ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.95
Committed: Mon Feb 25 17:59:40 2013 UTC (11 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.94: +2 -1 lines
Log Message:
lambda syncs and improvements

File Contents

# User Rev Content
1 dl 1.2 /*
2 dl 1.55 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3     * assistance from members of JCP JSR-166 Expert Group and released to
4     * the public domain, as explained at
5 jsr166 1.75 * http://creativecommons.org/publicdomain/zero/1.0/
6 dl 1.2 */
7    
8 tim 1.1 package java.util.concurrent;
9 jsr166 1.86 import java.util.concurrent.locks.LockSupport;
10     import java.util.concurrent.locks.ReentrantLock;
11 tim 1.1 import java.util.*;
12 dl 1.93 import java.util.Spliterator;
13 dl 1.95 import java.util.Spliterators;
14 dl 1.93 import java.util.stream.Stream;
15     import java.util.stream.Streams;
16     import java.util.function.Consumer;
17 tim 1.1
18     /**
19 jsr166 1.52 * A {@linkplain BlockingQueue blocking queue} in which each insert
20     * operation must wait for a corresponding remove operation by another
21     * thread, and vice versa. A synchronous queue does not have any
22     * internal capacity, not even a capacity of one. You cannot
23 jsr166 1.90 * {@code peek} at a synchronous queue because an element is only
24 jsr166 1.52 * present when you try to remove it; you cannot insert an element
25     * (using any method) unless another thread is trying to remove it;
26     * you cannot iterate as there is nothing to iterate. The
27     * <em>head</em> of the queue is the element that the first queued
28     * inserting thread is trying to add to the queue; if there is no such
29     * queued thread then no element is available for removal and
30 jsr166 1.90 * {@code poll()} will return {@code null}. For purposes of other
31     * {@code Collection} methods (for example {@code contains}), a
32     * {@code SynchronousQueue} acts as an empty collection. This queue
33     * does not permit {@code null} elements.
34 dl 1.18 *
35     * <p>Synchronous queues are similar to rendezvous channels used in
36     * CSP and Ada. They are well suited for handoff designs, in which an
37 dl 1.30 * object running in one thread must sync up with an object running
38 dl 1.18 * in another thread in order to hand it some information, event, or
39     * task.
40 dl 1.43 *
41 jsr166 1.88 * <p>This class supports an optional fairness policy for ordering
42 dl 1.43 * waiting producer and consumer threads. By default, this ordering
43     * is not guaranteed. However, a queue constructed with fairness set
44 jsr166 1.90 * to {@code true} grants threads access in FIFO order.
45 dl 1.43 *
46 dl 1.46 * <p>This class and its iterator implement all of the
47     * <em>optional</em> methods of the {@link Collection} and {@link
48 jsr166 1.48 * Iterator} interfaces.
49 dl 1.42 *
50     * <p>This class is a member of the
51 jsr166 1.66 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
52 dl 1.42 * Java Collections Framework</a>.
53     *
54 dl 1.6 * @since 1.5
55 dl 1.56 * @author Doug Lea and Bill Scherer and Michael Scott
56 dl 1.24 * @param <E> the type of elements held in this collection
57 dl 1.23 */
58 dl 1.2 public class SynchronousQueue<E> extends AbstractQueue<E>
59 dl 1.55 implements BlockingQueue<E>, java.io.Serializable {
60 dl 1.15 private static final long serialVersionUID = -3223113410248163686L;
61 tim 1.1
62 dl 1.2 /*
63 dl 1.55 * This class implements extensions of the dual stack and dual
64     * queue algorithms described in "Nonblocking Concurrent Objects
65     * with Condition Synchronization", by W. N. Scherer III and
66     * M. L. Scott. 18th Annual Conf. on Distributed Computing,
67     * Oct. 2004 (see also
68     * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
69     * The (Lifo) stack is used for non-fair mode, and the (Fifo)
70     * queue for fair mode. The performance of the two is generally
71     * similar. Fifo usually supports higher throughput under
72     * contention but Lifo maintains higher thread locality in common
73     * applications.
74     *
75     * A dual queue (and similarly stack) is one that at any given
76     * time either holds "data" -- items provided by put operations,
77     * or "requests" -- slots representing take operations, or is
78     * empty. A call to "fulfill" (i.e., a call requesting an item
79     * from a queue holding data or vice versa) dequeues a
80     * complementary node. The most interesting feature of these
81     * queues is that any operation can figure out which mode the
82     * queue is in, and act accordingly without needing locks.
83     *
84     * Both the queue and stack extend abstract class Transferer
85     * defining the single method transfer that does a put or a
86     * take. These are unified into a single method because in dual
87     * data structures, the put and take operations are symmetrical,
88     * so nearly all code can be combined. The resulting transfer
89     * methods are on the long side, but are easier to follow than
90     * they would be if broken up into nearly-duplicated parts.
91     *
92     * The queue and stack data structures share many conceptual
93     * similarities but very few concrete details. For simplicity,
94     * they are kept distinct so that they can later evolve
95     * separately.
96     *
97     * The algorithms here differ from the versions in the above paper
98     * in extending them for use in synchronous queues, as well as
99     * dealing with cancellation. The main differences include:
100     *
101 jsr166 1.59 * 1. The original algorithms used bit-marked pointers, but
102 dl 1.55 * the ones here use mode bits in nodes, leading to a number
103     * of further adaptations.
104     * 2. SynchronousQueues must block threads waiting to become
105     * fulfilled.
106 jsr166 1.58 * 3. Support for cancellation via timeout and interrupts,
107     * including cleaning out cancelled nodes/threads
108 dl 1.56 * from lists to avoid garbage retention and memory depletion.
109 dl 1.55 *
110     * Blocking is mainly accomplished using LockSupport park/unpark,
111     * except that nodes that appear to be the next ones to become
112     * fulfilled first spin a bit (on multiprocessors only). On very
113     * busy synchronous queues, spinning can dramatically improve
114     * throughput. And on less busy ones, the amount of spinning is
115     * small enough not to be noticeable.
