ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.66
Committed: Sun May 28 23:36:29 2006 UTC (18 years ago) by jsr166
Branch: MAIN
Changes since 1.65: +1 -1 lines
Log Message:
Location of Collections Guide has changed

File Contents

# Content
1 /*
2 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3 * assistance from members of JCP JSR-166 Expert Group and released to
4 * the public domain, as explained at
5 * http://creativecommons.org/licenses/publicdomain
6 */
7
8 package java.util.concurrent;
9 import java.util.concurrent.locks.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.*;
12
13 /**
14 * A {@linkplain BlockingQueue blocking queue} in which each insert
15 * operation must wait for a corresponding remove operation by another
16 * thread, and vice versa. A synchronous queue does not have any
17 * internal capacity, not even a capacity of one. You cannot
18 * <tt>peek</tt> at a synchronous queue because an element is only
19 * present when you try to remove it; you cannot insert an element
20 * (using any method) unless another thread is trying to remove it;
21 * you cannot iterate as there is nothing to iterate. The
22 * <em>head</em> of the queue is the element that the first queued
23 * inserting thread is trying to add to the queue; if there is no such
24 * queued thread then no element is available for removal and
25 * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
26 * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
27 * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
28 * does not permit <tt>null</tt> elements.
29 *
30 * <p>Synchronous queues are similar to rendezvous channels used in
31 * CSP and Ada. They are well suited for handoff designs, in which an
32 * object running in one thread must sync up with an object running
33 * in another thread in order to hand it some information, event, or
34 * task.
35 *
36 * <p> This class supports an optional fairness policy for ordering
37 * waiting producer and consumer threads. By default, this ordering
38 * is not guaranteed. However, a queue constructed with fairness set
39 * to <tt>true</tt> grants threads access in FIFO order.
40 *
41 * <p>This class and its iterator implement all of the
42 * <em>optional</em> methods of the {@link Collection} and {@link
43 * Iterator} interfaces.
44 *
45 * <p>This class is a member of the
46 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
47 * Java Collections Framework</a>.
48 *
49 * @since 1.5
50 * @author Doug Lea and Bill Scherer and Michael Scott
51 * @param <E> the type of elements held in this collection
52 */
53 public class SynchronousQueue<E> extends AbstractQueue<E>
54 implements BlockingQueue<E>, java.io.Serializable {
55 private static final long serialVersionUID = -3223113410248163686L;
56
57 /*
58 * This class implements extensions of the dual stack and dual
59 * queue algorithms described in "Nonblocking Concurrent Objects
60 * with Condition Synchronization", by W. N. Scherer III and
61 * M. L. Scott. 18th Annual Conf. on Distributed Computing,
62 * Oct. 2004 (see also
63 * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64 * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65 * queue for fair mode. The performance of the two is generally
66 * similar. Fifo usually supports higher throughput under
67 * contention but Lifo maintains higher thread locality in common
68 * applications.
69 *
70 * A dual queue (and similarly stack) is one that at any given
71 * time either holds "data" -- items provided by put operations,
72 * or "requests" -- slots representing take operations, or is
73 * empty. A call to "fulfill" (i.e., a call requesting an item
74 * from a queue holding data or vice versa) dequeues a
75 * complementary node. The most interesting feature of these
76 * queues is that any operation can figure out which mode the
77 * queue is in, and act accordingly without needing locks.
78 *
79 * Both the queue and stack extend abstract class Transferer
80 * defining the single method transfer that does a put or a
81 * take. These are unified into a single method because in dual
82 * data structures, the put and take operations are symmetrical,
83 * so nearly all code can be combined. The resulting transfer
84 * methods are on the long side, but are easier to follow than
85 * they would be if broken up into nearly-duplicated parts.
86 *
87 * The queue and stack data structures share many conceptual
88 * similarities but very few concrete details. For simplicity,
89 * they are kept distinct so that they can later evolve
90 * separately.
91 *
92 * The algorithms here differ from the versions in the above paper
93 * in extending them for use in synchronous queues, as well as
94 * dealing with cancellation. The main differences include:
95 *
96 * 1. The original algorithms used bit-marked pointers, but
97 * the ones here use mode bits in nodes, leading to a number
98 * of further adaptations.
