 dl 1.55 * @return zero.
945 dl 1.5 */
946     public int size() {
947     return 0;
948 tim 1.1 }
949 dl 1.2
950 dl 1.5 /**
951 dholmes 1.11 * Always returns zero.
952     * A <tt>SynchronousQueue</tt> has no internal capacity.
953 jsr166 1.63 *
954 dl 1.55 * @return zero.
955 dl 1.5 */
956     public int remainingCapacity() {
957     return 0;
958     }
959    
960     /**
961 dholmes 1.11 * Does nothing.
962     * A <tt>SynchronousQueue</tt> has no internal capacity.
963     */
964 dl 1.55 public void clear() {
965     }
966 dholmes 1.11
967     /**
968     * Always returns <tt>false</tt>.
969     * A <tt>SynchronousQueue</tt> has no internal capacity.
970 jsr166 1.63 *
971 dl 1.55 * @param o the element
972 dholmes 1.11 * @return <tt>false</tt>
973     */
974     public boolean contains(Object o) {
975     return false;
976     }
977    
978     /**
979 dl 1.18 * Always returns <tt>false</tt>.
980     * A <tt>SynchronousQueue</tt> has no internal capacity.
981     *
982     * @param o the element to remove
983     * @return <tt>false</tt>
984     */
985     public boolean remove(Object o) {
986     return false;
987     }
988    
989     /**
990 jsr166 1.59 * Returns <tt>false</tt> unless the given collection is empty.
991 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
992 jsr166 1.63 *
993 dl 1.18 * @param c the collection
994 dl 1.55 * @return <tt>false</tt> unless given collection is empty
995 dholmes 1.11 */
996 dl 1.12 public boolean containsAll(Collection<?> c) {
997 dl 1.16 return c.isEmpty();
998 dholmes 1.11 }
999    
1000     /**
1001     * Always returns <tt>false</tt>.
1002     * A <tt>SynchronousQueue</tt> has no internal capacity.
1003 jsr166 1.63 *
1004 dl 1.18 * @param c the collection
1005 dholmes 1.11 * @return <tt>false</tt>
1006     */
1007 dl 1.12 public boolean removeAll(Collection<?> c) {
1008 dholmes 1.11 return false;
1009     }
1010    
1011     /**
1012     * Always returns <tt>false</tt>.
1013     * A <tt>SynchronousQueue</tt> has no internal capacity.
1014 jsr166 1.63 *
1015 dl 1.18 * @param c the collection
1016 dholmes 1.11 * @return <tt>false</tt>
1017     */
1018 dl 1.12 public boolean retainAll(Collection<?> c) {
1019 dholmes 1.11 return false;
1020     }
1021    
1022     /**
1023 jsr166 1.48 * Always returns <tt>null</tt>.
1024 dholmes 1.11 * A <tt>SynchronousQueue</tt> does not return elements
1025 dl 1.5 * unless actively waited on.
1026 jsr166 1.63 *
1027 dholmes 1.11 * @return <tt>null</tt>
1028 dl 1.5 */
1029     public E peek() {
1030     return null;
1031     }
1032    
1033     /**
1034 dl 1.18 * Returns an empty iterator in which <tt>hasNext</tt> always returns
1035 tim 1.13 * <tt>false</tt>.
1036     *
1037 dholmes 1.11 * @return an empty iterator
1038 dl 1.5 */
1039 dl 1.2 public Iterator<E> iterator() {
1040 jsr166 1.67 return Collections.emptyIterator();
1041 tim 1.1 }
1042    
1043 dl 1.5 /**
1044 dholmes 1.11 * Returns a zero-length array.
1045     * @return a zero-length array
1046 dl 1.5 */
1047 dl 1.3 public Object[] toArray() {
1048 dl 1.25 return new Object[0];
1049 tim 1.1 }
1050    
1051 dholmes 1.11 /**
1052     * Sets the zeroeth element of the specified array to <tt>null</tt>
1053     * (if the array has non-zero length) and returns it.
