ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.62
Committed: Fri Aug 19 12:51:29 2005 UTC (18 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.61: +2 -2 lines
Log Message:
Touch-ups from review comments

File Contents

# Content
1 /*
2 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3 * assistance from members of JCP JSR-166 Expert Group and released to
4 * the public domain, as explained at
5 * http://creativecommons.org/licenses/publicdomain
6 */
7
8 package java.util.concurrent;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12
13 /**
14 * A {@linkplain BlockingQueue blocking queue} in which each insert
15 * operation must wait for a corresponding remove operation by another
16 * thread, and vice versa. A synchronous queue does not have any
17 * internal capacity, not even a capacity of one. You cannot
18 * <tt>peek</tt> at a synchronous queue because an element is only
19 * present when you try to remove it; you cannot insert an element
20 * (using any method) unless another thread is trying to remove it;
21 * you cannot iterate as there is nothing to iterate. The
22 * <em>head</em> of the queue is the element that the first queued
23 * inserting thread is trying to add to the queue; if there is no such
24 * queued thread then no element is available for removal and
25 * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
26 * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
27 * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
28 * does not permit <tt>null</tt> elements.
29 *
30 * <p>Synchronous queues are similar to rendezvous channels used in
31 * CSP and Ada. They are well suited for handoff designs, in which an
32 * object running in one thread must sync up with an object running
33 * in another thread in order to hand it some information, event, or
34 * task.
35 *
36 * <p> This class supports an optional fairness policy for ordering
37 * waiting producer and consumer threads. By default, this ordering
38 * is not guaranteed. However, a queue constructed with fairness set
39 * to <tt>true</tt> grants threads access in FIFO order.
40 *
41 * <p>This class and its iterator implement all of the
42 * <em>optional</em> methods of the {@link Collection} and {@link
43 * Iterator} interfaces.
44 *
45 * <p>This class is a member of the
46 * <a href="{@docRoot}/../guide/collections/index.html">
47 * Java Collections Framework</a>.
48 *
49 * @since 1.5
50 * @author Doug Lea and Bill Scherer and Michael Scott
51 * @param <E> the type of elements held in this collection
52 */
53 public class SynchronousQueue<E> extends AbstractQueue<E>
54 implements BlockingQueue<E>, java.io.Serializable {
55 private static final long serialVersionUID = -3223113410248163686L;
56
57 /*
58 * This class implements extensions of the dual stack and dual
59 * queue algorithms described in "Nonblocking Concurrent Objects
60 * with Condition Synchronization", by W. N. Scherer III and
61 * M. L. Scott. 18th Annual Conf. on Distributed Computing,
62 * Oct. 2004 (see also
63 * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64 * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65 * queue for fair mode. The performance of the two is generally
66 * similar. Fifo usually supports higher throughput under
67 * contention but Lifo maintains higher thread locality in common
68 * applications.
69 *
70 * A dual queue (and similarly stack) is one that at any given
71 * time either holds "data" -- items provided by put operations,
72 * or "requests" -- slots representing take operations, or is
73 * empty. A call to "fulfill" (i.e., a call requesting an item
74 * from a queue holding data or vice versa) dequeues a
75 * complementary node. The most interesting feature of these
76 * queues is that any operation can figure out which mode the
77 * queue is in, and act accordingly without needing locks.
78 *
79 * Both the queue and stack extend abstract class Transferer
80 * defining the single method transfer that does a put or a
81 * take. These are unified into a single method because in dual
82 * data structures, the put and take operations are symmetrical,
83 * so nearly all code can be combined. The resulting transfer
84 * methods are on the long side, but are easier to follow than
85 * they would be if broken up into nearly-duplicated parts.
86 *
87 * The queue and stack data structures share many conceptual
88 * similarities but very few concrete details. For simplicity,
89 * they are kept distinct so that they can later evolve
90 * separately.
91 *
92 * The algorithms here differ from the versions in the above paper
93 * in extending them for use in synchronous queues, as well as
94 * dealing with cancellation. The main differences include:
95 *
96 * 1. The original algorithms used bit-marked pointers, but
97 * the ones here use mode bits in nodes, leading to a number
98 * of further adaptations.
99 * 2. SynchronousQueues must block threads waiting to become
100 * fulfilled.
101 * 3. Support for cancellation via timeout and interrupts,
102 * including cleaning out cancelled nodes/threads
103 * from lists to avoid garbage retention and memory depletion.
104 *
105 * Blocking is mainly accomplished using LockSupport park/unpark,
106 * except that nodes that appear to be the next ones to become
107 * fulfilled first spin a bit (on multiprocessors only). On very
108 * busy synchronous queues, spinning can dramatically improve
109 * throughput. And on less busy ones, the amount of spinning is
110 * small enough not to be noticeable.
