ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.83
Committed: Fri Dec 2 15:47:22 2011 UTC (12 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.82: +6 -19 lines
Log Message:
avoid introducing locals just for warning suppression

File Contents

# User Rev Content
1 dl 1.2 /*
2 dl 1.55 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5 jsr166 1.75 * http://creativecommons.org/publicdomain/zero/1.0/
6 dl 1.2 */
7    
8 tim 1.1 package java.util.concurrent;
9 dl 1.8 import java.util.concurrent.locks.*;
10 tim 1.1 import java.util.*;
11    
12     /**
13 jsr166 1.52 * A {@linkplain BlockingQueue blocking queue} in which each insert
14     * operation must wait for a corresponding remove operation by another
15     * thread, and vice versa. A synchronous queue does not have any
16     * internal capacity, not even a capacity of one. You cannot
17     * <tt>peek</tt> at a synchronous queue because an element is only
18     * present when you try to remove it; you cannot insert an element
19     * (using any method) unless another thread is trying to remove it;
20     * you cannot iterate as there is nothing to iterate. The
21     * <em>head</em> of the queue is the element that the first queued
22     * inserting thread is trying to add to the queue; if there is no such
23     * queued thread then no element is available for removal and
24     * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
25     * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
26     * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
27     * does not permit <tt>null</tt> elements.
28 dl 1.18 *
29     * <p>Synchronous queues are similar to rendezvous channels used in
30     * CSP and Ada. They are well suited for handoff designs, in which an
31 dl 1.30 * object running in one thread must sync up with an object running
32 dl 1.18 * in another thread in order to hand it some information, event, or
33     * task.
34 dl 1.43 *
35     * <p> This class supports an optional fairness policy for ordering
36     * waiting producer and consumer threads. By default, this ordering
37     * is not guaranteed. However, a queue constructed with fairness set
38 jsr166 1.58 * to <tt>true</tt> grants threads access in FIFO order.
39 dl 1.43 *
40 dl 1.46 * <p>This class and its iterator implement all of the
41     * <em>optional</em> methods of the {@link Collection} and {@link
42 jsr166 1.48 * Iterator} interfaces.
43 dl 1.42 *
44     * <p>This class is a member of the
45 jsr166 1.66 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
46 dl 1.42 * Java Collections Framework</a>.
47     *
48 dl 1.6 * @since 1.5
49 dl 1.56 * @author Doug Lea and Bill Scherer and Michael Scott
50 dl 1.24 * @param <E> the type of elements held in this collection
51 dl 1.23 */
52 dl 1.2 public class SynchronousQueue<E> extends AbstractQueue<E>
53 dl 1.55 implements BlockingQueue<E>, java.io.Serializable {
54 dl 1.15 private static final long serialVersionUID = -3223113410248163686L;
55 tim 1.1
56 dl 1.2 /*
57 dl 1.55 * This class implements extensions of the dual stack and dual
58     * queue algorithms described in "Nonblocking Concurrent Objects
59     * with Condition Synchronization", by W. N. Scherer III and
60     * M. L. Scott. 18th Annual Conf. on Distributed Computing,
61     * Oct. 2004 (see also
62     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
63     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
64     * queue for fair mode. The performance of the two is generally
65     * similar. Fifo usually supports higher throughput under
66     * contention but Lifo maintains higher thread locality in common
67     * applications.
68     *
69     * A dual queue (and similarly stack) is one that at any given
70     * time either holds "data" -- items provided by put operations,
71     * or "requests" -- slots representing take operations, or is
72     * empty. A call to "fulfill" (i.e., a call requesting an item
73     * from a queue holding data or vice versa) dequeues a
74     * complementary node. The most interesting feature of these
75     * queues is that any operation can figure out which mode the
76     * queue is in, and act accordingly without needing locks.
77     *
78     * Both the queue and stack extend abstract class Transferer
79     * defining the single method transfer that does a put or a
80     * take. These are unified into a single method because in dual
81     * data structures, the put and take operations are symmetrical,
82     * so nearly all code can be combined. The resulting transfer
83     * methods are on the long side, but are easier to follow than
84     * they would be if broken up into nearly-duplicated parts.
85     *
86     * The queue and stack data structures share many conceptual
87     * similarities but very few concrete details. For simplicity,
88     * they are kept distinct so that they can later evolve
89     * separately.
90     *
91     * The algorithms here differ from the versions in the above paper
92     * in extending them for use in synchronous queues, as well as
93     * dealing with cancellation. The main differences include:
94     *
95 jsr166 1.59 * 1. The original algorithms used bit-marked pointers, but
96 dl 1.55 * the ones here use mode bits in nodes, leading to a number
97     * of further adaptations.
98     * 2. SynchronousQueues must block threads waiting to become
99     * fulfilled.
100 jsr166 1.58 * 3. Support for cancellation via timeout and interrupts,
101     * including cleaning out cancelled nodes/threads
102 dl 1.56 * from lists to avoid garbage retention and memory depletion.
103 dl 1.55 *
104     * Blocking is mainly accomplished using LockSupport park/unpark,
105     * except that nodes that appear to be the next ones to become
106     * fulfilled first spin a bit (on multiprocessors only). On very
107     * busy synchronous queues, spinning can dramatically improve
108     * throughput. And on less busy ones, the amount of spinning is
109     * small enough not to be noticeable.
110     *
111     * Cleaning is done in different ways in queues vs stacks. For
112     * queues, we can almost always remove a node immediately in O(1)
113     * time (modulo retries for consistency checks) when it is
114     * cancelled. But if it may be pinned as the current tail, it must
115     * wait until some subsequent cancellation. For stacks, we need a
116     * potentially O(n) traversal to be sure that we can remove the
117     * node, but this can run concurrently with other threads
118     * accessing the stack.
