ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.105
Committed: Sat Nov 29 03:03:14 2014 UTC (9 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.104: +6 -4 lines
Log Message:
slightly more readable

File Contents

# Content
1 /*
2 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3 * assistance from members of JCP JSR-166 Expert Group and released to
4 * the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/
6 */
7
8 package java.util.concurrent;
9 import java.util.concurrent.locks.LockSupport;
10 import java.util.concurrent.locks.ReentrantLock;
11 import java.util.*;
12 import java.util.Spliterator;
13 import java.util.Spliterators;
14 import java.util.stream.Stream;
15 import java.util.function.Consumer;
16
17 /**
18 * A {@linkplain BlockingQueue blocking queue} in which each insert
19 * operation must wait for a corresponding remove operation by another
20 * thread, and vice versa. A synchronous queue does not have any
21 * internal capacity, not even a capacity of one. You cannot
22 * {@code peek} at a synchronous queue because an element is only
23 * present when you try to remove it; you cannot insert an element
24 * (using any method) unless another thread is trying to remove it;
25 * you cannot iterate as there is nothing to iterate. The
26 * <em>head</em> of the queue is the element that the first queued
27 * inserting thread is trying to add to the queue; if there is no such
28 * queued thread then no element is available for removal and
29 * {@code poll()} will return {@code null}. For purposes of other
30 * {@code Collection} methods (for example {@code contains}), a
31 * {@code SynchronousQueue} acts as an empty collection. This queue
32 * does not permit {@code null} elements.
33 *
34 * <p>Synchronous queues are similar to rendezvous channels used in
35 * CSP and Ada. They are well suited for handoff designs, in which an
36 * object running in one thread must sync up with an object running
37 * in another thread in order to hand it some information, event, or
38 * task.
39 *
40 * <p>This class supports an optional fairness policy for ordering
41 * waiting producer and consumer threads. By default, this ordering
42 * is not guaranteed. However, a queue constructed with fairness set
43 * to {@code true} grants threads access in FIFO order.
44 *
45 * <p>This class and its iterator implement all of the
46 * <em>optional</em> methods of the {@link Collection} and {@link
47 * Iterator} interfaces.
48 *
49 * <p>This class is a member of the
50 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
51 * Java Collections Framework</a>.
52 *
53 * @since 1.5
54 * @author Doug Lea and Bill Scherer and Michael Scott
55 * @param <E> the type of elements held in this collection
56 */
57 public class SynchronousQueue<E> extends AbstractQueue<E>
58 implements BlockingQueue<E>, java.io.Serializable {
59 private static final long serialVersionUID = -3223113410248163686L;
60
61 /*
62 * This class implements extensions of the dual stack and dual
63 * queue algorithms described in "Nonblocking Concurrent Objects
64 * with Condition Synchronization", by W. N. Scherer III and
65 * M. L. Scott. 18th Annual Conf. on Distributed Computing,
66 * Oct. 2004 (see also
67 * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
68 * The (Lifo) stack is used for non-fair mode, and the (Fifo)
69 * queue for fair mode. The performance of the two is generally
70 * similar. Fifo usually supports higher throughput under
71 * contention but Lifo maintains higher thread locality in common
72 * applications.
73 *
74 * A dual queue (and similarly stack) is one that at any given
75 * time either holds "data" -- items provided by put operations,
76 * or "requests" -- slots representing take operations, or is
77 * empty. A call to "fulfill" (i.e., a call requesting an item
78 * from a queue holding data or vice versa) dequeues a
79 * complementary node. The most interesting feature of these
80 * queues is that any operation can figure out which mode the
81 * queue is in, and act accordingly without needing locks.
82 *
83 * Both the queue and stack extend abstract class Transferer
84 * defining the single method transfer that does a put or a
85 * take. These are unified into a single method because in dual
86 * data structures, the put and take operations are symmetrical,
87 * so nearly all code can be combined. The resulting transfer
88 * methods are on the long side, but are easier to follow than
89 * they would be if broken up into nearly-duplicated parts.
90 *
91 * The queue and stack data structures share many conceptual
92 * similarities but very few concrete details. For simplicity,
93 * they are kept distinct so that they can later evolve
94 * separately.
95 *
96 * The algorithms here differ from the versions in the above paper
97 * in extending them for use in synchronous queues, as well as
98 * dealing with cancellation. The main differences include:
99 *
100 * 1. The original algorithms used bit-marked pointers, but
101 * the ones here use mode bits in nodes, leading to a number
102 * of further adaptations.
103 * 2. SynchronousQueues must block threads waiting to become
104 * fulfilled.
105 * 3. Support for cancellation via timeout and interrupts,
106 * including cleaning out cancelled nodes/threads
107 * from lists to avoid garbage retention and memory depletion.