111 *
112 * Cleaning is done in different ways in queues vs stacks. For
113 * queues, we can almost always remove a node immediately in O(1)
114 * time (modulo retries for consistency checks) when it is
115 * cancelled. But if it may be pinned as the current tail, it must
116 * wait until some subsequent cancellation. For stacks, we need a
117 * potentially O(n) traversal to be sure that we can remove the
118 * node, but this can run concurrently with other threads
119 * accessing the stack.
120 *
121 * While garbage collection takes care of most node reclamation
122 * issues that otherwise complicate nonblocking algorithms, care
123 * is taken to "forget" references to data, other nodes, and
124 * threads that might be held on to long-term by blocked
125 * threads. In cases where setting to null would otherwise
126 * conflict with main algorithms, this is done by changing a
127 * node's link to now point to the node itself. This doesn't arise
128 * much for Stack nodes (because blocked threads do not hang on to
129 * old head pointers), but references in Queue nodes must be
130 * aggressively forgotten to avoid reachability of everything any
131 * node has ever referred to since arrival.
132 */
133
134 /**
135 * Shared internal API for dual stacks and queues.
136 */
137 static abstract class Transferer {
138 /**
139 * Performs a put or take.
140 *
141 * @param e if non-null, the item to be handed to a consumer;
142 * if null, requests that transfer return an item
143 * offered by producer.
144 * @param timed if this operation should timeout
145 * @param nanos the timeout, in nanoseconds
146 * @return if non-null, the item provided or received; if null,
147 * the operation failed due to timeout or interrupt --
148 * the caller can distinguish which of these occurred
149 * by checking Thread.interrupted.
150 */
151 abstract Object transfer(Object e, boolean timed, long nanos);
152 }
153
154 /** The number of CPUs, for spin control */
155 static final int NCPUS = Runtime.getRuntime().availableProcessors();
156
157 /**
158 * The number of times to spin before blocking in timed waits.
159 * The value is empirically derived -- it works well across a
160 * variety of processors and OSes. Empirically, the best value
161 * seems not to vary with number of CPUs (beyond 2) so is just
162 * a constant.
163 */
164 static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
165
166 /**
167 * The number of times to spin before blocking in untimed waits.
168 * This is greater than timed value because untimed waits spin
169 * faster since they don't need to check times on each spin.
170 */
171 static final int maxUntimedSpins = maxTimedSpins * 16;
172
173 /**
174 * The number of nanoseconds for which it is faster to spin
175 * rather than to use timed park. A rough estimate suffices.
176 */
177 static final long spinForTimeoutThreshold = 1000L;
178
179 /** Dual stack */
180 static final class TransferStack extends Transferer {
181 /*
182 * This extends Scherer-Scott dual stack algorithm, differing,
183 * among other ways, by using "covering" nodes rather than
184 * bit-marked pointers: Fulfilling operations push on marker
185 * nodes (with FULFILLING bit set in mode) to reserve a spot
186 * to match a waiting node.
187 */
188
189 /* Modes for SNodes, ORed together in node fields */
190 /** Node represents an unfulfilled consumer */
191 static final int REQUEST = 0;
192 /** Node represents an unfulfilled producer */
193 static final int DATA = 1;
194 /** Node is fulfilling another unfulfilled DATA or REQUEST */
195 static final int FULFILLING = 2;
196
197 /** Return true if m has fulfilling bit set */
198 static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199
200 /** Node class for TransferStacks. */
201 static final class SNode {
202 volatile SNode next; // next node in stack
203 volatile SNode match; // the node matched to this
204 volatile Thread waiter; // to control park/unpark
205 Object item; // data; or null for REQUESTs
206 int mode;
207 // Note: item and mode fields don't need to be volatile
208 // since they are always written before, and read after,
209 // other volatile/atomic operations.
210
211 SNode(Object item) {
212 this.item = item;
213 }
214
215 static final AtomicReferenceFieldUpdater<SNode, SNode>
216 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
217 (SNode.class, SNode.class, "next");
218
219 boolean casNext(SNode cmp, SNode val) {
220 return (cmp == next &&
221 nextUpdater.compareAndSet(this, cmp, val));
222 }
223
224 static final AtomicReferenceFieldUpdater<SNode, SNode>
225 matchUpdater = AtomicReferenceFieldUpdater.newUpdater
226 (SNode.class, SNode.class, "match");
227
228 /**
229 * Tries to match node s to this node, if so, waking up
230 * thread. Fulfillers call tryMatch to identify their
231 * waiters. Waiters block until they have been
232 * matched.