116     *
117     * Cleaning is done in different ways in queues vs stacks. For
118     * queues, we can almost always remove a node immediately in O(1)
119     * time (modulo retries for consistency checks) when it is
120     * cancelled. But if it may be pinned as the current tail, it must
121     * wait until some subsequent cancellation. For stacks, we need a
122     * potentially O(n) traversal to be sure that we can remove the
123     * node, but this can run concurrently with other threads
124     * accessing the stack.
125     *
126     * While garbage collection takes care of most node reclamation
127     * issues that otherwise complicate nonblocking algorithms, care
128 jsr166 1.59 * is taken to "forget" references to data, other nodes, and
129 dl 1.55 * threads that might be held on to long-term by blocked
130     * threads. In cases where setting to null would otherwise
131     * conflict with main algorithms, this is done by changing a
132     * node's link to now point to the node itself. This doesn't arise
133     * much for Stack nodes (because blocked threads do not hang on to
134     * old head pointers), but references in Queue nodes must be
135 jsr166 1.59 * aggressively forgotten to avoid reachability of everything any
136 dl 1.55 * node has ever referred to since arrival.
137     */
138 dl 1.2
139 dl 1.43 /**
140 dl 1.55 * Shared internal API for dual stacks and queues.
141 dl 1.43 */
142 jsr166 1.82 abstract static class Transferer<E> {
143 dl 1.55 /**
144 jsr166 1.59 * Performs a put or take.
145     *
146 dl 1.55 * @param e if non-null, the item to be handed to a consumer;
147 jsr166 1.59 * if null, requests that transfer return an item
148     * offered by producer.
149 dl 1.55 * @param timed if this operation should timeout
150     * @param nanos the timeout, in nanoseconds
151 jsr166 1.59 * @return if non-null, the item provided or received; if null,
152     * the operation failed due to timeout or interrupt --
153     * the caller can distinguish which of these occurred
154     * by checking Thread.interrupted.
155 dl 1.55 */
156 jsr166 1.82 abstract E transfer(E e, boolean timed, long nanos);
157 dl 1.43 }
158    
159 dl 1.55 /** The number of CPUs, for spin control */
160     static final int NCPUS = Runtime.getRuntime().availableProcessors();
161    
162 dl 1.43 /**
163 dl 1.55 * The number of times to spin before blocking in timed waits.
164     * The value is empirically derived -- it works well across a
165 dl 1.56 * variety of processors and OSes. Empirically, the best value
166 dl 1.55 * seems not to vary with number of CPUs (beyond 2) so is just
167     * a constant.
168 dl 1.43 */
169 jsr166 1.72 static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
170 dl 1.43
171     /**
172 jsr166 1.60 * The number of times to spin before blocking in untimed waits.
173     * This is greater than timed value because untimed waits spin
174     * faster since they don't need to check times on each spin.
175 dl 1.43 */
176 dl 1.55 static final int maxUntimedSpins = maxTimedSpins * 16;
177 dl 1.43
178     /**
179 dl 1.55 * The number of nanoseconds for which it is faster to spin
180     * rather than to use timed park. A rough estimate suffices.
181 dl 1.43 */
182 dl 1.55 static final long spinForTimeoutThreshold = 1000L;
183    
184 jsr166 1.60 /** Dual stack */
185 jsr166 1.82 static final class TransferStack<E> extends Transferer<E> {
186 dl 1.55 /*
187     * This extends Scherer-Scott dual stack algorithm, differing,
188     * among other ways, by using "covering" nodes rather than
189     * bit-marked pointers: Fulfilling operations push on marker
190     * nodes (with FULFILLING bit set in mode) to reserve a spot
191     * to match a waiting node.
192     */
193 dl 1.43
194 dl 1.55 /* Modes for SNodes, ORed together in node fields */
195     /** Node represents an unfulfilled consumer */
196     static final int REQUEST = 0;
197     /** Node represents an unfulfilled producer */
198     static final int DATA = 1;
199     /** Node is fulfilling another unfulfilled DATA or REQUEST */
200     static final int FULFILLING = 2;
201    
202 jsr166 1.87 /** Returns true if m has fulfilling bit set. */
203 dl 1.55 static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
204    
205     /** Node class for TransferStacks. */
206     static final class SNode {
207     volatile SNode next; // next node in stack
208     volatile SNode match; // the node matched to this
209     volatile Thread waiter; // to control park/unpark
210     Object item; // data; or null for REQUESTs
211     int mode;
212     // Note: item and mode fields don't need to be volatile
213     // since they are always written before, and read after,
214     // other volatile/atomic operations.
215    
216     SNode(Object item) {
217     this.item = item;
218     }
219    
220     boolean casNext(SNode cmp, SNode val) {
221 dl 1.69 return cmp == next &&
222     UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
223 dl 1.55 }
224    
225     /**
226 jsr166 1.63 * Tries to match node s to this node, if so, waking up thread.
227     * Fulfillers call tryMatch to identify their waiters.
228     * Waiters block until they have been matched.
229     *
230 dl 1.55 * @param s the node to match
231     * @return true if successfully matched to s
232     */
233     boolean tryMatch(SNode s) {
234     if (match == null &&
235 dl 1.69 UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
236 dl 1.55 Thread w = waiter;
237     if (w != null) { // waiters need at most one unpark
238     waiter = null;
239     LockSupport.unpark(w);
240     }
241     return true;
242 dl 1.47 }
243 dl 1.55 return match == s;
244     }
245    
246     /**
247 jsr166 1.59 * Tries to cancel a wait by matching node to itself.