119     *
120     * While garbage collection takes care of most node reclamation
121     * issues that otherwise complicate nonblocking algorithms, care
122 jsr166 1.59 * is taken to "forget" references to data, other nodes, and
123 dl 1.55 * threads that might be held on to long-term by blocked
124     * threads. In cases where setting to null would otherwise
125     * conflict with main algorithms, this is done by changing a
126     * node's link to now point to the node itself. This doesn't arise
127     * much for Stack nodes (because blocked threads do not hang on to
128     * old head pointers), but references in Queue nodes must be
129 jsr166 1.59 * aggressively forgotten to avoid reachability of everything any
130 dl 1.55 * node has ever referred to since arrival.
131     */
132 dl 1.2
133 dl 1.43 /**
134 dl 1.55 * Shared internal API for dual stacks and queues.
135 dl 1.43 */
136 jsr166 1.82 abstract static class Transferer<E> {
137 dl 1.55 /**
138 jsr166 1.59 * Performs a put or take.
139     *
140 dl 1.55 * @param e if non-null, the item to be handed to a consumer;
141 jsr166 1.59 * if null, requests that transfer return an item
142     * offered by producer.
143 dl 1.55 * @param timed if this operation should timeout
144     * @param nanos the timeout, in nanoseconds
145 jsr166 1.59 * @return if non-null, the item provided or received; if null,
146     * the operation failed due to timeout or interrupt --
147     * the caller can distinguish which of these occurred
148     * by checking Thread.interrupted.
149 dl 1.55 */
150 jsr166 1.82 abstract E transfer(E e, boolean timed, long nanos);
151 dl 1.43 }
152    
153 dl 1.55 /** The number of CPUs, for spin control */
154     static final int NCPUS = Runtime.getRuntime().availableProcessors();
155    
156 dl 1.43 /**
157 dl 1.55 * The number of times to spin before blocking in timed waits.
158     * The value is empirically derived -- it works well across a
159 dl 1.56 * variety of processors and OSes. Empirically, the best value
160 dl 1.55 * seems not to vary with number of CPUs (beyond 2) so is just
161     * a constant.
162 dl 1.43 */
163 jsr166 1.72 static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
164 dl 1.43
165     /**
166 jsr166 1.60 * The number of times to spin before blocking in untimed waits.
167     * This is greater than timed value because untimed waits spin
168     * faster since they don't need to check times on each spin.
169 dl 1.43 */
170 dl 1.55 static final int maxUntimedSpins = maxTimedSpins * 16;
171 dl 1.43
172     /**
173 dl 1.55 * The number of nanoseconds for which it is faster to spin
174     * rather than to use timed park. A rough estimate suffices.
175 dl 1.43 */
176 dl 1.55 static final long spinForTimeoutThreshold = 1000L;
177    
178 jsr166 1.60 /** Dual stack */
179 jsr166 1.82 static final class TransferStack<E> extends Transferer<E> {
180 dl 1.55 /*
181     * This extends Scherer-Scott dual stack algorithm, differing,
182     * among other ways, by using "covering" nodes rather than
183     * bit-marked pointers: Fulfilling operations push on marker
184     * nodes (with FULFILLING bit set in mode) to reserve a spot
185     * to match a waiting node.
186     */
187 dl 1.43
188 dl 1.55 /* Modes for SNodes, ORed together in node fields */
189     /** Node represents an unfulfilled consumer */
190     static final int REQUEST = 0;
191     /** Node represents an unfulfilled producer */
192     static final int DATA = 1;
193     /** Node is fulfilling another unfulfilled DATA or REQUEST */
194     static final int FULFILLING = 2;
195    
196     /** Return true if m has fulfilling bit set */
197     static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
198    
199     /** Node class for TransferStacks. */
200     static final class SNode {
201     volatile SNode next; // next node in stack
202     volatile SNode match; // the node matched to this
203     volatile Thread waiter; // to control park/unpark
204     Object item; // data; or null for REQUESTs
205     int mode;
206     // Note: item and mode fields don't need to be volatile
207     // since they are always written before, and read after,
208     // other volatile/atomic operations.
209    
210     SNode(Object item) {
211     this.item = item;
212     }
213    
214     boolean casNext(SNode cmp, SNode val) {
215 dl 1.69 return cmp == next &&
216     UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
217 dl 1.55 }
218    
219     /**
220 jsr166 1.63 * Tries to match node s to this node, if so, waking up thread.
221     * Fulfillers call tryMatch to identify their waiters.
222     * Waiters block until they have been matched.
223     *
224 dl 1.55 * @param s the node to match
225     * @return true if successfully matched to s
226     */
227     boolean tryMatch(SNode s) {
228     if (match == null &&
229 dl 1.69 UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
230 dl 1.55 Thread w = waiter;
231     if (w != null) { // waiters need at most one unpark
232     waiter = null;
233     LockSupport.unpark(w);
234     }
235     return true;
236 dl 1.47 }
237 dl 1.55 return match == s;
238     }
239    
240     /**
241 jsr166 1.59 * Tries to cancel a wait by matching node to itself.