233 * @param s the node to match
234 * @return true if successfully matched to s
235 */
236 boolean tryMatch(SNode s) {
237 if (match == null &&
238 matchUpdater.compareAndSet(this, null, s)) {
239 Thread w = waiter;
240 if (w != null) { // waiters need at most one unpark
241 waiter = null;
242 LockSupport.unpark(w);
243 }
244 return true;
245 }
246 return match == s;
247 }
248
249 /**
250 * Tries to cancel a wait by matching node to itself.
251 */
252 void tryCancel() {
253 matchUpdater.compareAndSet(this, null, this);
254 }
255
256 boolean isCancelled() {
257 return match == this;
258 }
259 }
260
261 /** The head (top) of the stack */
262 volatile SNode head;
263
264 static final AtomicReferenceFieldUpdater<TransferStack, SNode>
265 headUpdater = AtomicReferenceFieldUpdater.newUpdater
266 (TransferStack.class, SNode.class, "head");
267
268 boolean casHead(SNode h, SNode nh) {
269 return h == head && headUpdater.compareAndSet(this, h, nh);
270 }
271
272 /**
273 * Creates or resets fields of a node. Called only from transfer
274 * where the node to push on stack is lazily created and
275 * reused when possible to help reduce intervals between reads
276 * and CASes of head and to avoid surges of garbage when CASes
277 * to push nodes fail due to contention.
278 */
279 static SNode snode(SNode s, Object e, SNode next, int mode) {
280 if (s == null) s = new SNode(e);
281 s.mode = mode;
282 s.next = next;
283 return s;
284 }
285
286 /**
287 * Puts or takes an item.
288 */
289 Object transfer(Object e, boolean timed, long nanos) {
290 /*
291 * Basic algorithm is to loop trying one of three actions:
292 *
293 * 1. If apparently empty or already containing nodes of same
294 * mode, try to push node on stack and wait for a match,
295 * returning it, or null if cancelled.
296 *
297 * 2. If apparently containing node of complementary mode,
298 * try to push a fulfilling node on to stack, match
299 * with corresponding waiting node, pop both from
300 * stack, and return matched item. The matching or
301 * unlinking might not actually be necessary because of
302 * other threads performing action 3:
303 *
304 * 3. If top of stack already holds another fulfilling node,
305 * help it out by doing its match and/or pop
306 * operations, and then continue. The code for helping
307 * is essentially the same as for fulfilling, except
308 * that it doesn't return the item.
309 */
310
311 SNode s = null; // constructed/reused as needed
312 int mode = (e == null)? REQUEST : DATA;
313
314 for (;;) {
315 SNode h = head;
316 if (h == null || h.mode == mode) { // empty or same-mode
317 if (timed && nanos <= 0) { // can't wait
318 if (h != null && h.isCancelled())
319 casHead(h, h.next); // pop cancelled node
320 else
321 return null;
322 } else if (casHead(h, s = snode(s, e, h, mode))) {
323 SNode m = awaitFulfill(s, timed, nanos);
324 if (m == s) { // wait was cancelled
325 clean(s);
326 return null;
327 }
328 if ((h = head) != null && h.next == s)
329 casHead(h, s.next); // help s's fulfiller
330 return mode == REQUEST? m.item : s.item;
331 }
332 } else if (!isFulfilling(h.mode)) { // try to fulfill
333 if (h.isCancelled()) // already cancelled
334 casHead(h, h.next); // pop and retry
335 else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
336 for (;;) { // loop until matched or waiters disappear
337 SNode m = s.next; // m is s's match
338 if (m == null) { // all waiters are gone
339 casHead(s, null); // pop fulfill node
340 s = null; // use new node next time
341 break; // restart main loop
342 }
343 SNode mn = m.next;
344 if (m.tryMatch(s)) {
345 casHead(s, mn); // pop both s and m
346 return (mode == REQUEST)? m.item : s.item;
347 } else // lost match
348 s.casNext(m, mn); // help unlink
349 }
350 }
351 } else { // help a fulfiller
352 SNode m = h.next; // m is h's match
353 if (m == null) // waiter is gone
354 casHead(h, null); // pop fulfilling node
355 else {
356 SNode mn = m.next;
357 if (m.tryMatch(h)) // help match
358 casHead(h, mn); // pop both h and m
359 else // lost match
360 h.casNext(m, mn); // help unlink
361 }
362 }
363 }
364 }
365
366 /**
367 * Spins/blocks until node s is matched by a fulfill operation.