248 dl 1.55 */
249     void tryCancel() {
250 dl 1.69 UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
251 dl 1.55 }
252    
253     boolean isCancelled() {
254     return match == this;
255 dl 1.47 }
256 dl 1.69
257     // Unsafe mechanics
258 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
259     private static final long matchOffset;
260     private static final long nextOffset;
261 dl 1.74
262 dl 1.73 static {
263     try {
264     UNSAFE = sun.misc.Unsafe.getUnsafe();
265 jsr166 1.77 Class<?> k = SNode.class;
266 dl 1.73 matchOffset = UNSAFE.objectFieldOffset
267     (k.getDeclaredField("match"));
268     nextOffset = UNSAFE.objectFieldOffset
269     (k.getDeclaredField("next"));
270     } catch (Exception e) {
271     throw new Error(e);
272     }
273     }
274 dl 1.47 }
275 dl 1.43
276 dl 1.55 /** The head (top) of the stack */
277     volatile SNode head;
278 jsr166 1.70
279 dl 1.55 boolean casHead(SNode h, SNode nh) {
280 jsr166 1.70 return h == head &&
281 dl 1.69 UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
282 dl 1.55 }
283 dl 1.2
284 dl 1.55 /**
285 jsr166 1.57 * Creates or resets fields of a node. Called only from transfer
286 dl 1.55 * where the node to push on stack is lazily created and
287     * reused when possible to help reduce intervals between reads
288     * and CASes of head and to avoid surges of garbage when CASes
289     * to push nodes fail due to contention.
290     */
291     static SNode snode(SNode s, Object e, SNode next, int mode) {
292     if (s == null) s = new SNode(e);
293     s.mode = mode;
294     s.next = next;
295     return s;
296 dl 1.43 }
297    
298 dl 1.55 /**
299 jsr166 1.57 * Puts or takes an item.
300 dl 1.55 */
301 jsr166 1.83 @SuppressWarnings("unchecked")
302 jsr166 1.82 E transfer(E e, boolean timed, long nanos) {
303 dl 1.55 /*
304     * Basic algorithm is to loop trying one of three actions:
305     *
306     * 1. If apparently empty or already containing nodes of same
307     * mode, try to push node on stack and wait for a match,
308     * returning it, or null if cancelled.
309     *
310     * 2. If apparently containing node of complementary mode,
311     * try to push a fulfilling node on to stack, match
312     * with corresponding waiting node, pop both from
313     * stack, and return matched item. The matching or
314     * unlinking might not actually be necessary because of
315 dl 1.62 * other threads performing action 3:
316 dl 1.55 *
317     * 3. If top of stack already holds another fulfilling node,
318     * help it out by doing its match and/or pop
319     * operations, and then continue. The code for helping
320     * is essentially the same as for fulfilling, except
321     * that it doesn't return the item.
322     */
323    
324     SNode s = null; // constructed/reused as needed
325 jsr166 1.72 int mode = (e == null) ? REQUEST : DATA;
326 dl 1.55
327     for (;;) {
328     SNode h = head;
329     if (h == null || h.mode == mode) { // empty or same-mode
330     if (timed && nanos <= 0) { // can't wait
331 jsr166 1.58 if (h != null && h.isCancelled())
332 dl 1.55 casHead(h, h.next); // pop cancelled node
333     else
334 jsr166 1.58 return null;
335 dl 1.55 } else if (casHead(h, s = snode(s, e, h, mode))) {
336     SNode m = awaitFulfill(s, timed, nanos);
337     if (m == s) { // wait was cancelled
338     clean(s);
339     return null;
340     }
341     if ((h = head) != null && h.next == s)
342     casHead(h, s.next); // help s's fulfiller
343 jsr166 1.83 return (E) ((mode == REQUEST) ? m.item : s.item);
344 dl 1.55 }
345     } else if (!isFulfilling(h.mode)) { // try to fulfill
346     if (h.isCancelled()) // already cancelled
347     casHead(h, h.next); // pop and retry
348     else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
349     for (;;) { // loop until matched or waiters disappear
350     SNode m = s.next; // m is s's match
351     if (m == null) { // all waiters are gone
352     casHead(s, null); // pop fulfill node
353     s = null; // use new node next time
354     break; // restart main loop
355     }
356     SNode mn = m.next;
357     if (m.tryMatch(s)) {
358     casHead(s, mn); // pop both s and m
359 jsr166 1.83 return (E) ((mode == REQUEST) ? m.item : s.item);
360 dl 1.55 } else // lost match
361     s.casNext(m, mn); // help unlink
362     }
363     }
364     } else { // help a fulfiller
365     SNode m = h.next; // m is h's match
366     if (m == null) // waiter is gone
367     casHead(h, null); // pop fulfilling node
368     else {
369     SNode mn = m.next;
370     if (m.tryMatch(h)) // help match
371     casHead(h, mn); // pop both h and m
372     else // lost match
373     h.casNext(m, mn); // help unlink
374     }
375 dl 1.47 }
376     }
377     }
378    
379 dl 1.55 /**
380 jsr166 1.57 * Spins/blocks until node s is matched by a fulfill operation.
381 jsr166 1.63 *
382 dl 1.55 * @param s the waiting node
383     * @param timed true if timed wait
384     * @param nanos timeout value
385     * @return matched node, or s if cancelled
386     */
387     SNode awaitFulfill(SNode s, boolean timed, long nanos) {
388     /*
389     * When a node/thread is about to block, it sets its waiter
390     * field and then rechecks state at least one more time
391     * before actually parking, thus covering race vs
392 jsr166 1.59 * fulfiller noticing that waiter is non-null so should be
393 dl 1.55 * woken.
394     *
395     * When invoked by nodes that appear at the point of call
396     * to be at the head of the stack, calls to park are
397     * preceded by spins to avoid blocking when producers and
398     * consumers are arriving very close in time. This can
399     * happen enough to bother only on multiprocessors.
400     *
401     * The order of checks for returning out of main loop
402     * reflects fact that interrupts have precedence over
403     * normal returns, which have precedence over
404     * timeouts. (So, on timeout, one last check for match is
405     * done before giving up.) Except that calls from untimed
406     * SynchronousQueue.{poll/offer} don't check interrupts
407     * and don't wait at all, so are trapped in transfer
408     * method rather than calling awaitFulfill.