99 * 2. SynchronousQueues must block threads waiting to become
100 * fulfilled.
101 * 3. Support for cancellation via timeout and interrupts,
102 * including cleaning out cancelled nodes/threads
103 * from lists to avoid garbage retention and memory depletion.
104 *
105 * Blocking is mainly accomplished using LockSupport park/unpark,
106 * except that nodes that appear to be the next ones to become
107 * fulfilled first spin a bit (on multiprocessors only). On very
108 * busy synchronous queues, spinning can dramatically improve
109 * throughput. And on less busy ones, the amount of spinning is
110 * small enough not to be noticeable.
111 *
112 * Cleaning is done in different ways in queues vs stacks. For
113 * queues, we can almost always remove a node immediately in O(1)
114 * time (modulo retries for consistency checks) when it is
115 * cancelled. But if it may be pinned as the current tail, it must
116 * wait until some subsequent cancellation. For stacks, we need a
117 * potentially O(n) traversal to be sure that we can remove the
118 * node, but this can run concurrently with other threads
119 * accessing the stack.
120 *
121 * While garbage collection takes care of most node reclamation
122 * issues that otherwise complicate nonblocking algorithms, care
123 * is taken to "forget" references to data, other nodes, and
124 * threads that might be held on to long-term by blocked
125 * threads. In cases where setting to null would otherwise
126 * conflict with main algorithms, this is done by changing a
127 * node's link to now point to the node itself. This doesn't arise
128 * much for Stack nodes (because blocked threads do not hang on to
129 * old head pointers), but references in Queue nodes must be
130 * aggressively forgotten to avoid reachability of everything any
131 * node has ever referred to since arrival.
132 */
133
134 /**
135 * Shared internal API for dual stacks and queues.
136 */
137 static abstract class Transferer {
138 /**
139 * Performs a put or take.
140 *
141 * @param e if non-null, the item to be handed to a consumer;
142 * if null, requests that transfer return an item
143 * offered by producer.
144 * @param timed if this operation should timeout
145 * @param nanos the timeout, in nanoseconds
146 * @return if non-null, the item provided or received; if null,
147 * the operation failed due to timeout or interrupt --
148 * the caller can distinguish which of these occurred
149 * by checking Thread.interrupted.
150 */
151 abstract Object transfer(Object e, boolean timed, long nanos);
152 }
153
154 /** The number of CPUs, for spin control */
155 static final int NCPUS = Runtime.getRuntime().availableProcessors();
156
157 /**
158 * The number of times to spin before blocking in timed waits.
159 * The value is empirically derived -- it works well across a
160 * variety of processors and OSes. Empirically, the best value
161 * seems not to vary with number of CPUs (beyond 2) so is just
162 * a constant.
163 */
164 static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
165
166 /**
167 * The number of times to spin before blocking in untimed waits.
168 * This is greater than timed value because untimed waits spin
169 * faster since they don't need to check times on each spin.
170 */
171 static final int maxUntimedSpins = maxTimedSpins * 16;
172
173 /**
174 * The number of nanoseconds for which it is faster to spin
175 * rather than to use timed park. A rough estimate suffices.
176 */
177 static final long spinForTimeoutThreshold = 1000L;
178
179 /** Dual stack */
180 static final class TransferStack extends Transferer {
181 /*
182 * This extends Scherer-Scott dual stack algorithm, differing,
183 * among other ways, by using "covering" nodes rather than
184 * bit-marked pointers: Fulfilling operations push on marker
185 * nodes (with FULFILLING bit set in mode) to reserve a spot
186 * to match a waiting node.
187 */
188
189 /* Modes for SNodes, ORed together in node fields */
190 /** Node represents an unfulfilled consumer */
191 static final int REQUEST = 0;
192 /** Node represents an unfulfilled producer */
193 static final int DATA = 1;
194 /** Node is fulfilling another unfulfilled DATA or REQUEST */
195 static final int FULFILLING = 2;
196
197 /** Return true if m has fulfilling bit set */
198 static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199
200 /** Node class for TransferStacks. */
201 static final class SNode {
202 volatile SNode next; // next node in stack
203 volatile SNode match; // the node matched to this
204 volatile Thread waiter; // to control park/unpark
205 Object item; // data; or null for REQUESTs
206 int mode;
207 // Note: item and mode fields don't need to be volatile
208 // since they are always written before, and read after,
209 // other volatile/atomic operations.