242 dl 1.55 */
243     void tryCancel() {
244 dl 1.69 UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
245 dl 1.55 }
246    
247     boolean isCancelled() {
248     return match == this;
249 dl 1.47 }
250 dl 1.69
251     // Unsafe mechanics
252 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
253     private static final long matchOffset;
254     private static final long nextOffset;
255 dl 1.74
256 dl 1.73 static {
257     try {
258     UNSAFE = sun.misc.Unsafe.getUnsafe();
259 jsr166 1.77 Class<?> k = SNode.class;
260 dl 1.73 matchOffset = UNSAFE.objectFieldOffset
261     (k.getDeclaredField("match"));
262     nextOffset = UNSAFE.objectFieldOffset
263     (k.getDeclaredField("next"));
264     } catch (Exception e) {
265     throw new Error(e);
266     }
267     }
268 dl 1.47 }
269 dl 1.43
270 dl 1.55 /** The head (top) of the stack */
271     volatile SNode head;
272 jsr166 1.70
273 dl 1.55 boolean casHead(SNode h, SNode nh) {
274 jsr166 1.70 return h == head &&
275 dl 1.69 UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
276 dl 1.55 }
277 dl 1.2
278 dl 1.55 /**
279 jsr166 1.57 * Creates or resets fields of a node. Called only from transfer
280 dl 1.55 * where the node to push on stack is lazily created and
281     * reused when possible to help reduce intervals between reads
282     * and CASes of head and to avoid surges of garbage when CASes
283     * to push nodes fail due to contention.
284     */
285     static SNode snode(SNode s, Object e, SNode next, int mode) {
286     if (s == null) s = new SNode(e);
287     s.mode = mode;
288     s.next = next;
289     return s;
290 dl 1.43 }
291    
292 dl 1.55 /**
293 jsr166 1.57 * Puts or takes an item.
294 dl 1.55 */
295 jsr166 1.83 @SuppressWarnings("unchecked")
296 jsr166 1.82 E transfer(E e, boolean timed, long nanos) {
297 dl 1.55 /*
298     * Basic algorithm is to loop trying one of three actions:
299     *
300     * 1. If apparently empty or already containing nodes of same
301     * mode, try to push node on stack and wait for a match,
302     * returning it, or null if cancelled.
303     *
304     * 2. If apparently containing node of complementary mode,
305     * try to push a fulfilling node on to stack, match
306     * with corresponding waiting node, pop both from
307     * stack, and return matched item. The matching or
308     * unlinking might not actually be necessary because of
309 dl 1.62 * other threads performing action 3:
310 dl 1.55 *
311     * 3. If top of stack already holds another fulfilling node,
312     * help it out by doing its match and/or pop
313     * operations, and then continue. The code for helping
314     * is essentially the same as for fulfilling, except
315     * that it doesn't return the item.
316     */
317    
318     SNode s = null; // constructed/reused as needed
319 jsr166 1.72 int mode = (e == null) ? REQUEST : DATA;
320 dl 1.55
321     for (;;) {
322     SNode h = head;
323     if (h == null || h.mode == mode) { // empty or same-mode
324     if (timed && nanos <= 0) { // can't wait
325 jsr166 1.58 if (h != null && h.isCancelled())
326 dl 1.55 casHead(h, h.next); // pop cancelled node
327     else
328 jsr166 1.58 return null;
329 dl 1.55 } else if (casHead(h, s = snode(s, e, h, mode))) {
330     SNode m = awaitFulfill(s, timed, nanos);
331     if (m == s) { // wait was cancelled
332     clean(s);
333     return null;
334     }
335     if ((h = head) != null && h.next == s)
336     casHead(h, s.next); // help s's fulfiller
337 jsr166 1.83 return (E) ((mode == REQUEST) ? m.item : s.item);
338 dl 1.55 }
339     } else if (!isFulfilling(h.mode)) { // try to fulfill
340     if (h.isCancelled()) // already cancelled
341     casHead(h, h.next); // pop and retry
342     else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
343     for (;;) { // loop until matched or waiters disappear
344     SNode m = s.next; // m is s's match
345     if (m == null) { // all waiters are gone
346     casHead(s, null); // pop fulfill node
347     s = null; // use new node next time
348     break; // restart main loop
349     }
350     SNode mn = m.next;
351     if (m.tryMatch(s)) {
352     casHead(s, mn); // pop both s and m
353 jsr166 1.83 return (E) ((mode == REQUEST) ? m.item : s.item);
354 dl 1.55 } else // lost match
355     s.casNext(m, mn); // help unlink
356     }
357     }
358     } else { // help a fulfiller
359     SNode m = h.next; // m is h's match
360     if (m == null) // waiter is gone
361     casHead(h, null); // pop fulfilling node
362     else {
363     SNode mn = m.next;
364     if (m.tryMatch(h)) // help match
365     casHead(h, mn); // pop both h and m
366     else // lost match
367     h.casNext(m, mn); // help unlink
368     }
369 dl 1.47 }
370     }
371     }
372    
373 dl 1.55 /**
374 jsr166 1.57 * Spins/blocks until node s is matched by a fulfill operation.
375 jsr166 1.63 *
376 dl 1.55 * @param s the waiting node
377     * @param timed true if timed wait
378     * @param nanos timeout value
379     * @return matched node, or s if cancelled
380     */
381     SNode awaitFulfill(SNode s, boolean timed, long nanos) {
382     /*
383     * When a node/thread is about to block, it sets its waiter
384     * field and then rechecks state at least one more time
385     * before actually parking, thus covering race vs
386 jsr166 1.59 * fulfiller noticing that waiter is non-null so should be
387 dl 1.55 * woken.
388     *
389     * When invoked by nodes that appear at the point of call
390     * to be at the head of the stack, calls to park are
391     * preceded by spins to avoid blocking when producers and
392     * consumers are arriving very close in time. This can
393     * happen enough to bother only on multiprocessors.
394     *
395     * The order of checks for returning out of main loop
396     * reflects fact that interrupts have precedence over
397     * normal returns, which have precedence over
398     * timeouts. (So, on timeout, one last check for match is
399     * done before giving up.) Except that calls from untimed
400     * SynchronousQueue.{poll/offer} don't check interrupts
401     * and don't wait at all, so are trapped in transfer
402     * method rather than calling awaitFulfill.
403     */
404 jsr166 1.72 long lastTime = timed ? System.nanoTime() : 0;
405 dl 1.55 Thread w = Thread.currentThread();
406 jsr166 1.72 int spins = (shouldSpin(s) ?