409     */
410 jsr166 1.85 final long deadline = timed ? System.nanoTime() + nanos : 0L;
411 dl 1.55 Thread w = Thread.currentThread();
412 jsr166 1.72 int spins = (shouldSpin(s) ?
413     (timed ? maxTimedSpins : maxUntimedSpins) : 0);
414 dl 1.55 for (;;) {
415     if (w.isInterrupted())
416     s.tryCancel();
417     SNode m = s.match;
418     if (m != null)
419     return m;
420     if (timed) {
421 jsr166 1.85 nanos = deadline - System.nanoTime();
422     if (nanos <= 0L) {
423 dl 1.55 s.tryCancel();
424     continue;
425     }
426     }
427     if (spins > 0)
428 jsr166 1.72 spins = shouldSpin(s) ? (spins-1) : 0;
429 dl 1.55 else if (s.waiter == null)
430     s.waiter = w; // establish waiter so can park next iter
431     else if (!timed)
432     LockSupport.park(this);
433     else if (nanos > spinForTimeoutThreshold)
434     LockSupport.parkNanos(this, nanos);
435 dl 1.47 }
436     }
437 dl 1.2
438 dl 1.55 /**
439 jsr166 1.57 * Returns true if node s is at head or there is an active
440 dl 1.55 * fulfiller.
441     */
442     boolean shouldSpin(SNode s) {
443     SNode h = head;
444 dl 1.56 return (h == s || h == null || isFulfilling(h.mode));
445 dl 1.55 }
446    
447     /**
448 jsr166 1.57 * Unlinks s from the stack.
449 dl 1.55 */
450     void clean(SNode s) {
451 jsr166 1.58 s.item = null; // forget item
452 dl 1.55 s.waiter = null; // forget thread
453    
454     /*
455     * At worst we may need to traverse entire stack to unlink
456     * s. If there are multiple concurrent calls to clean, we
457     * might not see s if another thread has already removed
458     * it. But we can stop when we see any node known to
459     * follow s. We use s.next unless it too is cancelled, in
460     * which case we try the node one past. We don't check any
461 jsr166 1.59 * further because we don't want to doubly traverse just to
462 dl 1.55 * find sentinel.
463     */
464    
465     SNode past = s.next;
466     if (past != null && past.isCancelled())
467     past = past.next;
468    
469     // Absorb cancelled nodes at head
470     SNode p;
471     while ((p = head) != null && p != past && p.isCancelled())
472     casHead(p, p.next);
473    
474     // Unsplice embedded nodes
475     while (p != null && p != past) {
476     SNode n = p.next;
477     if (n != null && n.isCancelled())
478     p.casNext(n, n.next);
479     else
480     p = n;
481 dl 1.47 }
482     }
483 dl 1.69
484     // Unsafe mechanics
485 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
486     private static final long headOffset;
487     static {
488     try {
489     UNSAFE = sun.misc.Unsafe.getUnsafe();
490 jsr166 1.77 Class<?> k = TransferStack.class;
491 dl 1.73 headOffset = UNSAFE.objectFieldOffset
492     (k.getDeclaredField("head"));
493     } catch (Exception e) {
494     throw new Error(e);
495     }
496     }
497 dl 1.47 }
498 jsr166 1.48
499 jsr166 1.61 /** Dual Queue */
500 jsr166 1.82 static final class TransferQueue<E> extends Transferer<E> {
501 dl 1.55 /*
502     * This extends Scherer-Scott dual queue algorithm, differing,
503     * among other ways, by using modes within nodes rather than
504     * marked pointers. The algorithm is a little simpler than
505     * that for stacks because fulfillers do not need explicit
506     * nodes, and matching is done by CAS'ing QNode.item field
507 jsr166 1.59 * from non-null to null (for put) or vice versa (for take).
508 dl 1.55 */
509 dl 1.53
510 dl 1.55 /** Node class for TransferQueue. */
511     static final class QNode {
512     volatile QNode next; // next node in queue
513     volatile Object item; // CAS'ed to or from null
514     volatile Thread waiter; // to control park/unpark
515 jsr166 1.58 final boolean isData;
516 dl 1.35
517 dl 1.55 QNode(Object item, boolean isData) {
518     this.item = item;
519     this.isData = isData;
520     }
521 dl 1.35
522 dl 1.55 boolean casNext(QNode cmp, QNode val) {
523 dl 1.69 return next == cmp &&
524     UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
525 dl 1.55 }
526    
527     boolean casItem(Object cmp, Object val) {
528 dl 1.69 return item == cmp &&
529     UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
530 dl 1.55 }
531    
532     /**
533 jsr166 1.59 * Tries to cancel by CAS'ing ref to this as item.
534 dl 1.55 */
535     void tryCancel(Object cmp) {
536 dl 1.69 UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
537 dl 1.55 }
538 jsr166 1.70
539 dl 1.55 boolean isCancelled() {
540     return item == this;
541     }
542 dl 1.56
543 jsr166 1.58 /**
544 jsr166 1.57 * Returns true if this node is known to be off the queue
545 dl 1.56 * because its next pointer has been forgotten due to
546     * an advanceHead operation.
547     */
548     boolean isOffList() {
549     return next == this;
550     }
551 dl 1.74
552 dl 1.69 // Unsafe mechanics
553 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
554     private static final long itemOffset;
555     private static final long nextOffset;
556 dl 1.74
557 dl 1.73 static {
558     try {
559     UNSAFE = sun.misc.Unsafe.getUnsafe();
560 jsr166 1.77 Class<?> k = QNode.class;
561 dl 1.73 itemOffset = UNSAFE.objectFieldOffset
562     (k.getDeclaredField("item"));
563     nextOffset = UNSAFE.objectFieldOffset
564     (k.getDeclaredField("next"));
565     } catch (Exception e) {
566     throw new Error(e);
567     }
568     }
569 dl 1.31 }
570    
571 dl 1.55 /** Head of queue */
572     transient volatile QNode head;
573     /** Tail of queue */
574     transient volatile QNode tail;
575 dl 1.31 /**
576 dl 1.55 * Reference to a cancelled node that might not yet have been
577     * unlinked from queue because it was the last inserted node
578 jsr166 1.91 * when it was cancelled.