108 *
109 * Blocking is mainly accomplished using LockSupport park/unpark,
110 * except that nodes that appear to be the next ones to become
111 * fulfilled first spin a bit (on multiprocessors only). On very
112 * busy synchronous queues, spinning can dramatically improve
113 * throughput. And on less busy ones, the amount of spinning is
114 * small enough not to be noticeable.
115 *
116 * Cleaning is done in different ways in queues vs stacks. For
117 * queues, we can almost always remove a node immediately in O(1)
118 * time (modulo retries for consistency checks) when it is
119 * cancelled. But if it may be pinned as the current tail, it must
120 * wait until some subsequent cancellation. For stacks, we need a
121 * potentially O(n) traversal to be sure that we can remove the
122 * node, but this can run concurrently with other threads
123 * accessing the stack.
124 *
125 * While garbage collection takes care of most node reclamation
126 * issues that otherwise complicate nonblocking algorithms, care
127 * is taken to "forget" references to data, other nodes, and
128 * threads that might be held on to long-term by blocked
129 * threads. In cases where setting to null would otherwise
130 * conflict with main algorithms, this is done by changing a
131 * node's link to now point to the node itself. This doesn't arise
132 * much for Stack nodes (because blocked threads do not hang on to
133 * old head pointers), but references in Queue nodes must be
134 * aggressively forgotten to avoid reachability of everything any
135 * node has ever referred to since arrival.
136 */
137
138 /**
139 * Shared internal API for dual stacks and queues.
140 */
141 abstract static class Transferer<E> {
142 /**
143 * Performs a put or take.
144 *
145 * @param e if non-null, the item to be handed to a consumer;
146 * if null, requests that transfer return an item
147 * offered by producer.
148 * @param timed if this operation should timeout
149 * @param nanos the timeout, in nanoseconds
150 * @return if non-null, the item provided or received; if null,
151 * the operation failed due to timeout or interrupt --
152 * the caller can distinguish which of these occurred
153 * by checking Thread.interrupted.
154 */
155 abstract E transfer(E e, boolean timed, long nanos);
156 }
157
158 /** The number of CPUs, for spin control */
159 static final int NCPUS = Runtime.getRuntime().availableProcessors();
160
161 /**
162 * The number of times to spin before blocking in timed waits.
163 * The value is empirically derived -- it works well across a
164 * variety of processors and OSes. Empirically, the best value
165 * seems not to vary with number of CPUs (beyond 2) so is just
166 * a constant.
167 */
168 static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
169
170 /**
171 * The number of times to spin before blocking in untimed waits.
172 * This is greater than timed value because untimed waits spin
173 * faster since they don't need to check times on each spin.
174 */
175 static final int maxUntimedSpins = maxTimedSpins * 16;
176
177 /**
178 * The number of nanoseconds for which it is faster to spin
179 * rather than to use timed park. A rough estimate suffices.
180 */
181 static final long spinForTimeoutThreshold = 1000L;
182
183 /** Dual stack */
184 static final class TransferStack<E> extends Transferer<E> {
185 /*
186 * This extends Scherer-Scott dual stack algorithm, differing,
187 * among other ways, by using "covering" nodes rather than
188 * bit-marked pointers: Fulfilling operations push on marker
189 * nodes (with FULFILLING bit set in mode) to reserve a spot
190 * to match a waiting node.
191 */
192
193 /* Modes for SNodes, ORed together in node fields */
194 /** Node represents an unfulfilled consumer */
195 static final int REQUEST = 0;
196 /** Node represents an unfulfilled producer */
197 static final int DATA = 1;
198 /** Node is fulfilling another unfulfilled DATA or REQUEST */
199 static final int FULFILLING = 2;
200
201 /** Returns true if m has fulfilling bit set. */
202 static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
203
204 /** Node class for TransferStacks. */
205 static final class SNode {
206 volatile SNode next; // next node in stack
207 volatile SNode match; // the node matched to this
208 volatile Thread waiter; // to control park/unpark
209 Object item; // data; or null for REQUESTs
210 int mode;
211 // Note: item and mode fields don't need to be volatile
212 // since they are always written before, and read after,
213 // other volatile/atomic operations.
214
215 SNode(Object item) {
216 this.item = item;
217 }
218
219 boolean casNext(SNode cmp, SNode val) {
220 return cmp == next &&
221 UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
222 }
223
224 /**
225 * Tries to match node s to this node, if so, waking up thread.
226 * Fulfillers call tryMatch to identify their waiters.
227 * Waiters block until they have been matched.
228 *
229 * @param s the node to match
230 * @return true if successfully matched to s
231 */
232 boolean tryMatch(SNode s) {
233 if (match == null &&
234 UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
235 Thread w = waiter;
236 if (w != null) { // waiters need at most one unpark
237 waiter = null;
238 LockSupport.unpark(w);
239 }
240 return true;
241 }
242 return match == s;
243 }
244
245 /**
246 * Tries to cancel a wait by matching node to itself.