368 * @param s the waiting node
369 * @param timed true if timed wait
370 * @param nanos timeout value
371 * @return matched node, or s if cancelled
372 */
373 SNode awaitFulfill(SNode s, boolean timed, long nanos) {
374 /*
375 * When a node/thread is about to block, it sets its waiter
376 * field and then rechecks state at least one more time
377 * before actually parking, thus covering race vs
378 * fulfiller noticing that waiter is non-null so should be
379 * woken.
380 *
381 * When invoked by nodes that appear at the point of call
382 * to be at the head of the stack, calls to park are
383 * preceded by spins to avoid blocking when producers and
384 * consumers are arriving very close in time. This can
385 * happen enough to bother only on multiprocessors.
386 *
387 * The order of checks for returning out of main loop
388 * reflects fact that interrupts have precedence over
389 * normal returns, which have precedence over
390 * timeouts. (So, on timeout, one last check for match is
391 * done before giving up.) Except that calls from untimed
392 * SynchronousQueue.{poll/offer} don't check interrupts
393 * and don't wait at all, so are trapped in transfer
394 * method rather than calling awaitFulfill.
395 */
396 long lastTime = (timed)? System.nanoTime() : 0;
397 Thread w = Thread.currentThread();
398 SNode h = head;
399 int spins = (shouldSpin(s)?
400 (timed? maxTimedSpins : maxUntimedSpins) : 0);
401 for (;;) {
402 if (w.isInterrupted())
403 s.tryCancel();
404 SNode m = s.match;
405 if (m != null)
406 return m;
407 if (timed) {
408 long now = System.nanoTime();
409 nanos -= now - lastTime;
410 lastTime = now;
411 if (nanos <= 0) {
412 s.tryCancel();
413 continue;
414 }
415 }
416 if (spins > 0)
417 spins = shouldSpin(s)? (spins-1) : 0;
418 else if (s.waiter == null)
419 s.waiter = w; // establish waiter so can park next iter
420 else if (!timed)
421 LockSupport.park(this);
422 else if (nanos > spinForTimeoutThreshold)
423 LockSupport.parkNanos(this, nanos);
424 }
425 }
426
427 /**
428 * Returns true if node s is at head or there is an active
429 * fulfiller.
430 */
431 boolean shouldSpin(SNode s) {
432 SNode h = head;
433 return (h == s || h == null || isFulfilling(h.mode));
434 }
435
436 /**
437 * Unlinks s from the stack.
438 */
439 void clean(SNode s) {
440 s.item = null; // forget item
441 s.waiter = null; // forget thread
442
443 /*
444 * At worst we may need to traverse entire stack to unlink
445 * s. If there are multiple concurrent calls to clean, we
446 * might not see s if another thread has already removed
447 * it. But we can stop when we see any node known to
448 * follow s. We use s.next unless it too is cancelled, in
449 * which case we try the node one past. We don't check any
450 * further because we don't want to doubly traverse just to
451 * find sentinel.
452 */
453
454 SNode past = s.next;
455 if (past != null && past.isCancelled())
456 past = past.next;
457
458 // Absorb cancelled nodes at head
459 SNode p;
460 while ((p = head) != null && p != past && p.isCancelled())
461 casHead(p, p.next);
462
463 // Unsplice embedded nodes
464 while (p != null && p != past) {
465 SNode n = p.next;
466 if (n != null && n.isCancelled())
467 p.casNext(n, n.next);
468 else
469 p = n;
470 }
471 }
472 }
473
474 /** Dual Queue */
475 static final class TransferQueue extends Transferer {
476 /*
477 * This extends Scherer-Scott dual queue algorithm, differing,
478 * among other ways, by using modes within nodes rather than
479 * marked pointers. The algorithm is a little simpler than
480 * that for stacks because fulfillers do not need explicit
481 * nodes, and matching is done by CAS'ing QNode.item field
482 * from non-null to null (for put) or vice versa (for take).
483 */
484
485 /** Node class for TransferQueue. */
486 static final class QNode {
487 volatile QNode next; // next node in queue
488 volatile Object item; // CAS'ed to or from null
489 volatile Thread waiter; // to control park/unpark
490 final boolean isData;
491
492 QNode(Object item, boolean isData) {
493 this.item = item;
494 this.isData = isData;
495 }
496
497 static final AtomicReferenceFieldUpdater<QNode, QNode>
498 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
499 (QNode.class, QNode.class, "next");
500
501 boolean casNext(QNode cmp, QNode val) {
502 return (next == cmp &&
503 nextUpdater.compareAndSet(this, cmp, val));
504 }
505
506 static final AtomicReferenceFieldUpdater<QNode, Object>
507 itemUpdater = AtomicReferenceFieldUpdater.newUpdater
508 (QNode.class, Object.class, "item");
509
510 boolean casItem(Object cmp, Object val) {
511 return (item == cmp &&
512 itemUpdater.compareAndSet(this, cmp, val));
513 }
514
515 /**
516 * Tries to cancel by CAS'ing ref to this as item.