407     (timed ? maxTimedSpins : maxUntimedSpins) : 0);
408 dl 1.55 for (;;) {
409     if (w.isInterrupted())
410     s.tryCancel();
411     SNode m = s.match;
412     if (m != null)
413     return m;
414     if (timed) {
415     long now = System.nanoTime();
416 jsr166 1.58 nanos -= now - lastTime;
417 dl 1.55 lastTime = now;
418     if (nanos <= 0) {
419     s.tryCancel();
420     continue;
421     }
422     }
423     if (spins > 0)
424 jsr166 1.72 spins = shouldSpin(s) ? (spins-1) : 0;
425 dl 1.55 else if (s.waiter == null)
426     s.waiter = w; // establish waiter so can park next iter
427     else if (!timed)
428     LockSupport.park(this);
429     else if (nanos > spinForTimeoutThreshold)
430     LockSupport.parkNanos(this, nanos);
431 dl 1.47 }
432     }
433 dl 1.2
434 dl 1.55 /**
435 jsr166 1.57 * Returns true if node s is at head or there is an active
436 dl 1.55 * fulfiller.
437     */
438     boolean shouldSpin(SNode s) {
439     SNode h = head;
440 dl 1.56 return (h == s || h == null || isFulfilling(h.mode));
441 dl 1.55 }
442    
443     /**
444 jsr166 1.57 * Unlinks s from the stack.
445 dl 1.55 */
446     void clean(SNode s) {
447 jsr166 1.58 s.item = null; // forget item
448 dl 1.55 s.waiter = null; // forget thread
449    
450     /*
451     * At worst we may need to traverse entire stack to unlink
452     * s. If there are multiple concurrent calls to clean, we
453     * might not see s if another thread has already removed
454     * it. But we can stop when we see any node known to
455     * follow s. We use s.next unless it too is cancelled, in
456     * which case we try the node one past. We don't check any
457 jsr166 1.59 * further because we don't want to doubly traverse just to
458 dl 1.55 * find sentinel.
459     */
460    
461     SNode past = s.next;
462     if (past != null && past.isCancelled())
463     past = past.next;
464    
465     // Absorb cancelled nodes at head
466     SNode p;
467     while ((p = head) != null && p != past && p.isCancelled())
468     casHead(p, p.next);
469    
470     // Unsplice embedded nodes
471     while (p != null && p != past) {
472     SNode n = p.next;
473     if (n != null && n.isCancelled())
474     p.casNext(n, n.next);
475     else
476     p = n;
477 dl 1.47 }
478     }
479 dl 1.69
480     // Unsafe mechanics
481 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
482     private static final long headOffset;
483     static {
484     try {
485     UNSAFE = sun.misc.Unsafe.getUnsafe();
486 jsr166 1.77 Class<?> k = TransferStack.class;
487 dl 1.73 headOffset = UNSAFE.objectFieldOffset
488     (k.getDeclaredField("head"));
489     } catch (Exception e) {
490     throw new Error(e);
491     }
492     }
493 dl 1.47 }
494 jsr166 1.48
495 jsr166 1.61 /** Dual Queue */
496 jsr166 1.82 static final class TransferQueue<E> extends Transferer<E> {
497 dl 1.55 /*
498     * This extends Scherer-Scott dual queue algorithm, differing,
499     * among other ways, by using modes within nodes rather than
500     * marked pointers. The algorithm is a little simpler than
501     * that for stacks because fulfillers do not need explicit
502     * nodes, and matching is done by CAS'ing QNode.item field
503 jsr166 1.59 * from non-null to null (for put) or vice versa (for take).
504 dl 1.55 */
505 dl 1.53
506 dl 1.55 /** Node class for TransferQueue. */
507     static final class QNode {
508     volatile QNode next; // next node in queue
509     volatile Object item; // CAS'ed to or from null
510     volatile Thread waiter; // to control park/unpark
511 jsr166 1.58 final boolean isData;
512 dl 1.35
513 dl 1.55 QNode(Object item, boolean isData) {
514     this.item = item;
515     this.isData = isData;
516     }
517 dl 1.35
518 dl 1.55 boolean casNext(QNode cmp, QNode val) {
519 dl 1.69 return next == cmp &&
520     UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
521 dl 1.55 }
522    
523     boolean casItem(Object cmp, Object val) {
524 dl 1.69 return item == cmp &&
525     UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
526 dl 1.55 }
527    
528     /**
529 jsr166 1.59 * Tries to cancel by CAS'ing ref to this as item.
530 dl 1.55 */
531     void tryCancel(Object cmp) {
532 dl 1.69 UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
533 dl 1.55 }
534 jsr166 1.70
535 dl 1.55 boolean isCancelled() {
536     return item == this;
537     }
538 dl 1.56
539 jsr166 1.58 /**
540 jsr166 1.57 * Returns true if this node is known to be off the queue
541 dl 1.56 * because its next pointer has been forgotten due to
542     * an advanceHead operation.
543     */
544     boolean isOffList() {
545     return next == this;
546     }
547 dl 1.74
548 dl 1.69 // Unsafe mechanics
549 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
550     private static final long itemOffset;
551     private static final long nextOffset;
552 dl 1.74
553 dl 1.73 static {
554     try {
555     UNSAFE = sun.misc.Unsafe.getUnsafe();
556 jsr166 1.77 Class<?> k = QNode.class;
557 dl 1.73 itemOffset = UNSAFE.objectFieldOffset
558     (k.getDeclaredField("item"));
559     nextOffset = UNSAFE.objectFieldOffset
560     (k.getDeclaredField("next"));
561     } catch (Exception e) {
562     throw new Error(e);
563     }
564     }
565 dl 1.31 }
566    
567 dl 1.55 /** Head of queue */
568     transient volatile QNode head;
569     /** Tail of queue */
570     transient volatile QNode tail;
571 dl 1.31 /**
572 dl 1.55 * Reference to a cancelled node that might not yet have been
573     * unlinked from queue because it was the last inserted node
574     * when it cancelled.