247 */
248 void tryCancel() {
249 UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
250 }
251
252 boolean isCancelled() {
253 return match == this;
254 }
255
256 // Unsafe mechanics
257 private static final sun.misc.Unsafe UNSAFE;
258 private static final long matchOffset;
259 private static final long nextOffset;
260
261 static {
262 try {
263 UNSAFE = sun.misc.Unsafe.getUnsafe();
264 Class<?> k = SNode.class;
265 matchOffset = UNSAFE.objectFieldOffset
266 (k.getDeclaredField("match"));
267 nextOffset = UNSAFE.objectFieldOffset
268 (k.getDeclaredField("next"));
269 } catch (Exception e) {
270 throw new Error(e);
271 }
272 }
273 }
274
275 /** The head (top) of the stack */
276 volatile SNode head;
277
278 boolean casHead(SNode h, SNode nh) {
279 return h == head &&
280 UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
281 }
282
283 /**
284 * Creates or resets fields of a node. Called only from transfer
285 * where the node to push on stack is lazily created and
286 * reused when possible to help reduce intervals between reads
287 * and CASes of head and to avoid surges of garbage when CASes
288 * to push nodes fail due to contention.
289 */
290 static SNode snode(SNode s, Object e, SNode next, int mode) {
291 if (s == null) s = new SNode(e);
292 s.mode = mode;
293 s.next = next;
294 return s;
295 }
296
297 /**
298 * Puts or takes an item.
299 */
300 @SuppressWarnings("unchecked")
301 E transfer(E e, boolean timed, long nanos) {
302 /*
303 * Basic algorithm is to loop trying one of three actions:
304 *
305 * 1. If apparently empty or already containing nodes of same
306 * mode, try to push node on stack and wait for a match,
307 * returning it, or null if cancelled.
308 *
309 * 2. If apparently containing node of complementary mode,
310 * try to push a fulfilling node on to stack, match
311 * with corresponding waiting node, pop both from
312 * stack, and return matched item. The matching or
313 * unlinking might not actually be necessary because of
314 * other threads performing action 3:
315 *
316 * 3. If top of stack already holds another fulfilling node,
317 * help it out by doing its match and/or pop
318 * operations, and then continue. The code for helping
319 * is essentially the same as for fulfilling, except
320 * that it doesn't return the item.
321 */
322
323 SNode s = null; // constructed/reused as needed
324 int mode = (e == null) ? REQUEST : DATA;
325
326 for (;;) {
327 SNode h = head;
328 if (h == null || h.mode == mode) { // empty or same-mode
329 if (timed && nanos <= 0) { // can't wait
330 if (h != null && h.isCancelled())
331 casHead(h, h.next); // pop cancelled node
332 else
333 return null;
334 } else if (casHead(h, s = snode(s, e, h, mode))) {
335 SNode m = awaitFulfill(s, timed, nanos);
336 if (m == s) { // wait was cancelled
337 clean(s);
338 return null;
339 }
340 if ((h = head) != null && h.next == s)
341 casHead(h, s.next); // help s's fulfiller
342 return (E) ((mode == REQUEST) ? m.item : s.item);
343 }
344 } else if (!isFulfilling(h.mode)) { // try to fulfill
345 if (h.isCancelled()) // already cancelled
346 casHead(h, h.next); // pop and retry
347 else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
348 for (;;) { // loop until matched or waiters disappear
349 SNode m = s.next; // m is s's match
350 if (m == null) { // all waiters are gone
351 casHead(s, null); // pop fulfill node
352 s = null; // use new node next time
353 break; // restart main loop
354 }
355 SNode mn = m.next;
356 if (m.tryMatch(s)) {
357 casHead(s, mn); // pop both s and m
358 return (E) ((mode == REQUEST) ? m.item : s.item);
359 } else // lost match
360 s.casNext(m, mn); // help unlink
361 }
362 }
363 } else { // help a fulfiller
364 SNode m = h.next; // m is h's match
365 if (m == null) // waiter is gone
366 casHead(h, null); // pop fulfilling node
367 else {
368 SNode mn = m.next;
369 if (m.tryMatch(h)) // help match
370 casHead(h, mn); // pop both h and m
371 else // lost match
372 h.casNext(m, mn); // help unlink
373 }
374 }
375 }
376 }
377
378 /**
379 * Spins/blocks until node s is matched by a fulfill operation.
380 *
381 * @param s the waiting node
382 * @param timed true if timed wait
383 * @param nanos timeout value
384 * @return matched node, or s if cancelled
385 */
386 SNode awaitFulfill(SNode s, boolean timed, long nanos) {
387 /*
388 * When a node/thread is about to block, it sets its waiter
389 * field and then rechecks state at least one more time
390 * before actually parking, thus covering race vs
391 * fulfiller noticing that waiter is non-null so should be
392 * woken.