1054 jsr166 1.50 *
1055 dl 1.40 * @param a the array
1056 dholmes 1.11 * @return the specified array
1057 jsr166 1.50 * @throws NullPointerException if the specified array is null
1058 dholmes 1.11 */
1059 dl 1.2 public <T> T[] toArray(T[] a) {
1060     if (a.length > 0)
1061     a[0] = null;
1062     return a;
1063     }
1064 dl 1.21
1065 jsr166 1.50 /**
1066     * @throws UnsupportedOperationException {@inheritDoc}
1067     * @throws ClassCastException {@inheritDoc}
1068     * @throws NullPointerException {@inheritDoc}
1069     * @throws IllegalArgumentException {@inheritDoc}
1070     */
1071 dl 1.21 public int drainTo(Collection<? super E> c) {
1072     if (c == null)
1073     throw new NullPointerException();
1074     if (c == this)
1075     throw new IllegalArgumentException();
1076     int n = 0;
1077     E e;
1078     while ( (e = poll()) != null) {
1079     c.add(e);
1080     ++n;
1081     }
1082     return n;
1083     }
1084    
1085 jsr166 1.50 /**
1086     * @throws UnsupportedOperationException {@inheritDoc}
1087     * @throws ClassCastException {@inheritDoc}
1088     * @throws NullPointerException {@inheritDoc}
1089     * @throws IllegalArgumentException {@inheritDoc}
1090     */
1091 dl 1.21 public int drainTo(Collection<? super E> c, int maxElements) {
1092     if (c == null)
1093     throw new NullPointerException();
1094     if (c == this)
1095     throw new IllegalArgumentException();
1096     int n = 0;
1097     E e;
1098     while (n < maxElements && (e = poll()) != null) {
1099     c.add(e);
1100     ++n;
1101     }
1102     return n;
1103     }
1104 dl 1.55
1105     /*
1106     * To cope with serialization strategy in the 1.5 version of
1107     * SynchronousQueue, we declare some unused classes and fields
1108     * that exist solely to enable serializability across versions.
1109     * These fields are never used, so are initialized only if this
1110     * object is ever serialized or deserialized.
1111     */
1112    
1113     static class WaitQueue implements java.io.Serializable { }
1114     static class LifoWaitQueue extends WaitQueue {
1115     private static final long serialVersionUID = -3633113410248163686L;
1116     }
1117     static class FifoWaitQueue extends WaitQueue {
1118     private static final long serialVersionUID = -3623113410248163686L;
1119     }
1120     private ReentrantLock qlock;
1121     private WaitQueue waitingProducers;
1122     private WaitQueue waitingConsumers;
1123    
1124     /**
1125     * Save the state to a stream (that is, serialize it).
1126     *
1127     * @param s the stream
1128     */
1129     private void writeObject(java.io.ObjectOutputStream s)
1130     throws java.io.IOException {
1131     boolean fair = transferer instanceof TransferQueue;
1132     if (fair) {
1133     qlock = new ReentrantLock(true);
1134     waitingProducers = new FifoWaitQueue();
1135     waitingConsumers = new FifoWaitQueue();
1136     }
1137     else {
1138     qlock = new ReentrantLock();
1139     waitingProducers = new LifoWaitQueue();
1140     waitingConsumers = new LifoWaitQueue();
1141     }
1142     s.defaultWriteObject();
1143     }
1144    
1145     private void readObject(final java.io.ObjectInputStream s)
1146     throws java.io.IOException, ClassNotFoundException {
1147     s.defaultReadObject();
1148     if (waitingProducers instanceof FifoWaitQueue)
1149     transferer = new TransferQueue();
1150     else
1151     transferer = new TransferStack();
1152     }
1153    
1154 dl 1.69 // Unsafe mechanics
1155     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1156     String field, Class<?> klazz) {
1157     try {
1158     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1159     } catch (NoSuchFieldException e) {
1160     // Convert Exception to corresponding Error
1161     NoSuchFieldError error = new NoSuchFieldError(field);
1162     error.initCause(e);
1163     throw error;
1164     }
1165     }
1166    
1167 tim 1.1 }