517 */
518 void tryCancel(Object cmp) {
519 itemUpdater.compareAndSet(this, cmp, this);
520 }
521
522 boolean isCancelled() {
523 return item == this;
524 }
525
526 /**
527 * Returns true if this node is known to be off the queue
528 * because its next pointer has been forgotten due to
529 * an advanceHead operation.
530 */
531 boolean isOffList() {
532 return next == this;
533 }
534 }
535
536 /** Head of queue */
537 transient volatile QNode head;
538 /** Tail of queue */
539 transient volatile QNode tail;
540 /**
541 * Reference to a cancelled node that might not yet have been
542 * unlinked from queue because it was the last inserted node
543 * when it cancelled.
544 */
545 transient volatile QNode cleanMe;
546
547 TransferQueue() {
548 QNode h = new QNode(null, false); // initialize to dummy node.
549 head = h;
550 tail = h;
551 }
552
553 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
554 headUpdater = AtomicReferenceFieldUpdater.newUpdater
555 (TransferQueue.class, QNode.class, "head");
556
557 /**
558 * Tries to cas nh as new head; if successful, unlink
559 * old head's next node to avoid garbage retention.
560 */
561 void advanceHead(QNode h, QNode nh) {
562 if (h == head && headUpdater.compareAndSet(this, h, nh))
563 h.next = h; // forget old next
564 }
565
566 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
567 tailUpdater = AtomicReferenceFieldUpdater.newUpdater
568 (TransferQueue.class, QNode.class, "tail");
569
570 /**
571 * Tries to cas nt as new tail.
572 */
573 void advanceTail(QNode t, QNode nt) {
574 if (tail == t)
575 tailUpdater.compareAndSet(this, t, nt);
576 }
577
578 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
579 cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
580 (TransferQueue.class, QNode.class, "cleanMe");
581
582 /**
583 * Tries to CAS cleanMe slot.
584 */
585 boolean casCleanMe(QNode cmp, QNode val) {
586 return (cleanMe == cmp &&
587 cleanMeUpdater.compareAndSet(this, cmp, val));
588 }
589
590 /**
591 * Puts or takes an item.
592 */
593 Object transfer(Object e, boolean timed, long nanos) {
594 /* Basic algorithm is to loop trying to take either of
595 * two actions:
596 *
597 * 1. If queue apparently empty or holding same-mode nodes,
598 * try to add node to queue of waiters, wait to be
599 * fulfilled (or cancelled) and return matching item.
600 *
601 * 2. If queue apparently contains waiting items, and this
602 * call is of complementary mode, try to fulfill by CAS'ing
603 * item field of waiting node and dequeuing it, and then
604 * returning matching item.
605 *
606 * In each case, along the way, check for and try to help
607 * advance head and tail on behalf of other stalled/slow
608 * threads.
609 *
610 * The loop starts off with a null check guarding against
611 * seeing uninitialized head or tail values. This never
612 * happens in current SynchronousQueue, but could if
613 * callers held non-volatile/final ref to the
614 * transferer. The check is here anyway because it places
615 * null checks at top of loop, which is usually faster
616 * than having them implicitly interspersed.
617 */
618
619 QNode s = null; // constructed/reused as needed
620 boolean isData = (e != null);
621
622 for (;;) {
623 QNode t = tail;
624 QNode h = head;
625 if (t == null || h == null) // saw uninitialized value
626 continue; // spin
627
628 if (h == t || t.isData == isData) { // empty or same-mode
629 QNode tn = t.next;
630 if (t != tail) // inconsistent read
631 continue;
632 if (tn != null) { // lagging tail
633 advanceTail(t, tn);
634 continue;
635 }
636 if (timed && nanos <= 0) // can't wait
637 return null;
638 if (s == null)
639 s = new QNode(e, isData);
640 if (!t.casNext(null, s)) // failed to link in
641 continue;
642
643 advanceTail(t, s); // swing tail and wait
644 Object x = awaitFulfill(s, e, timed, nanos);
645 if (x == s) { // wait was cancelled
646 clean(t, s);
647 return null;
648 }
649
650 if (!s.isOffList()) { // not already unlinked
651 advanceHead(t, s); // unlink if head
652 if (x != null) // and forget fields
653 s.item = s;
654 s.waiter = null;
655 }
656 return (x != null)? x : e;
657
658 } else { // complementary-mode
659 QNode m = h.next; // node to fulfill
660 if (t != tail || m == null || h != head)
661 continue; // inconsistent read
662
663 Object x = m.item;
664 if (isData == (x != null) || // m already fulfilled
665 x == m || // m cancelled
666 !m.casItem(x, e)) { // lost CAS
667 advanceHead(h, m); // dequeue and retry
668 continue;
669 }
670
671 advanceHead(h, m); // successfully fulfilled
672 LockSupport.unpark(m.waiter);
673 return (x != null)? x : e;
674 }
675 }
676 }
677
678 /**
679 * Spins/blocks until node s is fulfilled.