210
211 SNode(Object item) {
212 this.item = item;
213 }
214
215 static final AtomicReferenceFieldUpdater<SNode, SNode>
216 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
217 (SNode.class, SNode.class, "next");
218
219 boolean casNext(SNode cmp, SNode val) {
220 return (cmp == next &&
221 nextUpdater.compareAndSet(this, cmp, val));
222 }
223
224 static final AtomicReferenceFieldUpdater<SNode, SNode>
225 matchUpdater = AtomicReferenceFieldUpdater.newUpdater
226 (SNode.class, SNode.class, "match");
227
228 /**
229 * Tries to match node s to this node, if so, waking up thread.
230 * Fulfillers call tryMatch to identify their waiters.
231 * Waiters block until they have been matched.
232 *
233 * @param s the node to match
234 * @return true if successfully matched to s
235 */
236 boolean tryMatch(SNode s) {
237 if (match == null &&
238 matchUpdater.compareAndSet(this, null, s)) {
239 Thread w = waiter;
240 if (w != null) { // waiters need at most one unpark
241 waiter = null;
242 LockSupport.unpark(w);
243 }
244 return true;
245 }
246 return match == s;
247 }
248
249 /**
250 * Tries to cancel a wait by matching node to itself.
251 */
252 void tryCancel() {
253 matchUpdater.compareAndSet(this, null, this);
254 }
255
256 boolean isCancelled() {
257 return match == this;
258 }
259 }
260
261 /** The head (top) of the stack */
262 volatile SNode head;
263
264 static final AtomicReferenceFieldUpdater<TransferStack, SNode>
265 headUpdater = AtomicReferenceFieldUpdater.newUpdater
266 (TransferStack.class, SNode.class, "head");
267
268 boolean casHead(SNode h, SNode nh) {
269 return h == head && headUpdater.compareAndSet(this, h, nh);
270 }
271
272 /**
273 * Creates or resets fields of a node. Called only from transfer
274 * where the node to push on stack is lazily created and
275 * reused when possible to help reduce intervals between reads
276 * and CASes of head and to avoid surges of garbage when CASes
277 * to push nodes fail due to contention.
278 */
279 static SNode snode(SNode s, Object e, SNode next, int mode) {
280 if (s == null) s = new SNode(e);
281 s.mode = mode;
282 s.next = next;
283 return s;
284 }
285
286 /**
287 * Puts or takes an item.
288 */
289 Object transfer(Object e, boolean timed, long nanos) {
290 /*
291 * Basic algorithm is to loop trying one of three actions:
292 *
293 * 1. If apparently empty or already containing nodes of same
294 * mode, try to push node on stack and wait for a match,
295 * returning it, or null if cancelled.
296 *
297 * 2. If apparently containing node of complementary mode,
298 * try to push a fulfilling node on to stack, match
299 * with corresponding waiting node, pop both from
300 * stack, and return matched item. The matching or
301 * unlinking might not actually be necessary because of
302 * other threads performing action 3:
303 *
304 * 3. If top of stack already holds another fulfilling node,
305 * help it out by doing its match and/or pop
306 * operations, and then continue. The code for helping
307 * is essentially the same as for fulfilling, except
308 * that it doesn't return the item.