575 dl 1.31 */
576 dl 1.55 transient volatile QNode cleanMe;
577    
578     TransferQueue() {
579     QNode h = new QNode(null, false); // initialize to dummy node.
580     head = h;
581     tail = h;
582 dl 1.31 }
583    
584     /**
585 jsr166 1.59 * Tries to cas nh as new head; if successful, unlink
586 dl 1.55 * old head's next node to avoid garbage retention.
587 dl 1.31 */
588 dl 1.55 void advanceHead(QNode h, QNode nh) {
589 jsr166 1.70 if (h == head &&
590 dl 1.69 UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
591 dl 1.55 h.next = h; // forget old next
592 dl 1.31 }
593    
594     /**
595 jsr166 1.57 * Tries to cas nt as new tail.
596 dl 1.31 */
597 dl 1.55 void advanceTail(QNode t, QNode nt) {
598     if (tail == t)
599 dl 1.69 UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
600 dl 1.31 }
601 dl 1.2
602     /**
603 jsr166 1.57 * Tries to CAS cleanMe slot.
604 dl 1.2 */
605 dl 1.55 boolean casCleanMe(QNode cmp, QNode val) {
606 dl 1.69 return cleanMe == cmp &&
607     UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
608 dl 1.35 }
609    
610     /**
611 jsr166 1.57 * Puts or takes an item.
612 dl 1.35 */
613 jsr166 1.83 @SuppressWarnings("unchecked")
614 jsr166 1.82 E transfer(E e, boolean timed, long nanos) {
615 jsr166 1.58 /* Basic algorithm is to loop trying to take either of
616 dl 1.55 * two actions:
617     *
618 jsr166 1.58 * 1. If queue apparently empty or holding same-mode nodes,
619 dl 1.55 * try to add node to queue of waiters, wait to be
620     * fulfilled (or cancelled) and return matching item.
621     *
622     * 2. If queue apparently contains waiting items, and this
623     * call is of complementary mode, try to fulfill by CAS'ing
624     * item field of waiting node and dequeuing it, and then
625     * returning matching item.
626     *
627     * In each case, along the way, check for and try to help
628     * advance head and tail on behalf of other stalled/slow
629     * threads.
630     *
631     * The loop starts off with a null check guarding against
632     * seeing uninitialized head or tail values. This never
633     * happens in current SynchronousQueue, but could if
634     * callers held non-volatile/final ref to the
635     * transferer. The check is here anyway because it places
636     * null checks at top of loop, which is usually faster
637     * than having them implicitly interspersed.
638     */
639    
640     QNode s = null; // constructed/reused as needed
641     boolean isData = (e != null);
642    
643     for (;;) {
644     QNode t = tail;
645     QNode h = head;
646 dl 1.62 if (t == null || h == null) // saw uninitialized value
647 dl 1.55 continue; // spin
648    
649     if (h == t || t.isData == isData) { // empty or same-mode
650     QNode tn = t.next;
651     if (t != tail) // inconsistent read
652     continue;
653     if (tn != null) { // lagging tail
654     advanceTail(t, tn);
655     continue;
656     }
657     if (timed && nanos <= 0) // can't wait
658     return null;
659     if (s == null)
660     s = new QNode(e, isData);
661     if (!t.casNext(null, s)) // failed to link in
662     continue;
663    
664     advanceTail(t, s); // swing tail and wait
665     Object x = awaitFulfill(s, e, timed, nanos);
666     if (x == s) { // wait was cancelled
667     clean(t, s);
668     return null;
669     }
670    
671 dl 1.56 if (!s.isOffList()) { // not already unlinked
672     advanceHead(t, s); // unlink if head
673 dl 1.55 if (x != null) // and forget fields
674     s.item = s;
675     s.waiter = null;
676     }
677 jsr166 1.83 return (x != null) ? (E)x : e;
678 dl 1.55
679     } else { // complementary-mode
680     QNode m = h.next; // node to fulfill
681     if (t != tail || m == null || h != head)
682     continue; // inconsistent read
683    
684     Object x = m.item;
685     if (isData == (x != null) || // m already fulfilled
686     x == m || // m cancelled
687     !m.casItem(x, e)) { // lost CAS
688     advanceHead(h, m); // dequeue and retry
689     continue;
690     }
691    
692     advanceHead(h, m); // successfully fulfilled
693     LockSupport.unpark(m.waiter);
694 jsr166 1.83 return (x != null) ? (E)x : e;
695 dl 1.55 }
696 dl 1.35 }
697     }
698    
699     /**
700 jsr166 1.57 * Spins/blocks until node s is fulfilled.
701 jsr166 1.63 *
702 dl 1.55 * @param s the waiting node
703     * @param e the comparison value for checking match
704     * @param timed true if timed wait
705     * @param nanos timeout value
706     * @return matched item, or s if cancelled
707 dl 1.35 */
708 jsr166 1.82 Object awaitFulfill(QNode s, E e, boolean timed, long nanos) {
709 dl 1.55 /* Same idea as TransferStack.awaitFulfill */
710 jsr166 1.72 long lastTime = timed ? System.nanoTime() : 0;
711 dl 1.55 Thread w = Thread.currentThread();
712     int spins = ((head.next == s) ?