579 dl 1.31 */
580 dl 1.55 transient volatile QNode cleanMe;
581    
582     TransferQueue() {
583     QNode h = new QNode(null, false); // initialize to dummy node.
584     head = h;
585     tail = h;
586 dl 1.31 }
587    
588     /**
589 jsr166 1.59 * Tries to cas nh as new head; if successful, unlink
590 dl 1.55 * old head's next node to avoid garbage retention.
591 dl 1.31 */
592 dl 1.55 void advanceHead(QNode h, QNode nh) {
593 jsr166 1.70 if (h == head &&
594 dl 1.69 UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
595 dl 1.55 h.next = h; // forget old next
596 dl 1.31 }
597    
598     /**
599 jsr166 1.57 * Tries to cas nt as new tail.
600 dl 1.31 */
601 dl 1.55 void advanceTail(QNode t, QNode nt) {
602     if (tail == t)
603 dl 1.69 UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
604 dl 1.31 }
605 dl 1.2
606     /**
607 jsr166 1.57 * Tries to CAS cleanMe slot.
608 dl 1.2 */
609 dl 1.55 boolean casCleanMe(QNode cmp, QNode val) {
610 dl 1.69 return cleanMe == cmp &&
611     UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
612 dl 1.35 }
613    
614     /**
615 jsr166 1.57 * Puts or takes an item.
616 dl 1.35 */
617 jsr166 1.83 @SuppressWarnings("unchecked")
618 jsr166 1.82 E transfer(E e, boolean timed, long nanos) {
619 jsr166 1.58 /* Basic algorithm is to loop trying to take either of
620 dl 1.55 * two actions:
621     *
622 jsr166 1.58 * 1. If queue apparently empty or holding same-mode nodes,
623 dl 1.55 * try to add node to queue of waiters, wait to be
624     * fulfilled (or cancelled) and return matching item.
625     *
626     * 2. If queue apparently contains waiting items, and this
627     * call is of complementary mode, try to fulfill by CAS'ing
628     * item field of waiting node and dequeuing it, and then
629     * returning matching item.
630     *
631     * In each case, along the way, check for and try to help
632     * advance head and tail on behalf of other stalled/slow
633     * threads.
634     *
635     * The loop starts off with a null check guarding against
636     * seeing uninitialized head or tail values. This never
637     * happens in current SynchronousQueue, but could if
638     * callers held non-volatile/final ref to the
639     * transferer. The check is here anyway because it places
640     * null checks at top of loop, which is usually faster
641     * than having them implicitly interspersed.
642     */
643    
644     QNode s = null; // constructed/reused as needed
645     boolean isData = (e != null);
646    
647     for (;;) {
648     QNode t = tail;
649     QNode h = head;
650 dl 1.62 if (t == null || h == null) // saw uninitialized value
651 dl 1.55 continue; // spin
652    
653     if (h == t || t.isData == isData) { // empty or same-mode
654     QNode tn = t.next;
655     if (t != tail) // inconsistent read
656     continue;
657     if (tn != null) { // lagging tail
658     advanceTail(t, tn);
659     continue;
660     }
661     if (timed && nanos <= 0) // can't wait
662     return null;
663     if (s == null)
664     s = new QNode(e, isData);
665     if (!t.casNext(null, s)) // failed to link in
666     continue;
667    
668     advanceTail(t, s); // swing tail and wait
669     Object x = awaitFulfill(s, e, timed, nanos);
670     if (x == s) { // wait was cancelled
671     clean(t, s);
672     return null;
673     }
674    
675 dl 1.56 if (!s.isOffList()) { // not already unlinked
676     advanceHead(t, s); // unlink if head
677 dl 1.55 if (x != null) // and forget fields
678     s.item = s;
679     s.waiter = null;
680     }
681 jsr166 1.83 return (x != null) ? (E)x : e;
682 dl 1.55
683     } else { // complementary-mode
684     QNode m = h.next; // node to fulfill
685     if (t != tail || m == null || h != head)
686     continue; // inconsistent read
687    
688     Object x = m.item;
689     if (isData == (x != null) || // m already fulfilled
690     x == m || // m cancelled
691     !m.casItem(x, e)) { // lost CAS
692     advanceHead(h, m); // dequeue and retry
693     continue;
694     }
695    
696     advanceHead(h, m); // successfully fulfilled
697     LockSupport.unpark(m.waiter);
698 jsr166 1.83 return (x != null) ? (E)x : e;
699 dl 1.55 }
700 dl 1.35 }
701     }
702    
703     /**
704 jsr166 1.57 * Spins/blocks until node s is fulfilled.
705 jsr166 1.63 *
706 dl 1.55 * @param s the waiting node
707     * @param e the comparison value for checking match
708     * @param timed true if timed wait
709     * @param nanos timeout value
710     * @return matched item, or s if cancelled
711 dl 1.35 */
712 jsr166 1.82 Object awaitFulfill(QNode s, E e, boolean timed, long nanos) {
713 dl 1.55 /* Same idea as TransferStack.awaitFulfill */
714 jsr166 1.85 final long deadline = timed ? System.nanoTime() + nanos : 0L;
715 dl 1.55 Thread w = Thread.currentThread();
716     int spins = ((head.next == s) ?
717 jsr166 1.72 (timed ? maxTimedSpins : maxUntimedSpins) : 0);
718 dl 1.55 for (;;) {
719     if (w.isInterrupted())
720     s.tryCancel(e);
721     Object x = s.item;
722     if (x != e)
723     return x;
724     if (timed) {
725 jsr166 1.85 nanos = deadline - System.nanoTime();
726     if (nanos <= 0L) {
727 dl 1.55 s.tryCancel(e);
728     continue;
729     }
730     }
731     if (spins > 0)
732     --spins;
733     else if (s.waiter == null)
734     s.waiter = w;
735     else if (!timed)
736     LockSupport.park(this);
737     else if (nanos > spinForTimeoutThreshold)
738     LockSupport.parkNanos(this, nanos);
739 dl 1.35 }
740 dl 1.31 }
741    
742     /**
743 jsr166 1.57 * Gets rid of cancelled node s with original predecessor pred.