393 *
394 * When invoked by nodes that appear at the point of call
395 * to be at the head of the stack, calls to park are
396 * preceded by spins to avoid blocking when producers and
397 * consumers are arriving very close in time. This can
398 * happen enough to bother only on multiprocessors.
399 *
400 * The order of checks for returning out of main loop
401 * reflects fact that interrupts have precedence over
402 * normal returns, which have precedence over
403 * timeouts. (So, on timeout, one last check for match is
404 * done before giving up.) Except that calls from untimed
405 * SynchronousQueue.{poll/offer} don't check interrupts
406 * and don't wait at all, so are trapped in transfer
407 * method rather than calling awaitFulfill.
408 */
409 final long deadline = timed ? System.nanoTime() + nanos : 0L;
410 Thread w = Thread.currentThread();
411 int spins = shouldSpin(s)
412 ? (timed ? maxTimedSpins : maxUntimedSpins)
413 : 0;
414 for (;;) {
415 if (w.isInterrupted())
416 s.tryCancel();
417 SNode m = s.match;
418 if (m != null)
419 return m;
420 if (timed) {
421 nanos = deadline - System.nanoTime();
422 if (nanos <= 0L) {
423 s.tryCancel();
424 continue;
425 }
426 }
427 if (spins > 0)
428 spins = shouldSpin(s) ? (spins-1) : 0;
429 else if (s.waiter == null)
430 s.waiter = w; // establish waiter so can park next iter
431 else if (!timed)
432 LockSupport.park(this);
433 else if (nanos > spinForTimeoutThreshold)
434 LockSupport.parkNanos(this, nanos);
435 }
436 }
437
438 /**
439 * Returns true if node s is at head or there is an active
440 * fulfiller.
441 */
442 boolean shouldSpin(SNode s) {
443 SNode h = head;
444 return (h == s || h == null || isFulfilling(h.mode));
445 }
446
447 /**
448 * Unlinks s from the stack.
449 */
450 void clean(SNode s) {
451 s.item = null; // forget item
452 s.waiter = null; // forget thread
453
454 /*
455 * At worst we may need to traverse entire stack to unlink
456 * s. If there are multiple concurrent calls to clean, we
457 * might not see s if another thread has already removed
458 * it. But we can stop when we see any node known to
459 * follow s. We use s.next unless it too is cancelled, in
460 * which case we try the node one past. We don't check any
461 * further because we don't want to doubly traverse just to
462 * find sentinel.
463 */
464
465 SNode past = s.next;
466 if (past != null && past.isCancelled())
467 past = past.next;
468
469 // Absorb cancelled nodes at head
470 SNode p;
471 while ((p = head) != null && p != past && p.isCancelled())
472 casHead(p, p.next);
473
474 // Unsplice embedded nodes
475 while (p != null && p != past) {
476 SNode n = p.next;
477 if (n != null && n.isCancelled())
478 p.casNext(n, n.next);
479 else
480 p = n;
481 }
482 }
483
484 // Unsafe mechanics
485 private static final sun.misc.Unsafe UNSAFE;
486 private static final long headOffset;
487 static {
488 try {
489 UNSAFE = sun.misc.Unsafe.getUnsafe();
490 Class<?> k = TransferStack.class;
491 headOffset = UNSAFE.objectFieldOffset
492 (k.getDeclaredField("head"));
493 } catch (Exception e) {
494 throw new Error(e);
495 }
496 }
497 }
498
499 /** Dual Queue */
500 static final class TransferQueue<E> extends Transferer<E> {
501 /*
502 * This extends Scherer-Scott dual queue algorithm, differing,
503 * among other ways, by using modes within nodes rather than
504 * marked pointers. The algorithm is a little simpler than
505 * that for stacks because fulfillers do not need explicit
506 * nodes, and matching is done by CAS'ing QNode.item field
507 * from non-null to null (for put) or vice versa (for take).
508 */
509
510 /** Node class for TransferQueue. */
511 static final class QNode {
512 volatile QNode next; // next node in queue
513 volatile Object item; // CAS'ed to or from null
514 volatile Thread waiter; // to control park/unpark
515 final boolean isData;
516
517 QNode(Object item, boolean isData) {
518 this.item = item;
519 this.isData = isData;
520 }
521
522 boolean casNext(QNode cmp, QNode val) {
523 return next == cmp &&
524 UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
525 }
526
527 boolean casItem(Object cmp, Object val) {
528 return item == cmp &&
529 UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
530 }
531
532 /**
533 * Tries to cancel by CAS'ing ref to this as item.
534 */
535 void tryCancel(Object cmp) {
536 UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
537 }
538
539 boolean isCancelled() {
540 return item == this;
541 }
542
543 /**
544 * Returns true if this node is known to be off the queue
545 * because its next pointer has been forgotten due to
546 * an advanceHead operation.