309 */
310
311 SNode s = null; // constructed/reused as needed
312 int mode = (e == null)? REQUEST : DATA;
313
314 for (;;) {
315 SNode h = head;
316 if (h == null || h.mode == mode) { // empty or same-mode
317 if (timed && nanos <= 0) { // can't wait
318 if (h != null && h.isCancelled())
319 casHead(h, h.next); // pop cancelled node
320 else
321 return null;
322 } else if (casHead(h, s = snode(s, e, h, mode))) {
323 SNode m = awaitFulfill(s, timed, nanos);
324 if (m == s) { // wait was cancelled
325 clean(s);
326 return null;
327 }
328 if ((h = head) != null && h.next == s)
329 casHead(h, s.next); // help s's fulfiller
330 return mode == REQUEST? m.item : s.item;
331 }
332 } else if (!isFulfilling(h.mode)) { // try to fulfill
333 if (h.isCancelled()) // already cancelled
334 casHead(h, h.next); // pop and retry
335 else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
336 for (;;) { // loop until matched or waiters disappear
337 SNode m = s.next; // m is s's match
338 if (m == null) { // all waiters are gone
339 casHead(s, null); // pop fulfill node
340 s = null; // use new node next time
341 break; // restart main loop
342 }
343 SNode mn = m.next;
344 if (m.tryMatch(s)) {
345 casHead(s, mn); // pop both s and m
346 return (mode == REQUEST)? m.item : s.item;
347 } else // lost match
348 s.casNext(m, mn); // help unlink
349 }
350 }
351 } else { // help a fulfiller
352 SNode m = h.next; // m is h's match
353 if (m == null) // waiter is gone
354 casHead(h, null); // pop fulfilling node
355 else {
356 SNode mn = m.next;
357 if (m.tryMatch(h)) // help match
358 casHead(h, mn); // pop both h and m
359 else // lost match
360 h.casNext(m, mn); // help unlink
361 }
362 }
363 }
364 }
365
366 /**
367 * Spins/blocks until node s is matched by a fulfill operation.
368 *
369 * @param s the waiting node
370 * @param timed true if timed wait
371 * @param nanos timeout value
372 * @return matched node, or s if cancelled
373 */
374 SNode awaitFulfill(SNode s, boolean timed, long nanos) {
375 /*
376 * When a node/thread is about to block, it sets its waiter
377 * field and then rechecks state at least one more time
378 * before actually parking, thus covering race vs
379 * fulfiller noticing that waiter is non-null so should be
380 * woken.
381 *
382 * When invoked by nodes that appear at the point of call
383 * to be at the head of the stack, calls to park are
384 * preceded by spins to avoid blocking when producers and
385 * consumers are arriving very close in time. This can
386 * happen enough to bother only on multiprocessors.
387 *
388 * The order of checks for returning out of main loop
389 * reflects fact that interrupts have precedence over
390 * normal returns, which have precedence over
391 * timeouts. (So, on timeout, one last check for match is
392 * done before giving up.) Except that calls from untimed
393 * SynchronousQueue.{poll/offer} don't check interrupts
394 * and don't wait at all, so are trapped in transfer
395 * method rather than calling awaitFulfill.
396 */
397 long lastTime = (timed)? System.nanoTime() : 0;
398 Thread w = Thread.currentThread();
399 SNode h = head;
400 int spins = (shouldSpin(s)?
401 (timed? maxTimedSpins : maxUntimedSpins) : 0);
402 for (;;) {
403 if (w.isInterrupted())
404 s.tryCancel();
405 SNode m = s.match;
406 if (m != null)
407 return m;
408 if (timed) {
409 long now = System.nanoTime();
410 nanos -= now - lastTime;
411 lastTime = now;
412 if (nanos <= 0) {
413 s.tryCancel();
414 continue;
415 }
416 }
417 if (spins > 0)
418 spins = shouldSpin(s)? (spins-1) : 0;
419 else if (s.waiter == null)
420 s.waiter = w; // establish waiter so can park next iter
421 else if (!timed)
422 LockSupport.park(this);
423 else if (nanos > spinForTimeoutThreshold)
424 LockSupport.parkNanos(this, nanos);
425 }
426 }
427
428 /**
429 * Returns true if node s is at head or there is an active
430 * fulfiller.
431 */
432 boolean shouldSpin(SNode s) {
433 SNode h = head;
434 return (h == s || h == null || isFulfilling(h.mode));
435 }
436
437 /**
438 * Unlinks s from the stack.
439 */
440 void clean(SNode s) {
441 s.item = null; // forget item
442 s.waiter = null; // forget thread
443
444 /*
445 * At worst we may need to traverse entire stack to unlink
446 * s. If there are multiple concurrent calls to clean, we
447 * might not see s if another thread has already removed
448 * it. But we can stop when we see any node known to
449 * follow s. We use s.next unless it too is cancelled, in
450 * which case we try the node one past. We don't check any
451 * further because we don't want to doubly traverse just to
452 * find sentinel.