680 * @param s the waiting node
681 * @param e the comparison value for checking match
682 * @param timed true if timed wait
683 * @param nanos timeout value
684 * @return matched item, or s if cancelled
685 */
686 Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
687 /* Same idea as TransferStack.awaitFulfill */
688 long lastTime = (timed)? System.nanoTime() : 0;
689 Thread w = Thread.currentThread();
690 int spins = ((head.next == s) ?
691 (timed? maxTimedSpins : maxUntimedSpins) : 0);
692 for (;;) {
693 if (w.isInterrupted())
694 s.tryCancel(e);
695 Object x = s.item;
696 if (x != e)
697 return x;
698 if (timed) {
699 long now = System.nanoTime();
700 nanos -= now - lastTime;
701 lastTime = now;
702 if (nanos <= 0) {
703 s.tryCancel(e);
704 continue;
705 }
706 }
707 if (spins > 0)
708 --spins;
709 else if (s.waiter == null)
710 s.waiter = w;
711 else if (!timed)
712 LockSupport.park(this);
713 else if (nanos > spinForTimeoutThreshold)
714 LockSupport.parkNanos(this, nanos);
715 }
716 }
717
718 /**
719 * Gets rid of cancelled node s with original predecessor pred.
720 */
721 void clean(QNode pred, QNode s) {
722 s.waiter = null; // forget thread
723 /*
724 * At any given time, exactly one node on list cannot be
725 * deleted -- the last inserted node. To accommodate this,
726 * if we cannot delete s, we save its predecessor as
727 * "cleanMe", deleting the previously saved version
728 * first. At least one of node s or the node previously
729 * saved can always be deleted, so this always terminates.
730 */
731 while (pred.next == s) { // Return early if already unlinked
732 QNode h = head;
733 QNode hn = h.next; // Absorb cancelled first node as head
734 if (hn != null && hn.isCancelled()) {
735 advanceHead(h, hn);
736 continue;
737 }
738 QNode t = tail; // Ensure consistent read for tail
739 if (t == h)
740 return;
741 QNode tn = t.next;
742 if (t != tail)
743 continue;
744 if (tn != null) {
745 advanceTail(t, tn);
746 continue;
747 }
748 if (s != t) { // If not tail, try to unsplice
749 QNode sn = s.next;
750 if (sn == s || pred.casNext(s, sn))
751 return;
752 }
753 QNode dp = cleanMe;
754 if (dp != null) { // Try unlinking previous cancelled node
755 QNode d = dp.next;
756 QNode dn;
757 if (d == null || // d is gone or
758 d == dp || // d is off list or
759 !d.isCancelled() || // d not cancelled or
760 (d != t && // d not tail and
761 (dn = d.next) != null && // has successor
762 dn != d && // that is on list
763 dp.casNext(d, dn))) // d unspliced
764 casCleanMe(dp, null);
765 if (dp == pred)
766 return; // s is already saved node
767 } else if (casCleanMe(null, pred))
768 return; // Postpone cleaning s
769 }
770 }
771 }
772
773 /**
774 * The transferer. Set only in constructor, but cannot be declared
775 * as final without further complicating serialization. Since
776 * this is accessed only at most once per public method, there
777 * isn't a noticeable performance penalty for using volatile
778 * instead of final here.
779 */
780 private transient volatile Transferer transferer;
781
782 /**
783 * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
784 */
785 public SynchronousQueue() {
786 this(false);
787 }
788
789 /**
790 * Creates a <tt>SynchronousQueue</tt> with specified fairness policy.
791 * @param fair if true, waiting threads contend in FIFO order for access;
792 * otherwise the order is unspecified.
793 */
794 public SynchronousQueue(boolean fair) {
795 transferer = (fair)? new TransferQueue() : new TransferStack();
796 }
797
798 /**
799 * Adds the specified element to this queue, waiting if necessary for
800 * another thread to receive it.
801 *
802 * @throws InterruptedException {@inheritDoc}
803 * @throws NullPointerException {@inheritDoc}
804 */
805 public void put(E o) throws InterruptedException {
806 if (o == null) throw new NullPointerException();
807 if (transferer.transfer(o, false, 0) == null)
808 throw new InterruptedException();
809 }
810
811 /**
812 * Inserts the specified element into this queue, waiting if necessary
813 * up to the specified wait time for another thread to receive it.