547 */
548 boolean isOffList() {
549 return next == this;
550 }
551
552 // Unsafe mechanics
553 private static final sun.misc.Unsafe UNSAFE;
554 private static final long itemOffset;
555 private static final long nextOffset;
556
557 static {
558 try {
559 UNSAFE = sun.misc.Unsafe.getUnsafe();
560 Class<?> k = QNode.class;
561 itemOffset = UNSAFE.objectFieldOffset
562 (k.getDeclaredField("item"));
563 nextOffset = UNSAFE.objectFieldOffset
564 (k.getDeclaredField("next"));
565 } catch (Exception e) {
566 throw new Error(e);
567 }
568 }
569 }
570
571 /** Head of queue */
572 transient volatile QNode head;
573 /** Tail of queue */
574 transient volatile QNode tail;
575 /**
576 * Reference to a cancelled node that might not yet have been
577 * unlinked from queue because it was the last inserted node
578 * when it was cancelled.
579 */
580 transient volatile QNode cleanMe;
581
582 TransferQueue() {
583 QNode h = new QNode(null, false); // initialize to dummy node.
584 head = h;
585 tail = h;
586 }
587
588 /**
589 * Tries to cas nh as new head; if successful, unlink
590 * old head's next node to avoid garbage retention.
591 */
592 void advanceHead(QNode h, QNode nh) {
593 if (h == head &&
594 UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
595 h.next = h; // forget old next
596 }
597
598 /**
599 * Tries to cas nt as new tail.
600 */
601 void advanceTail(QNode t, QNode nt) {
602 if (tail == t)
603 UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
604 }
605
606 /**
607 * Tries to CAS cleanMe slot.
608 */
609 boolean casCleanMe(QNode cmp, QNode val) {
610 return cleanMe == cmp &&
611 UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
612 }
613
614 /**
615 * Puts or takes an item.
616 */
617 @SuppressWarnings("unchecked")
618 E transfer(E e, boolean timed, long nanos) {
619 /* Basic algorithm is to loop trying to take either of
620 * two actions:
621 *
622 * 1. If queue apparently empty or holding same-mode nodes,
623 * try to add node to queue of waiters, wait to be
624 * fulfilled (or cancelled) and return matching item.
625 *
626 * 2. If queue apparently contains waiting items, and this
627 * call is of complementary mode, try to fulfill by CAS'ing
628 * item field of waiting node and dequeuing it, and then
629 * returning matching item.
630 *
631 * In each case, along the way, check for and try to help
632 * advance head and tail on behalf of other stalled/slow
633 * threads.
634 *
635 * The loop starts off with a null check guarding against
636 * seeing uninitialized head or tail values. This never
637 * happens in current SynchronousQueue, but could if
638 * callers held non-volatile/final ref to the
639 * transferer. The check is here anyway because it places
640 * null checks at top of loop, which is usually faster
641 * than having them implicitly interspersed.
642 */
643
644 QNode s = null; // constructed/reused as needed
645 boolean isData = (e != null);
646
647 for (;;) {
648 QNode t = tail;
649 QNode h = head;
650 if (t == null || h == null) // saw uninitialized value
651 continue; // spin
652
653 if (h == t || t.isData == isData) { // empty or same-mode
654 QNode tn = t.next;
655 if (t != tail) // inconsistent read
656 continue;
657 if (tn != null) { // lagging tail
658 advanceTail(t, tn);
659 continue;
660 }
661 if (timed && nanos <= 0) // can't wait
662 return null;
663 if (s == null)
664 s = new QNode(e, isData);
665 if (!t.casNext(null, s)) // failed to link in
666 continue;
667
668 advanceTail(t, s); // swing tail and wait
669 Object x = awaitFulfill(s, e, timed, nanos);
670 if (x == s) { // wait was cancelled
671 clean(t, s);
672 return null;
673 }
674
675 if (!s.isOffList()) { // not already unlinked
676 advanceHead(t, s); // unlink if head
677 if (x != null) // and forget fields
678 s.item = s;
679 s.waiter = null;
680 }
681 return (x != null) ? (E)x : e;
682
683 } else { // complementary-mode
684 QNode m = h.next; // node to fulfill
685 if (t != tail || m == null || h != head)
686 continue; // inconsistent read
687
688 Object x = m.item;
689 if (isData == (x != null) || // m already fulfilled
690 x == m || // m cancelled
691 !m.casItem(x, e)) { // lost CAS
692 advanceHead(h, m); // dequeue and retry
693 continue;
694 }
695
696 advanceHead(h, m); // successfully fulfilled
697 LockSupport.unpark(m.waiter);
698 return (x != null) ? (E)x : e;
699 }
700 }
701 }
702
703 /**
704 * Spins/blocks until node s is fulfilled.