453 */
454
455 SNode past = s.next;
456 if (past != null && past.isCancelled())
457 past = past.next;
458
459 // Absorb cancelled nodes at head
460 SNode p;
461 while ((p = head) != null && p != past && p.isCancelled())
462 casHead(p, p.next);
463
464 // Unsplice embedded nodes
465 while (p != null && p != past) {
466 SNode n = p.next;
467 if (n != null && n.isCancelled())
468 p.casNext(n, n.next);
469 else
470 p = n;
471 }
472 }
473 }
474
475 /** Dual Queue */
476 static final class TransferQueue extends Transferer {
477 /*
478 * This extends Scherer-Scott dual queue algorithm, differing,
479 * among other ways, by using modes within nodes rather than
480 * marked pointers. The algorithm is a little simpler than
481 * that for stacks because fulfillers do not need explicit
482 * nodes, and matching is done by CAS'ing QNode.item field
483 * from non-null to null (for put) or vice versa (for take).
484 */
485
486 /** Node class for TransferQueue. */
487 static final class QNode {
488 volatile QNode next; // next node in queue
489 volatile Object item; // CAS'ed to or from null
490 volatile Thread waiter; // to control park/unpark
491 final boolean isData;
492
493 QNode(Object item, boolean isData) {
494 this.item = item;
495 this.isData = isData;
496 }
497
498 static final AtomicReferenceFieldUpdater<QNode, QNode>
499 nextUpdater = AtomicReferenceFieldUpdater.newUpdater
500 (QNode.class, QNode.class, "next");
501
502 boolean casNext(QNode cmp, QNode val) {
503 return (next == cmp &&
504 nextUpdater.compareAndSet(this, cmp, val));
505 }
506
507 static final AtomicReferenceFieldUpdater<QNode, Object>
508 itemUpdater = AtomicReferenceFieldUpdater.newUpdater
509 (QNode.class, Object.class, "item");
510
511 boolean casItem(Object cmp, Object val) {
512 return (item == cmp &&
513 itemUpdater.compareAndSet(this, cmp, val));
514 }
515
516 /**
517 * Tries to cancel by CAS'ing ref to this as item.
518 */
519 void tryCancel(Object cmp) {
520 itemUpdater.compareAndSet(this, cmp, this);
521 }
522
523 boolean isCancelled() {
524 return item == this;
525 }
526
527 /**
528 * Returns true if this node is known to be off the queue
529 * because its next pointer has been forgotten due to
530 * an advanceHead operation.
531 */
532 boolean isOffList() {
533 return next == this;
534 }
535 }
536
537 /** Head of queue */
538 transient volatile QNode head;
539 /** Tail of queue */
540 transient volatile QNode tail;
541 /**
542 * Reference to a cancelled node that might not yet have been
543 * unlinked from queue because it was the last inserted node
544 * when it cancelled.
545 */
546 transient volatile QNode cleanMe;
547
548 TransferQueue() {
549 QNode h = new QNode(null, false); // initialize to dummy node.
550 head = h;
551 tail = h;
552 }
553
554 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
555 headUpdater = AtomicReferenceFieldUpdater.newUpdater
556 (TransferQueue.class, QNode.class, "head");
557
558 /**
559 * Tries to cas nh as new head; if successful, unlink
560 * old head's next node to avoid garbage retention.
561 */
562 void advanceHead(QNode h, QNode nh) {
563 if (h == head && headUpdater.compareAndSet(this, h, nh))
564 h.next = h; // forget old next
565 }
566
567 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
568 tailUpdater = AtomicReferenceFieldUpdater.newUpdater
569 (TransferQueue.class, QNode.class, "tail");
570
571 /**
572 * Tries to cas nt as new tail.
573 */
574 void advanceTail(QNode t, QNode nt) {
575 if (tail == t)
576 tailUpdater.compareAndSet(this, t, nt);
577 }
578
579 static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
580 cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
581 (TransferQueue.class, QNode.class, "cleanMe");
582
583 /**
584 * Tries to CAS cleanMe slot.