713 jsr166 1.72 (timed ? maxTimedSpins : maxUntimedSpins) : 0);
714 dl 1.55 for (;;) {
715     if (w.isInterrupted())
716     s.tryCancel(e);
717     Object x = s.item;
718     if (x != e)
719     return x;
720     if (timed) {
721     long now = System.nanoTime();
722 jsr166 1.58 nanos -= now - lastTime;
723 dl 1.55 lastTime = now;
724     if (nanos <= 0) {
725     s.tryCancel(e);
726     continue;
727     }
728     }
729     if (spins > 0)
730     --spins;
731     else if (s.waiter == null)
732     s.waiter = w;
733     else if (!timed)
734     LockSupport.park(this);
735     else if (nanos > spinForTimeoutThreshold)
736     LockSupport.parkNanos(this, nanos);
737 dl 1.35 }
738 dl 1.31 }
739    
740     /**
741 jsr166 1.57 * Gets rid of cancelled node s with original predecessor pred.
742 dl 1.31 */
743 dl 1.55 void clean(QNode pred, QNode s) {
744     s.waiter = null; // forget thread
745     /*
746     * At any given time, exactly one node on list cannot be
747     * deleted -- the last inserted node. To accommodate this,
748     * if we cannot delete s, we save its predecessor as
749     * "cleanMe", deleting the previously saved version
750     * first. At least one of node s or the node previously
751     * saved can always be deleted, so this always terminates.
752     */
753     while (pred.next == s) { // Return early if already unlinked
754     QNode h = head;
755     QNode hn = h.next; // Absorb cancelled first node as head
756     if (hn != null && hn.isCancelled()) {
757     advanceHead(h, hn);
758     continue;
759     }
760 jsr166 1.68 QNode t = tail; // Ensure consistent read for tail
761 dl 1.55 if (t == h)
762     return;
763 jsr166 1.68 QNode tn = t.next;
764     if (t != tail)
765 dl 1.55 continue;
766     if (tn != null) {
767     advanceTail(t, tn);
768     continue;
769     }
770     if (s != t) { // If not tail, try to unsplice
771     QNode sn = s.next;
772     if (sn == s || pred.casNext(s, sn))
773     return;
774     }
775     QNode dp = cleanMe;
776     if (dp != null) { // Try unlinking previous cancelled node
777     QNode d = dp.next;
778     QNode dn;
779     if (d == null || // d is gone or
780     d == dp || // d is off list or
781     !d.isCancelled() || // d not cancelled or
782     (d != t && // d not tail and
783     (dn = d.next) != null && // has successor
784     dn != d && // that is on list
785     dp.casNext(d, dn))) // d unspliced
786 jsr166 1.58 casCleanMe(dp, null);
787     if (dp == pred)
788 dl 1.55 return; // s is already saved node
789 jsr166 1.58 } else if (casCleanMe(null, pred))
790 dl 1.55 return; // Postpone cleaning s
791 dl 1.2 }
792     }
793 dl 1.69
794 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
795     private static final long headOffset;
796     private static final long tailOffset;
797     private static final long cleanMeOffset;
798     static {
799     try {
800     UNSAFE = sun.misc.Unsafe.getUnsafe();
801 jsr166 1.77 Class<?> k = TransferQueue.class;
802 dl 1.73 headOffset = UNSAFE.objectFieldOffset
803     (k.getDeclaredField("head"));
804     tailOffset = UNSAFE.objectFieldOffset
805     (k.getDeclaredField("tail"));
806     cleanMeOffset = UNSAFE.objectFieldOffset
807     (k.getDeclaredField("cleanMe"));
808     } catch (Exception e) {
809     throw new Error(e);
810     }
811     }
812 dl 1.55 }
813    
814     /**
815     * The transferer. Set only in constructor, but cannot be declared
816     * as final without further complicating serialization. Since
817 dl 1.56 * this is accessed only at most once per public method, there
818     * isn't a noticeable performance penalty for using volatile
819     * instead of final here.
820 dl 1.55 */
821 jsr166 1.82 private transient volatile Transferer<E> transferer;
822 dl 1.55
823     /**
824     * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
825     */
826     public SynchronousQueue() {
827     this(false);
828     }
829 dl 1.2
830 dl 1.55 /**
831 jsr166 1.63 * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
832     *
833     * @param fair if true, waiting threads contend in FIFO order for
834     * access; otherwise the order is unspecified.
835 dl 1.55 */
836     public SynchronousQueue(boolean fair) {
837 jsr166 1.82 transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
838 dl 1.2 }
839    
840     /**
841 dl 1.35 * Adds the specified element to this queue, waiting if necessary for
842     * another thread to receive it.
843 jsr166 1.50 *
844     * @throws InterruptedException {@inheritDoc}
845     * @throws NullPointerException {@inheritDoc}
846 tim 1.10 */
847 jsr166 1.82 public void put(E e) throws InterruptedException {
848     if (e == null) throw new NullPointerException();
849     if (transferer.transfer(e, false, 0) == null) {
850 jsr166 1.68 Thread.interrupted();
851 dl 1.55 throw new InterruptedException();
852 jsr166 1.68 }
853 tim 1.1 }
854    
855 dholmes 1.11 /**
856 dl 1.20 * Inserts the specified element into this queue, waiting if necessary
857 dl 1.18 * up to the specified wait time for another thread to receive it.
858 jsr166 1.50 *
859     * @return <tt>true</tt> if successful, or <tt>false</tt> if the
860     * specified waiting time elapses before a consumer appears.
861     * @throws InterruptedException {@inheritDoc}
862     * @throws NullPointerException {@inheritDoc}
863 dholmes 1.11 */
864 jsr166 1.82 public boolean offer(E e, long timeout, TimeUnit unit)
865 dl 1.55 throws InterruptedException {
866 jsr166 1.82 if (e == null) throw new NullPointerException();
867     if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
868 dl 1.55 return true;
869     if (!Thread.interrupted())
870     return false;
871     throw new InterruptedException();
872     }
873    
874     /**
875     * Inserts the specified element into this queue, if another thread is
876     * waiting to receive it.