705 *
706 * @param s the waiting node
707 * @param e the comparison value for checking match
708 * @param timed true if timed wait
709 * @param nanos timeout value
710 * @return matched item, or s if cancelled
711 */
712 Object awaitFulfill(QNode s, E e, boolean timed, long nanos) {
713 /* Same idea as TransferStack.awaitFulfill */
714 final long deadline = timed ? System.nanoTime() + nanos : 0L;
715 Thread w = Thread.currentThread();
716 int spins = (head.next == s)
717 ? (timed ? maxTimedSpins : maxUntimedSpins)
718 : 0;
719 for (;;) {
720 if (w.isInterrupted())
721 s.tryCancel(e);
722 Object x = s.item;
723 if (x != e)
724 return x;
725 if (timed) {
726 nanos = deadline - System.nanoTime();
727 if (nanos <= 0L) {
728 s.tryCancel(e);
729 continue;
730 }
731 }
732 if (spins > 0)
733 --spins;
734 else if (s.waiter == null)
735 s.waiter = w;
736 else if (!timed)
737 LockSupport.park(this);
738 else if (nanos > spinForTimeoutThreshold)
739 LockSupport.parkNanos(this, nanos);
740 }
741 }
742
743 /**
744 * Gets rid of cancelled node s with original predecessor pred.
745 */
746 void clean(QNode pred, QNode s) {
747 s.waiter = null; // forget thread
748 /*
749 * At any given time, exactly one node on list cannot be
750 * deleted -- the last inserted node. To accommodate this,
751 * if we cannot delete s, we save its predecessor as
752 * "cleanMe", deleting the previously saved version
753 * first. At least one of node s or the node previously
754 * saved can always be deleted, so this always terminates.
755 */
756 while (pred.next == s) { // Return early if already unlinked
757 QNode h = head;
758 QNode hn = h.next; // Absorb cancelled first node as head
759 if (hn != null && hn.isCancelled()) {
760 advanceHead(h, hn);
761 continue;
762 }
763 QNode t = tail; // Ensure consistent read for tail
764 if (t == h)
765 return;
766 QNode tn = t.next;
767 if (t != tail)
768 continue;
769 if (tn != null) {
770 advanceTail(t, tn);
771 continue;
772 }
773 if (s != t) { // If not tail, try to unsplice
774 QNode sn = s.next;
775 if (sn == s || pred.casNext(s, sn))
776 return;
777 }
778 QNode dp = cleanMe;
779 if (dp != null) { // Try unlinking previous cancelled node
780 QNode d = dp.next;
781 QNode dn;
782 if (d == null || // d is gone or
783 d == dp || // d is off list or
784 !d.isCancelled() || // d not cancelled or
785 (d != t && // d not tail and
786 (dn = d.next) != null && // has successor
787 dn != d && // that is on list
788 dp.casNext(d, dn))) // d unspliced
789 casCleanMe(dp, null);
790 if (dp == pred)
791 return; // s is already saved node
792 } else if (casCleanMe(null, pred))
793 return; // Postpone cleaning s
794 }
795 }
796
797 private static final sun.misc.Unsafe UNSAFE;
798 private static final long headOffset;
799 private static final long tailOffset;
800 private static final long cleanMeOffset;
801 static {
802 try {
803 UNSAFE = sun.misc.Unsafe.getUnsafe();
804 Class<?> k = TransferQueue.class;
805 headOffset = UNSAFE.objectFieldOffset
806 (k.getDeclaredField("head"));
807 tailOffset = UNSAFE.objectFieldOffset
808 (k.getDeclaredField("tail"));
809 cleanMeOffset = UNSAFE.objectFieldOffset
810 (k.getDeclaredField("cleanMe"));
811 } catch (Exception e) {
812 throw new Error(e);
813 }
814 }
815 }
816
817 /**
818 * The transferer. Set only in constructor, but cannot be declared
819 * as final without further complicating serialization. Since
820 * this is accessed only at most once per public method, there
821 * isn't a noticeable performance penalty for using volatile
822 * instead of final here.
823 */
824 private transient volatile Transferer<E> transferer;
825
826 /**
827 * Creates a {@code SynchronousQueue} with nonfair access policy.
828 */
829 public SynchronousQueue() {
830 this(false);
831 }
832
833 /**
834 * Creates a {@code SynchronousQueue} with the specified fairness policy.
835 *
836 * @param fair if true, waiting threads contend in FIFO order for
837 * access; otherwise the order is unspecified.
838 */
839 public SynchronousQueue(boolean fair) {
840 transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
841 }
842
843 /**
844 * Adds the specified element to this queue, waiting if necessary for
845 * another thread to receive it.