585 */
586 boolean casCleanMe(QNode cmp, QNode val) {
587 return (cleanMe == cmp &&
588 cleanMeUpdater.compareAndSet(this, cmp, val));
589 }
590
591 /**
592 * Puts or takes an item.
593 */
594 Object transfer(Object e, boolean timed, long nanos) {
595 /* Basic algorithm is to loop trying to take either of
596 * two actions:
597 *
598 * 1. If queue apparently empty or holding same-mode nodes,
599 * try to add node to queue of waiters, wait to be
600 * fulfilled (or cancelled) and return matching item.
601 *
602 * 2. If queue apparently contains waiting items, and this
603 * call is of complementary mode, try to fulfill by CAS'ing
604 * item field of waiting node and dequeuing it, and then
605 * returning matching item.
606 *
607 * In each case, along the way, check for and try to help
608 * advance head and tail on behalf of other stalled/slow
609 * threads.
610 *
611 * The loop starts off with a null check guarding against
612 * seeing uninitialized head or tail values. This never
613 * happens in current SynchronousQueue, but could if
614 * callers held non-volatile/final ref to the
615 * transferer. The check is here anyway because it places
616 * null checks at top of loop, which is usually faster
617 * than having them implicitly interspersed.
618 */
619
620 QNode s = null; // constructed/reused as needed
621 boolean isData = (e != null);
622
623 for (;;) {
624 QNode t = tail;
625 QNode h = head;
626 if (t == null || h == null) // saw uninitialized value
627 continue; // spin
628
629 if (h == t || t.isData == isData) { // empty or same-mode
630 QNode tn = t.next;
631 if (t != tail) // inconsistent read
632 continue;
633 if (tn != null) { // lagging tail
634 advanceTail(t, tn);
635 continue;
636 }
637 if (timed && nanos <= 0) // can't wait
638 return null;
639 if (s == null)
640 s = new QNode(e, isData);
641 if (!t.casNext(null, s)) // failed to link in
642 continue;
643
644 advanceTail(t, s); // swing tail and wait
645 Object x = awaitFulfill(s, e, timed, nanos);
646 if (x == s) { // wait was cancelled
647 clean(t, s);
648 return null;
649 }
650
651 if (!s.isOffList()) { // not already unlinked
652 advanceHead(t, s); // unlink if head
653 if (x != null) // and forget fields
654 s.item = s;
655 s.waiter = null;
656 }
657 return (x != null)? x : e;
658
659 } else { // complementary-mode
660 QNode m = h.next; // node to fulfill
661 if (t != tail || m == null || h != head)
662 continue; // inconsistent read
663
664 Object x = m.item;
665 if (isData == (x != null) || // m already fulfilled
666 x == m || // m cancelled
667 !m.casItem(x, e)) { // lost CAS
668 advanceHead(h, m); // dequeue and retry
669 continue;
670 }
671
672 advanceHead(h, m); // successfully fulfilled
673 LockSupport.unpark(m.waiter);
674 return (x != null)? x : e;
675 }
676 }
677 }
678
679 /**
680 * Spins/blocks until node s is fulfilled.
681 *
682 * @param s the waiting node
683 * @param e the comparison value for checking match
684 * @param timed true if timed wait
685 * @param nanos timeout value
686 * @return matched item, or s if cancelled
687 */
688 Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
689 /* Same idea as TransferStack.awaitFulfill */
690 long lastTime = (timed)? System.nanoTime() : 0;
691 Thread w = Thread.currentThread();
692 int spins = ((head.next == s) ?
693 (timed? maxTimedSpins : maxUntimedSpins) : 0);
694 for (;;) {
695 if (w.isInterrupted())
696 s.tryCancel(e);
697 Object x = s.item;
698 if (x != e)
699 return x;
700 if (timed) {
701 long now = System.nanoTime();
702 nanos -= now - lastTime;
703 lastTime = now;
704 if (nanos <= 0) {
705 s.tryCancel(e);
706 continue;
707 }
708 }
709 if (spins > 0)
710 --spins;
711 else if (s.waiter == null)
712 s.waiter = w;
713 else if (!timed)
714 LockSupport.park(this);
715 else if (nanos > spinForTimeoutThreshold)
716 LockSupport.parkNanos(this, nanos);
717 }
718 }
719
720 /**
721 * Gets rid of cancelled node s with original predecessor pred.