744 dl 1.31 */
745 dl 1.55 void clean(QNode pred, QNode s) {
746     s.waiter = null; // forget thread
747     /*
748     * At any given time, exactly one node on list cannot be
749     * deleted -- the last inserted node. To accommodate this,
750     * if we cannot delete s, we save its predecessor as
751     * "cleanMe", deleting the previously saved version
752     * first. At least one of node s or the node previously
753     * saved can always be deleted, so this always terminates.
754     */
755     while (pred.next == s) { // Return early if already unlinked
756     QNode h = head;
757     QNode hn = h.next; // Absorb cancelled first node as head
758     if (hn != null && hn.isCancelled()) {
759     advanceHead(h, hn);
760     continue;
761     }
762 jsr166 1.68 QNode t = tail; // Ensure consistent read for tail
763 dl 1.55 if (t == h)
764     return;
765 jsr166 1.68 QNode tn = t.next;
766     if (t != tail)
767 dl 1.55 continue;
768     if (tn != null) {
769     advanceTail(t, tn);
770     continue;
771     }
772     if (s != t) { // If not tail, try to unsplice
773     QNode sn = s.next;
774     if (sn == s || pred.casNext(s, sn))
775     return;
776     }
777     QNode dp = cleanMe;
778     if (dp != null) { // Try unlinking previous cancelled node
779     QNode d = dp.next;
780     QNode dn;
781     if (d == null || // d is gone or
782     d == dp || // d is off list or
783     !d.isCancelled() || // d not cancelled or
784     (d != t && // d not tail and
785     (dn = d.next) != null && // has successor
786     dn != d && // that is on list
787     dp.casNext(d, dn))) // d unspliced
788 jsr166 1.58 casCleanMe(dp, null);
789     if (dp == pred)
790 dl 1.55 return; // s is already saved node
791 jsr166 1.58 } else if (casCleanMe(null, pred))
792 dl 1.55 return; // Postpone cleaning s
793 dl 1.2 }
794     }
795 dl 1.69
796 dl 1.73 private static final sun.misc.Unsafe UNSAFE;
797     private static final long headOffset;
798     private static final long tailOffset;
799     private static final long cleanMeOffset;
800     static {
801     try {
802     UNSAFE = sun.misc.Unsafe.getUnsafe();
803 jsr166 1.77 Class<?> k = TransferQueue.class;
804 dl 1.73 headOffset = UNSAFE.objectFieldOffset
805     (k.getDeclaredField("head"));
806     tailOffset = UNSAFE.objectFieldOffset
807     (k.getDeclaredField("tail"));
808     cleanMeOffset = UNSAFE.objectFieldOffset
809     (k.getDeclaredField("cleanMe"));
810     } catch (Exception e) {
811     throw new Error(e);
812     }
813     }
814 dl 1.55 }
815    
816     /**
817     * The transferer. Set only in constructor, but cannot be declared
818     * as final without further complicating serialization. Since
819 dl 1.56 * this is accessed only at most once per public method, there
820     * isn't a noticeable performance penalty for using volatile
821     * instead of final here.
822 dl 1.55 */
823 jsr166 1.82 private transient volatile Transferer<E> transferer;
824 dl 1.55
825     /**
826 jsr166 1.90 * Creates a {@code SynchronousQueue} with nonfair access policy.
827 dl 1.55 */
828     public SynchronousQueue() {
829     this(false);
830     }
831 dl 1.2
832 dl 1.55 /**
833 jsr166 1.90 * Creates a {@code SynchronousQueue} with the specified fairness policy.
834 jsr166 1.63 *
835     * @param fair if true, waiting threads contend in FIFO order for
836     * access; otherwise the order is unspecified.
837 dl 1.55 */
838     public SynchronousQueue(boolean fair) {
839 jsr166 1.82 transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
840 dl 1.2 }
841    
842     /**
843 dl 1.35 * Adds the specified element to this queue, waiting if necessary for
844     * another thread to receive it.
845 jsr166 1.50 *
846     * @throws InterruptedException {@inheritDoc}
847     * @throws NullPointerException {@inheritDoc}
848 tim 1.10 */
849 jsr166 1.82 public void put(E e) throws InterruptedException {
850     if (e == null) throw new NullPointerException();
851     if (transferer.transfer(e, false, 0) == null) {
852 jsr166 1.68 Thread.interrupted();
853 dl 1.55 throw new InterruptedException();
854 jsr166 1.68 }
855 tim 1.1 }
856    
857 dholmes 1.11 /**
858 dl 1.20 * Inserts the specified element into this queue, waiting if necessary
859 dl 1.18 * up to the specified wait time for another thread to receive it.
860 jsr166 1.50 *
861 jsr166 1.90 * @return {@code true} if successful, or {@code false} if the
862 jsr166 1.92 * specified waiting time elapses before a consumer appears
863 jsr166 1.50 * @throws InterruptedException {@inheritDoc}
864     * @throws NullPointerException {@inheritDoc}
865 dholmes 1.11 */
866 jsr166 1.82 public boolean offer(E e, long timeout, TimeUnit unit)
867 dl 1.55 throws InterruptedException {
868 jsr166 1.82 if (e == null) throw new NullPointerException();
869     if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
870 dl 1.55 return true;
871     if (!Thread.interrupted())
872     return false;
873     throw new InterruptedException();
874     }
875    
876     /**
877     * Inserts the specified element into this queue, if another thread is
878     * waiting to receive it.
879     *
880     * @param e the element to add
881 jsr166 1.90 * @return {@code true} if the element was added to this queue, else
882     * {@code false}
883 dl 1.55 * @throws NullPointerException if the specified element is null
884     */
885     public boolean offer(E e) {
886 jsr166 1.49 if (e == null) throw new NullPointerException();
887 dl 1.55 return transferer.transfer(e, true, 0) != null;
888 tim 1.1 }
889    
890 dholmes 1.11 /**
891     * Retrieves and removes the head of this queue, waiting if necessary
892     * for another thread to insert it.