846 *
847 * @throws InterruptedException {@inheritDoc}
848 * @throws NullPointerException {@inheritDoc}
849 */
850 public void put(E e) throws InterruptedException {
851 if (e == null) throw new NullPointerException();
852 if (transferer.transfer(e, false, 0) == null) {
853 Thread.interrupted();
854 throw new InterruptedException();
855 }
856 }
857
858 /**
859 * Inserts the specified element into this queue, waiting if necessary
860 * up to the specified wait time for another thread to receive it.
861 *
862 * @return {@code true} if successful, or {@code false} if the
863 * specified waiting time elapses before a consumer appears
864 * @throws InterruptedException {@inheritDoc}
865 * @throws NullPointerException {@inheritDoc}
866 */
867 public boolean offer(E e, long timeout, TimeUnit unit)
868 throws InterruptedException {
869 if (e == null) throw new NullPointerException();
870 if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
871 return true;
872 if (!Thread.interrupted())
873 return false;
874 throw new InterruptedException();
875 }
876
877 /**
878 * Inserts the specified element into this queue, if another thread is
879 * waiting to receive it.
880 *
881 * @param e the element to add
882 * @return {@code true} if the element was added to this queue, else
883 * {@code false}
884 * @throws NullPointerException if the specified element is null
885 */
886 public boolean offer(E e) {
887 if (e == null) throw new NullPointerException();
888 return transferer.transfer(e, true, 0) != null;
889 }
890
891 /**
892 * Retrieves and removes the head of this queue, waiting if necessary
893 * for another thread to insert it.
894 *
895 * @return the head of this queue
896 * @throws InterruptedException {@inheritDoc}
897 */
898 public E take() throws InterruptedException {
899 E e = transferer.transfer(null, false, 0);
900 if (e != null)
901 return e;
902 Thread.interrupted();
903 throw new InterruptedException();
904 }
905
906 /**
907 * Retrieves and removes the head of this queue, waiting
908 * if necessary up to the specified wait time, for another thread
909 * to insert it.
910 *
911 * @return the head of this queue, or {@code null} if the
912 * specified waiting time elapses before an element is present
913 * @throws InterruptedException {@inheritDoc}
914 */
915 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
916 E e = transferer.transfer(null, true, unit.toNanos(timeout));
917 if (e != null || !Thread.interrupted())
918 return e;
919 throw new InterruptedException();
920 }
921
922 /**
923 * Retrieves and removes the head of this queue, if another thread
924 * is currently making an element available.
925 *
926 * @return the head of this queue, or {@code null} if no
927 * element is available
928 */
929 public E poll() {
930 return transferer.transfer(null, true, 0);
931 }
932
933 /**
934 * Always returns {@code true}.
935 * A {@code SynchronousQueue} has no internal capacity.
936 *
937 * @return {@code true}
938 */
939 public boolean isEmpty() {
940 return true;
941 }
942
943 /**
944 * Always returns zero.
945 * A {@code SynchronousQueue} has no internal capacity.
946 *
947 * @return zero
948 */
949 public int size() {
950 return 0;
951 }
952
953 /**
954 * Always returns zero.
955 * A {@code SynchronousQueue} has no internal capacity.
956 *
957 * @return zero
958 */
959 public int remainingCapacity() {
960 return 0;
961 }
962
963 /**
964 * Does nothing.
965 * A {@code SynchronousQueue} has no internal capacity.
966 */
967 public void clear() {
968 }
969
970 /**
971 * Always returns {@code false}.
972 * A {@code SynchronousQueue} has no internal capacity.
973 *
974 * @param o the element
975 * @return {@code false}
976 */
977 public boolean contains(Object o) {
978 return false;
979 }
980
981 /**
982 * Always returns {@code false}.
983 * A {@code SynchronousQueue} has no internal capacity.
984 *
985 * @param o the element to remove
986 * @return {@code false}
987 */
988 public boolean remove(Object o) {
989 return false;
990 }
991
992 /**
993 * Returns {@code false} unless the given collection is empty.
994 * A {@code SynchronousQueue} has no internal capacity.
995 *
996 * @param c the collection
997 * @return {@code false} unless given collection is empty
998 */
999 public boolean containsAll(Collection<?> c) {
1000 return c.isEmpty();
1001 }
1002
1003 /**
1004 * Always returns {@code false}.
1005 * A {@code SynchronousQueue} has no internal capacity.
1006 *
1007 * @param c the collection
1008 * @return {@code false}
1009 */
1010 public boolean removeAll(Collection<?> c) {
1011 return false;
1012 }
1013
1014 /**
1015 * Always returns {@code false}.
1016 * A {@code SynchronousQueue} has no internal capacity.
1017 *
1018 * @param c the collection
1019 * @return {@code false}
1020 */
1021 public boolean retainAll(Collection<?> c) {
1022 return false;
1023 }
1024
1025 /**
1026 * Always returns {@code null}.
1027 * A {@code SynchronousQueue} does not return elements
1028 * unless actively waited on.