814 *
815 * @return <tt>true</tt> if successful, or <tt>false</tt> if the
816 * specified waiting time elapses before a consumer appears.
817 * @throws InterruptedException {@inheritDoc}
818 * @throws NullPointerException {@inheritDoc}
819 */
820 public boolean offer(E o, long timeout, TimeUnit unit)
821 throws InterruptedException {
822 if (o == null) throw new NullPointerException();
823 if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
824 return true;
825 if (!Thread.interrupted())
826 return false;
827 throw new InterruptedException();
828 }
829
830 /**
831 * Inserts the specified element into this queue, if another thread is
832 * waiting to receive it.
833 *
834 * @param e the element to add
835 * @return <tt>true</tt> if the element was added to this queue, else
836 * <tt>false</tt>
837 * @throws NullPointerException if the specified element is null
838 */
839 public boolean offer(E e) {
840 if (e == null) throw new NullPointerException();
841 return transferer.transfer(e, true, 0) != null;
842 }
843
844 /**
845 * Retrieves and removes the head of this queue, waiting if necessary
846 * for another thread to insert it.
847 *
848 * @return the head of this queue
849 * @throws InterruptedException {@inheritDoc}
850 */
851 public E take() throws InterruptedException {
852 Object e = transferer.transfer(null, false, 0);
853 if (e != null)
854 return (E)e;
855 throw new InterruptedException();
856 }
857
858 /**
859 * Retrieves and removes the head of this queue, waiting
860 * if necessary up to the specified wait time, for another thread
861 * to insert it.
862 *
863 * @return the head of this queue, or <tt>null</tt> if the
864 * specified waiting time elapses before an element is present.
865 * @throws InterruptedException {@inheritDoc}
866 */
867 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
868 Object e = transferer.transfer(null, true, unit.toNanos(timeout));
869 if (e != null || !Thread.interrupted())
870 return (E)e;
871 throw new InterruptedException();
872 }
873
874 /**
875 * Retrieves and removes the head of this queue, if another thread
876 * is currently making an element available.
877 *
878 * @return the head of this queue, or <tt>null</tt> if no
879 * element is available.
880 */
881 public E poll() {
882 return (E)transferer.transfer(null, true, 0);
883 }
884
885 /**
886 * Always returns <tt>true</tt>.
887 * A <tt>SynchronousQueue</tt> has no internal capacity.
888 * @return <tt>true</tt>
889 */
890 public boolean isEmpty() {
891 return true;
892 }
893
894 /**
895 * Always returns zero.
896 * A <tt>SynchronousQueue</tt> has no internal capacity.
897 * @return zero.
898 */
899 public int size() {
900 return 0;
901 }
902
903 /**
904 * Always returns zero.
905 * A <tt>SynchronousQueue</tt> has no internal capacity.
906 * @return zero.
907 */
908 public int remainingCapacity() {
909 return 0;
910 }
911
912 /**
913 * Does nothing.
914 * A <tt>SynchronousQueue</tt> has no internal capacity.
915 */
916 public void clear() {
917 }
918
919 /**
920 * Always returns <tt>false</tt>.
921 * A <tt>SynchronousQueue</tt> has no internal capacity.
922 * @param o the element
923 * @return <tt>false</tt>
924 */
925 public boolean contains(Object o) {
926 return false;
927 }
928
929 /**
930 * Always returns <tt>false</tt>.
931 * A <tt>SynchronousQueue</tt> has no internal capacity.
932 *
933 * @param o the element to remove
934 * @return <tt>false</tt>
935 */
936 public boolean remove(Object o) {
937 return false;
938 }
939
940 /**
941 * Returns <tt>false</tt> unless the given collection is empty.
942 * A <tt>SynchronousQueue</tt> has no internal capacity.
943 * @param c the collection
944 * @return <tt>false</tt> unless given collection is empty
945 */
946 public boolean containsAll(Collection<?> c) {
947 return c.isEmpty();
948 }
949
950 /**
951 * Always returns <tt>false</tt>.
952 * A <tt>SynchronousQueue</tt> has no internal capacity.
953 * @param c the collection
954 * @return <tt>false</tt>
955 */
956 public boolean removeAll(Collection<?> c) {
957 return false;
958 }
959
960 /**
961 * Always returns <tt>false</tt>.
962 * A <tt>SynchronousQueue</tt> has no internal capacity.