893 jsr166 1.50 *
894 dholmes 1.11 * @return the head of this queue
895 jsr166 1.50 * @throws InterruptedException {@inheritDoc}
896 dholmes 1.11 */
897 dl 1.2 public E take() throws InterruptedException {
898 jsr166 1.82 E e = transferer.transfer(null, false, 0);
899 dl 1.55 if (e != null)
900 jsr166 1.82 return e;
901 jsr166 1.68 Thread.interrupted();
902 dl 1.55 throw new InterruptedException();
903 tim 1.1 }
904 dl 1.2
905 dholmes 1.11 /**
906     * Retrieves and removes the head of this queue, waiting
907     * if necessary up to the specified wait time, for another thread
908     * to insert it.
909 jsr166 1.50 *
910 jsr166 1.90 * @return the head of this queue, or {@code null} if the
911 jsr166 1.92 * specified waiting time elapses before an element is present
912 jsr166 1.50 * @throws InterruptedException {@inheritDoc}
913 dholmes 1.11 */
914 dl 1.2 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
915 jsr166 1.82 E e = transferer.transfer(null, true, unit.toNanos(timeout));
916 dl 1.55 if (e != null || !Thread.interrupted())
917 jsr166 1.82 return e;
918 dl 1.55 throw new InterruptedException();
919 tim 1.1 }
920 dl 1.2
921 dl 1.18 /**
922     * Retrieves and removes the head of this queue, if another thread
923     * is currently making an element available.
924     *
925 jsr166 1.90 * @return the head of this queue, or {@code null} if no
926 jsr166 1.92 * element is available
927 dl 1.18 */
928 dl 1.2 public E poll() {
929 jsr166 1.82 return transferer.transfer(null, true, 0);
930 tim 1.1 }
931 dl 1.2
932 dl 1.5 /**
933 jsr166 1.90 * Always returns {@code true}.
934     * A {@code SynchronousQueue} has no internal capacity.
935 jsr166 1.63 *
936 jsr166 1.90 * @return {@code true}
937 dl 1.5 */
938     public boolean isEmpty() {
939     return true;
940     }
941    
942     /**
943 dholmes 1.11 * Always returns zero.
944 jsr166 1.90 * A {@code SynchronousQueue} has no internal capacity.
945 jsr166 1.63 *
946 jsr166 1.89 * @return zero
947 dl 1.5 */
948     public int size() {
949     return 0;
950 tim 1.1 }
951 dl 1.2
952 dl 1.5 /**
953 dholmes 1.11 * Always returns zero.
954 jsr166 1.90 * A {@code SynchronousQueue} has no internal capacity.
955 jsr166 1.63 *
956 jsr166 1.89 * @return zero
957 dl 1.5 */
958     public int remainingCapacity() {
959     return 0;
960     }
961    
962     /**
963 dholmes 1.11 * Does nothing.
964 jsr166 1.90 * A {@code SynchronousQueue} has no internal capacity.
965 dholmes 1.11 */
966 dl 1.55 public void clear() {
967     }
968 dholmes 1.11
969     /**
970 jsr166 1.90 * Always returns {@code false}.
971     * A {@code SynchronousQueue} has no internal capacity.
972 jsr166 1.63 *
973 dl 1.55 * @param o the element
974 jsr166 1.90 * @return {@code false}
975 dholmes 1.11 */
976     public boolean contains(Object o) {
977     return false;
978     }
979    
980     /**
981 jsr166 1.90 * Always returns {@code false}.
982     * A {@code SynchronousQueue} has no internal capacity.
983 dl 1.18 *
984     * @param o the element to remove
985 jsr166 1.90 * @return {@code false}
986 dl 1.18 */
987     public boolean remove(Object o) {
988     return false;
989     }
990    
991     /**
992 jsr166 1.90 * Returns {@code false} unless the given collection is empty.
993     * A {@code SynchronousQueue} has no internal capacity.
994 jsr166 1.63 *
995 dl 1.18 * @param c the collection
996 jsr166 1.90 * @return {@code false} unless given collection is empty
997 dholmes 1.11 */
998 dl 1.12 public boolean containsAll(Collection<?> c) {
999 dl 1.16 return c.isEmpty();
1000 dholmes 1.11 }
1001    
1002     /**
1003 jsr166 1.90 * Always returns {@code false}.
1004     * A {@code SynchronousQueue} has no internal capacity.
1005 jsr166 1.63 *
1006 dl 1.18 * @param c the collection
1007 jsr166 1.90 * @return {@code false}
1008 dholmes 1.11 */
1009 dl 1.12 public boolean removeAll(Collection<?> c) {
1010 dholmes 1.11 return false;
1011     }
1012    
1013     /**
1014 jsr166 1.90 * Always returns {@code false}.
1015     * A {@code SynchronousQueue} has no internal capacity.
1016 jsr166 1.63 *
1017 dl 1.18 * @param c the collection
1018 jsr166 1.90 * @return {@code false}
1019 dholmes 1.11 */
1020 dl 1.12 public boolean retainAll(Collection<?> c) {
1021 dholmes 1.11 return false;
1022     }
1023    
1024     /**
1025 jsr166 1.90 * Always returns {@code null}.
1026     * A {@code SynchronousQueue} does not return elements
1027 dl 1.5 * unless actively waited on.
1028 jsr166 1.63 *
1029 jsr166 1.90 * @return {@code null}
1030 dl 1.5 */
1031     public E peek() {
1032     return null;
1033     }
1034    
1035     /**
1036 jsr166 1.90 * Returns an empty iterator in which {@code hasNext} always returns
1037     * {@code false}.