1029 *
1030 * @return {@code null}
1031 */
1032 public E peek() {
1033 return null;
1034 }
1035
1036 /**
1037 * Returns an empty iterator in which {@code hasNext} always returns
1038 * {@code false}.
1039 *
1040 * @return an empty iterator
1041 */
1042 public Iterator<E> iterator() {
1043 return Collections.emptyIterator();
1044 }
1045
1046 /**
1047 * Returns an empty spliterator in which calls to
1048 * {@link java.util.Spliterator#trySplit()} always return {@code null}.
1049 *
1050 * @return an empty spliterator
1051 * @since 1.8
1052 */
1053 public Spliterator<E> spliterator() {
1054 return Spliterators.emptySpliterator();
1055 }
1056
1057 /**
1058 * Returns a zero-length array.
1059 * @return a zero-length array
1060 */
1061 public Object[] toArray() {
1062 return new Object[0];
1063 }
1064
1065 /**
1066 * Sets the zeroth element of the specified array to {@code null}
1067 * (if the array has non-zero length) and returns it.
1068 *
1069 * @param a the array
1070 * @return the specified array
1071 * @throws NullPointerException if the specified array is null
1072 */
1073 public <T> T[] toArray(T[] a) {
1074 if (a.length > 0)
1075 a[0] = null;
1076 return a;
1077 }
1078
1079 /**
1080 * @throws UnsupportedOperationException {@inheritDoc}
1081 * @throws ClassCastException {@inheritDoc}
1082 * @throws NullPointerException {@inheritDoc}
1083 * @throws IllegalArgumentException {@inheritDoc}
1084 */
1085 public int drainTo(Collection<? super E> c) {
1086 if (c == null)
1087 throw new NullPointerException();
1088 if (c == this)
1089 throw new IllegalArgumentException();
1090 int n = 0;
1091 for (E e; (e = poll()) != null;) {
1092 c.add(e);
1093 ++n;
1094 }
1095 return n;
1096 }
1097
1098 /**
1099 * @throws UnsupportedOperationException {@inheritDoc}
1100 * @throws ClassCastException {@inheritDoc}
1101 * @throws NullPointerException {@inheritDoc}
1102 * @throws IllegalArgumentException {@inheritDoc}
1103 */
1104 public int drainTo(Collection<? super E> c, int maxElements) {
1105 if (c == null)
1106 throw new NullPointerException();
1107 if (c == this)
1108 throw new IllegalArgumentException();
1109 int n = 0;
1110 for (E e; n < maxElements && (e = poll()) != null;) {
1111 c.add(e);
1112 ++n;
1113 }
1114 return n;
1115 }
1116
1117 /*
1118 * To cope with serialization strategy in the 1.5 version of
1119 * SynchronousQueue, we declare some unused classes and fields
1120 * that exist solely to enable serializability across versions.
1121 * These fields are never used, so are initialized only if this
1122 * object is ever serialized or deserialized.
1123 */
1124
1125 @SuppressWarnings("serial")
1126 static class WaitQueue implements java.io.Serializable { }
1127 static class LifoWaitQueue extends WaitQueue {
1128 private static final long serialVersionUID = -3633113410248163686L;
1129 }
1130 static class FifoWaitQueue extends WaitQueue {
1131 private static final long serialVersionUID = -3623113410248163686L;
1132 }
1133 private ReentrantLock qlock;
1134 private WaitQueue waitingProducers;
1135 private WaitQueue waitingConsumers;
1136
1137 /**
1138 * Saves this queue to a stream (that is, serializes it).
1139 * @param s the stream
1140 * @throws java.io.IOException if an I/O error occurs
1141 */
1142 private void writeObject(java.io.ObjectOutputStream s)
1143 throws java.io.IOException {
1144 boolean fair = transferer instanceof TransferQueue;
1145 if (fair) {
1146 qlock = new ReentrantLock(true);
1147 waitingProducers = new FifoWaitQueue();
1148 waitingConsumers = new FifoWaitQueue();
1149 }
1150 else {
1151 qlock = new ReentrantLock();
1152 waitingProducers = new LifoWaitQueue();
1153 waitingConsumers = new LifoWaitQueue();
1154 }
1155 s.defaultWriteObject();
1156 }
1157
1158 /**
1159 * Reconstitutes this queue from a stream (that is, deserializes it).
1160 * @param s the stream
1161 * @throws ClassNotFoundException if the class of a serialized object
1162 * could not be found
1163 * @throws java.io.IOException if an I/O error occurs
1164 */
1165 private void readObject(java.io.ObjectInputStream s)
1166 throws java.io.IOException, ClassNotFoundException {
1167 s.defaultReadObject();
1168 if (waitingProducers instanceof FifoWaitQueue)
1169 transferer = new TransferQueue<E>();
1170 else
1171 transferer = new TransferStack<E>();
1172 }
1173
1174 }