963 * @param c the collection
964 * @return <tt>false</tt>
965 */
966 public boolean retainAll(Collection<?> c) {
967 return false;
968 }
969
970 /**
971 * Always returns <tt>null</tt>.
972 * A <tt>SynchronousQueue</tt> does not return elements
973 * unless actively waited on.
974 * @return <tt>null</tt>
975 */
976 public E peek() {
977 return null;
978 }
979
980 static class EmptyIterator<E> implements Iterator<E> {
981 public boolean hasNext() {
982 return false;
983 }
984 public E next() {
985 throw new NoSuchElementException();
986 }
987 public void remove() {
988 throw new IllegalStateException();
989 }
990 }
991
992 /**
993 * Returns an empty iterator in which <tt>hasNext</tt> always returns
994 * <tt>false</tt>.
995 *
996 * @return an empty iterator
997 */
998 public Iterator<E> iterator() {
999 return new EmptyIterator<E>();
1000 }
1001
1002 /**
1003 * Returns a zero-length array.
1004 * @return a zero-length array
1005 */
1006 public Object[] toArray() {
1007 return new Object[0];
1008 }
1009
1010 /**
1011 * Sets the zeroeth element of the specified array to <tt>null</tt>
1012 * (if the array has non-zero length) and returns it.
1013 *
1014 * @param a the array
1015 * @return the specified array
1016 * @throws NullPointerException if the specified array is null
1017 */
1018 public <T> T[] toArray(T[] a) {
1019 if (a.length > 0)
1020 a[0] = null;
1021 return a;
1022 }
1023
1024 /**
1025 * @throws UnsupportedOperationException {@inheritDoc}
1026 * @throws ClassCastException {@inheritDoc}
1027 * @throws NullPointerException {@inheritDoc}
1028 * @throws IllegalArgumentException {@inheritDoc}
1029 */
1030 public int drainTo(Collection<? super E> c) {
1031 if (c == null)
1032 throw new NullPointerException();
1033 if (c == this)
1034 throw new IllegalArgumentException();
1035 int n = 0;
1036 E e;
1037 while ( (e = poll()) != null) {
1038 c.add(e);
1039 ++n;
1040 }
1041 return n;
1042 }
1043
1044 /**
1045 * @throws UnsupportedOperationException {@inheritDoc}
1046 * @throws ClassCastException {@inheritDoc}
1047 * @throws NullPointerException {@inheritDoc}
1048 * @throws IllegalArgumentException {@inheritDoc}
1049 */
1050 public int drainTo(Collection<? super E> c, int maxElements) {
1051 if (c == null)
1052 throw new NullPointerException();
1053 if (c == this)
1054 throw new IllegalArgumentException();
1055 int n = 0;
1056 E e;
1057 while (n < maxElements && (e = poll()) != null) {
1058 c.add(e);
1059 ++n;
1060 }
1061 return n;
1062 }
1063
1064 /*
1065 * To cope with serialization strategy in the 1.5 version of
1066 * SynchronousQueue, we declare some unused classes and fields
1067 * that exist solely to enable serializability across versions.
1068 * These fields are never used, so are initialized only if this
1069 * object is ever serialized or deserialized.
1070 */
1071
1072 static class WaitQueue implements java.io.Serializable { }
1073 static class LifoWaitQueue extends WaitQueue {
1074 private static final long serialVersionUID = -3633113410248163686L;
1075 }
1076 static class FifoWaitQueue extends WaitQueue {
1077 private static final long serialVersionUID = -3623113410248163686L;
1078 }
1079 private ReentrantLock qlock;
1080 private WaitQueue waitingProducers;
1081 private WaitQueue waitingConsumers;
1082
1083 /**
1084 * Save the state to a stream (that is, serialize it).
1085 *
1086 * @param s the stream
1087 */
1088 private void writeObject(java.io.ObjectOutputStream s)
1089 throws java.io.IOException {
1090 boolean fair = transferer instanceof TransferQueue;
1091 if (fair) {
1092 qlock = new ReentrantLock(true);
1093 waitingProducers = new FifoWaitQueue();
1094 waitingConsumers = new FifoWaitQueue();
1095 }
1096 else {
1097 qlock = new ReentrantLock();
1098 waitingProducers = new LifoWaitQueue();
1099 waitingConsumers = new LifoWaitQueue();
1100 }
1101 s.defaultWriteObject();
1102 }
1103
1104 private void readObject(final java.io.ObjectInputStream s)
1105 throws java.io.IOException, ClassNotFoundException {
1106 s.defaultReadObject();
1107 if (waitingProducers instanceof FifoWaitQueue)
1108 transferer = new TransferQueue();
1109 else
1110 transferer = new TransferStack();
1111 }
1112
1113 }