1038 tim 1.13 *
1039 dholmes 1.11 * @return an empty iterator
1040 dl 1.5 */
1041 dl 1.76 @SuppressWarnings("unchecked")
1042 dl 1.2 public Iterator<E> iterator() {
1043 dl 1.76 return (Iterator<E>) EmptyIterator.EMPTY_ITERATOR;
1044     }
1045    
1046     // Replicated from a previous version of Collections
1047     private static class EmptyIterator<E> implements Iterator<E> {
1048     static final EmptyIterator<Object> EMPTY_ITERATOR
1049     = new EmptyIterator<Object>();
1050    
1051     public boolean hasNext() { return false; }
1052     public E next() { throw new NoSuchElementException(); }
1053     public void remove() { throw new IllegalStateException(); }
1054 tim 1.1 }
1055    
1056 dl 1.93 Spliterator<E> spliterator() {
1057 dl 1.95 return Spliterators.emptySpliterator();
1058 dl 1.93 }
1059 jsr166 1.94
1060 dl 1.93 public Stream<E> stream() {
1061     return Streams.stream(spliterator());
1062     }
1063    
1064     public Stream<E> parallelStream() {
1065     return Streams.parallelStream(spliterator());
1066     }
1067    
1068 dl 1.5 /**
1069 dholmes 1.11 * Returns a zero-length array.
1070     * @return a zero-length array
1071 dl 1.5 */
1072 dl 1.3 public Object[] toArray() {
1073 dl 1.25 return new Object[0];
1074 tim 1.1 }
1075    
1076 dholmes 1.11 /**
1077 jsr166 1.90 * Sets the zeroeth element of the specified array to {@code null}
1078 dholmes 1.11 * (if the array has non-zero length) and returns it.
1079 jsr166 1.50 *
1080 dl 1.40 * @param a the array
1081 dholmes 1.11 * @return the specified array
1082 jsr166 1.50 * @throws NullPointerException if the specified array is null
1083 dholmes 1.11 */
1084 dl 1.2 public <T> T[] toArray(T[] a) {
1085     if (a.length > 0)
1086     a[0] = null;
1087     return a;
1088     }
1089 dl 1.21
1090 jsr166 1.50 /**
1091     * @throws UnsupportedOperationException {@inheritDoc}
1092     * @throws ClassCastException {@inheritDoc}
1093     * @throws NullPointerException {@inheritDoc}
1094     * @throws IllegalArgumentException {@inheritDoc}
1095     */
1096 dl 1.21 public int drainTo(Collection<? super E> c) {
1097     if (c == null)
1098     throw new NullPointerException();
1099     if (c == this)
1100     throw new IllegalArgumentException();
1101     int n = 0;
1102 jsr166 1.80 for (E e; (e = poll()) != null;) {
1103 dl 1.21 c.add(e);
1104     ++n;
1105     }
1106     return n;
1107     }
1108    
1109 jsr166 1.50 /**
1110     * @throws UnsupportedOperationException {@inheritDoc}
1111     * @throws ClassCastException {@inheritDoc}
1112     * @throws NullPointerException {@inheritDoc}
1113     * @throws IllegalArgumentException {@inheritDoc}
1114     */
1115 dl 1.21 public int drainTo(Collection<? super E> c, int maxElements) {
1116     if (c == null)
1117     throw new NullPointerException();
1118     if (c == this)
1119     throw new IllegalArgumentException();
1120     int n = 0;
1121 jsr166 1.80 for (E e; n < maxElements && (e = poll()) != null;) {
1122 dl 1.21 c.add(e);
1123     ++n;
1124     }
1125     return n;
1126     }
1127 dl 1.55
1128     /*
1129     * To cope with serialization strategy in the 1.5 version of
1130     * SynchronousQueue, we declare some unused classes and fields
1131     * that exist solely to enable serializability across versions.
1132     * These fields are never used, so are initialized only if this
1133     * object is ever serialized or deserialized.
1134     */
1135    
1136 jsr166 1.82 @SuppressWarnings("serial")
1137 dl 1.55 static class WaitQueue implements java.io.Serializable { }
1138     static class LifoWaitQueue extends WaitQueue {
1139     private static final long serialVersionUID = -3633113410248163686L;
1140     }
1141     static class FifoWaitQueue extends WaitQueue {
1142     private static final long serialVersionUID = -3623113410248163686L;
1143     }
1144     private ReentrantLock qlock;
1145     private WaitQueue waitingProducers;
1146     private WaitQueue waitingConsumers;
1147    
1148     /**
1149 jsr166 1.84 * Saves this queue to a stream (that is, serializes it).
1150 dl 1.55 */
1151     private void writeObject(java.io.ObjectOutputStream s)
1152     throws java.io.IOException {
1153     boolean fair = transferer instanceof TransferQueue;
1154     if (fair) {
1155     qlock = new ReentrantLock(true);
1156     waitingProducers = new FifoWaitQueue();
1157     waitingConsumers = new FifoWaitQueue();
1158     }
1159     else {
1160     qlock = new ReentrantLock();
1161     waitingProducers = new LifoWaitQueue();
1162     waitingConsumers = new LifoWaitQueue();
1163     }
1164     s.defaultWriteObject();
1165     }
1166    
1167 jsr166 1.84 /**
1168     * Reconstitutes this queue from a stream (that is, deserializes it).
1169     */
1170 dl 1.55 private void readObject(final java.io.ObjectInputStream s)
1171     throws java.io.IOException, ClassNotFoundException {
1172     s.defaultReadObject();
1173     if (waitingProducers instanceof FifoWaitQueue)
1174 jsr166 1.82 transferer = new TransferQueue<E>();
1175 dl 1.55 else
1176 jsr166 1.82 transferer = new TransferStack<E>();
1177 dl 1.55 }
1178    
1179 dl 1.69 // Unsafe mechanics
1180     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1181     String field, Class<?> klazz) {
1182     try {
1183     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1184     } catch (NoSuchFieldException e) {
1185     // Convert Exception to corresponding Error
1186     NoSuchFieldError error = new NoSuchFieldError(field);
1187     error.initCause(e);
1188     throw error;
1189     }
1190     }
1191    
1192 tim 1.1 }