877     *
878     * @param e the element to add
879     * @return <tt>true</tt> if the element was added to this queue, else
880     * <tt>false</tt>
881     * @throws NullPointerException if the specified element is null
882     */
883     public boolean offer(E e) {
884 jsr166 1.49 if (e == null) throw new NullPointerException();
885 dl 1.55 return transferer.transfer(e, true, 0) != null;
886 tim 1.1 }
887    
888 dholmes 1.11 /**
889     * Retrieves and removes the head of this queue, waiting if necessary
890     * for another thread to insert it.
891 jsr166 1.50 *
892 dholmes 1.11 * @return the head of this queue
893 jsr166 1.50 * @throws InterruptedException {@inheritDoc}
894 dholmes 1.11 */
895 dl 1.2 public E take() throws InterruptedException {
896 jsr166 1.82 E e = transferer.transfer(null, false, 0);
897 dl 1.55 if (e != null)
898 jsr166 1.82 return e;
899 jsr166 1.68 Thread.interrupted();
900 dl 1.55 throw new InterruptedException();
901 tim 1.1 }
902 dl 1.2
903 dholmes 1.11 /**
904     * Retrieves and removes the head of this queue, waiting
905     * if necessary up to the specified wait time, for another thread
906     * to insert it.
907 jsr166 1.50 *
908 dl 1.18 * @return the head of this queue, or <tt>null</tt> if the
909 jsr166 1.50 * specified waiting time elapses before an element is present.
910     * @throws InterruptedException {@inheritDoc}
911 dholmes 1.11 */
912 dl 1.2 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
913 jsr166 1.82 E e = transferer.transfer(null, true, unit.toNanos(timeout));
914 dl 1.55 if (e != null || !Thread.interrupted())
915 jsr166 1.82 return e;
916 dl 1.55 throw new InterruptedException();
917 tim 1.1 }
918 dl 1.2
919 dl 1.18 /**
920     * Retrieves and removes the head of this queue, if another thread
921     * is currently making an element available.
922     *
923     * @return the head of this queue, or <tt>null</tt> if no
924     * element is available.
925     */
926 dl 1.2 public E poll() {
927 jsr166 1.82 return transferer.transfer(null, true, 0);
928 tim 1.1 }
929 dl 1.2
930 dl 1.5 /**
931 jsr166 1.48 * Always returns <tt>true</tt>.
932 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
933 jsr166 1.63 *
934 dholmes 1.11 * @return <tt>true</tt>
935 dl 1.5 */
936     public boolean isEmpty() {
937     return true;
938     }
939    
940     /**
941 dholmes 1.11 * Always returns zero.
942     * A <tt>SynchronousQueue</tt> has no internal capacity.
943 jsr166 1.63 *
944 dl 1.55 * @return zero.
945 dl 1.5 */
946     public int size() {
947     return 0;
948 tim 1.1 }
949 dl 1.2
950 dl 1.5 /**
951 dholmes 1.11 * Always returns zero.
952     * A <tt>SynchronousQueue</tt> has no internal capacity.
953 jsr166 1.63 *
954 dl 1.55 * @return zero.
955 dl 1.5 */
956     public int remainingCapacity() {
957     return 0;
958     }
959    
960     /**
961 dholmes 1.11 * Does nothing.
962     * A <tt>SynchronousQueue</tt> has no internal capacity.
963     */
964 dl 1.55 public void clear() {
965     }
966 dholmes 1.11
967     /**
968     * Always returns <tt>false</tt>.
969     * A <tt>SynchronousQueue</tt> has no internal capacity.
970 jsr166 1.63 *
971 dl 1.55 * @param o the element
972 dholmes 1.11 * @return <tt>false</tt>
973     */
974     public boolean contains(Object o) {
975     return false;
976     }
977    
978     /**
979 dl 1.18 * Always returns <tt>false</tt>.
980     * A <tt>SynchronousQueue</tt> has no internal capacity.
981     *
982     * @param o the element to remove
983     * @return <tt>false</tt>
984     */
985     public boolean remove(Object o) {
986     return false;
987     }
988    
989     /**
990 jsr166 1.59 * Returns <tt>false</tt> unless the given collection is empty.
991 dholmes 1.11 * A <tt>SynchronousQueue</tt> has no internal capacity.
992 jsr166 1.63 *
993 dl 1.18 * @param c the collection
994 dl 1.55 * @return <tt>false</tt> unless given collection is empty
995 dholmes 1.11 */
996 dl 1.12 public boolean containsAll(Collection<?> c) {
997 dl 1.16 return c.isEmpty();
998 dholmes 1.11 }
999    
1000     /**
1001     * Always returns <tt>false</tt>.
1002     * A <tt>SynchronousQueue</tt> has no internal capacity.
1003 jsr166 1.63 *
1004 dl 1.18 * @param c the collection
1005 dholmes 1.11 * @return <tt>false</tt>
1006     */
1007 dl 1.12 public boolean removeAll(Collection<?> c) {
1008 dholmes 1.11 return false;
1009     }
1010    
1011     /**
1012     * Always returns <tt>false</tt>.
1013     * A <tt>SynchronousQueue</tt> has no internal capacity.
1014 jsr166 1.63 *
1015 dl 1.18 * @param c the collection
1016 dholmes 1.11 * @return <tt>false</tt>
1017     */
1018 dl 1.12 public boolean retainAll(Collection<?> c) {
1019 dholmes 1.11 return false;
1020     }
1021    
1022     /**
1023 jsr166 1.48 * Always returns <tt>null</tt>.
1024 dholmes 1.11 * A <tt>SynchronousQueue</tt> does not return elements
1025 dl 1.5 * unless actively waited on.
1026 jsr166 1.63 *
1027 dholmes 1.11 * @return <tt>null</tt>
1028 dl 1.5 */
1029     public E peek() {
1030     return null;
1031     }
1032    
1033     /**
1034 dl 1.18 * Returns an empty iterator in which <tt>hasNext</tt> always returns
1035 tim 1.13 * <tt>false</tt>.
1036     *
1037 dholmes 1.11 * @return an empty iterator
1038 dl 1.5 */
1039 dl 1.76 @SuppressWarnings("unchecked")
1040 dl 1.2 public Iterator<E> iterator() {
1041 dl 1.76 return (Iterator<E>) EmptyIterator.EMPTY_ITERATOR;
1042     }
1043    
1044     // Replicated from a previous version of Collections
1045     private static class EmptyIterator<E> implements Iterator<E> {
1046     static final EmptyIterator<Object> EMPTY_ITERATOR
1047     = new EmptyIterator<Object>();
1048    
1049     public boolean hasNext() { return false; }
1050     public E next() { throw new NoSuchElementException(); }
1051     public void remove() { throw new IllegalStateException(); }
1052 tim 1.1 }
1053    
1054 dl 1.5 /**
1055 dholmes 1.11 * Returns a zero-length array.
1056     * @return a zero-length array
1057 dl 1.5 */
1058 dl 1.3 public Object[] toArray() {
1059 dl 1.25 return new Object[0];
1060 tim 1.1 }
1061    
1062 dholmes 1.11 /**
1063     * Sets the zeroeth element of the specified array to <tt>null</tt>
1064     * (if the array has non-zero length) and returns it.
1065 jsr166 1.50 *
1066 dl 1.40 * @param a the array
1067 dholmes 1.11 * @return the specified array
1068 jsr166 1.50 * @throws NullPointerException if the specified array is null
1069 dholmes 1.11 */
1070 dl 1.2 public <T> T[] toArray(T[] a) {
1071     if (a.length > 0)
1072     a[0] = null;
1073     return a;
1074     }
1075 dl 1.21
1076 jsr166 1.50 /**
1077     * @throws UnsupportedOperationException {@inheritDoc}
1078     * @throws ClassCastException {@inheritDoc}
1079     * @throws NullPointerException {@inheritDoc}
1080     * @throws IllegalArgumentException {@inheritDoc}
1081     */
1082 dl 1.21 public int drainTo(Collection<? super E> c) {
1083     if (c == null)
1084     throw new NullPointerException();
1085     if (c == this)
1086     throw new IllegalArgumentException();
1087     int n = 0;
1088 jsr166 1.80 for (E e; (e = poll()) != null;) {
1089 dl 1.21 c.add(e);
1090     ++n;
1091     }
1092     return n;
1093     }
1094    
1095 jsr166 1.50 /**
1096     * @throws UnsupportedOperationException {@inheritDoc}
1097     * @throws ClassCastException {@inheritDoc}
1098     * @throws NullPointerException {@inheritDoc}
1099     * @throws IllegalArgumentException {@inheritDoc}
1100     */
1101 dl 1.21 public int drainTo(Collection<? super E> c, int maxElements) {
1102     if (c == null)
1103     throw new NullPointerException();
1104     if (c == this)
1105     throw new IllegalArgumentException();
1106     int n = 0;
1107 jsr166 1.80 for (E e; n < maxElements && (e = poll()) != null;) {
1108 dl 1.21 c.add(e);
1109     ++n;
1110     }
1111     return n;
1112     }
1113 dl 1.55
1114     /*
1115     * To cope with serialization strategy in the 1.5 version of
1116     * SynchronousQueue, we declare some unused classes and fields
1117     * that exist solely to enable serializability across versions.
1118     * These fields are never used, so are initialized only if this
1119     * object is ever serialized or deserialized.
1120     */
1121    
1122 jsr166 1.82 @SuppressWarnings("serial")
1123 dl 1.55 static class WaitQueue implements java.io.Serializable { }
1124     static class LifoWaitQueue extends WaitQueue {
1125     private static final long serialVersionUID = -3633113410248163686L;
1126     }
1127     static class FifoWaitQueue extends WaitQueue {
1128     private static final long serialVersionUID = -3623113410248163686L;
1129     }
1130     private ReentrantLock qlock;
1131     private WaitQueue waitingProducers;
1132     private WaitQueue waitingConsumers;
1133    
1134     /**
1135 jsr166 1.81 * Saves the state to a stream (that is, serializes it).
1136 dl 1.55 *
1137     * @param s the stream
1138     */
1139     private void writeObject(java.io.ObjectOutputStream s)
1140     throws java.io.IOException {
1141     boolean fair = transferer instanceof TransferQueue;
1142     if (fair) {
1143     qlock = new ReentrantLock(true);
1144     waitingProducers = new FifoWaitQueue();
1145     waitingConsumers = new FifoWaitQueue();
1146     }
1147     else {
1148     qlock = new ReentrantLock();
1149     waitingProducers = new LifoWaitQueue();
1150     waitingConsumers = new LifoWaitQueue();
1151     }
1152     s.defaultWriteObject();
1153     }
1154    
1155     private void readObject(final java.io.ObjectInputStream s)
1156     throws java.io.IOException, ClassNotFoundException {
1157     s.defaultReadObject();
1158     if (waitingProducers instanceof FifoWaitQueue)
1159 jsr166 1.82 transferer = new TransferQueue<E>();
1160 dl 1.55 else
1161 jsr166 1.82 transferer = new TransferStack<E>();
1162 dl 1.55 }
1163    
1164 dl 1.69 // Unsafe mechanics
1165     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1166     String field, Class<?> klazz) {
1167     try {
1168     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1169     } catch (NoSuchFieldException e) {
1170     // Convert Exception to corresponding Error
1171     NoSuchFieldError error = new NoSuchFieldError(field);
1172     error.initCause(e);
1173     throw error;
1174     }
1175     }
1176    
1177 tim 1.1 }