722 */
723 void clean(QNode pred, QNode s) {
724 s.waiter = null; // forget thread
725 /*
726 * At any given time, exactly one node on list cannot be
727 * deleted -- the last inserted node. To accommodate this,
728 * if we cannot delete s, we save its predecessor as
729 * "cleanMe", deleting the previously saved version
730 * first. At least one of node s or the node previously
731 * saved can always be deleted, so this always terminates.
732 */
733 while (pred.next == s) { // Return early if already unlinked
734 QNode h = head;
735 QNode hn = h.next; // Absorb cancelled first node as head
736 if (hn != null && hn.isCancelled()) {
737 advanceHead(h, hn);
738 continue;
739 }
740 QNode t = tail; // Ensure consistent read for tail
741 if (t == h)
742 return;
743 QNode tn = t.next;
744 if (t != tail)
745 continue;
746 if (tn != null) {
747 advanceTail(t, tn);
748 continue;
749 }
750 if (s != t) { // If not tail, try to unsplice
751 QNode sn = s.next;
752 if (sn == s || pred.casNext(s, sn))
753 return;
754 }
755 QNode dp = cleanMe;
756 if (dp != null) { // Try unlinking previous cancelled node
757 QNode d = dp.next;
758 QNode dn;
759 if (d == null || // d is gone or
760 d == dp || // d is off list or
761 !d.isCancelled() || // d not cancelled or
762 (d != t && // d not tail and
763 (dn = d.next) != null && // has successor
764 dn != d && // that is on list
765 dp.casNext(d, dn))) // d unspliced
766 casCleanMe(dp, null);
767 if (dp == pred)
768 return; // s is already saved node
769 } else if (casCleanMe(null, pred))
770 return; // Postpone cleaning s
771 }
772 }
773 }
774
775 /**
776 * The transferer. Set only in constructor, but cannot be declared
777 * as final without further complicating serialization. Since
778 * this is accessed only at most once per public method, there
779 * isn't a noticeable performance penalty for using volatile
780 * instead of final here.
781 */
782 private transient volatile Transferer transferer;
783
784 /**
785 * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
786 */
787 public SynchronousQueue() {
788 this(false);
789 }
790
791 /**
792 * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
793 *
794 * @param fair if true, waiting threads contend in FIFO order for
795 * access; otherwise the order is unspecified.
796 */
797 public SynchronousQueue(boolean fair) {
798 transferer = (fair)? new TransferQueue() : new TransferStack();
799 }
800
801 /**
802 * Adds the specified element to this queue, waiting if necessary for
803 * another thread to receive it.
804 *
805 * @throws InterruptedException {@inheritDoc}
806 * @throws NullPointerException {@inheritDoc}
807 */
808 public void put(E o) throws InterruptedException {
809 if (o == null) throw new NullPointerException();
810 if (transferer.transfer(o, false, 0) == null) {
811 Thread.interrupted();
812 throw new InterruptedException();
813 }
814 }
815
816 /**
817 * Inserts the specified element into this queue, waiting if necessary
818 * up to the specified wait time for another thread to receive it.
819 *
820 * @return <tt>true</tt> if successful, or <tt>false</tt> if the
821 * specified waiting time elapses before a consumer appears.
822 * @throws InterruptedException {@inheritDoc}
823 * @throws NullPointerException {@inheritDoc}
824 */
825 public boolean offer(E o, long timeout, TimeUnit unit)
826 throws InterruptedException {
827 if (o == null) throw new NullPointerException();
828 if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
829 return true;
830 if (!Thread.interrupted())
831 return false;
832 throw new InterruptedException();
833 }
834
835 /**
836 * Inserts the specified element into this queue, if another thread is
837 * waiting to receive it.
838 *
839 * @param e the element to add
840 * @return <tt>true</tt> if the element was added to this queue, else
841 * <tt>false</tt>
842 * @throws NullPointerException if the specified element is null
843 */
844 public boolean offer(E e) {
845 if (e == null) throw new NullPointerException();
846 return transferer.transfer(e, true, 0) != null;
847 }
848
849 /**
850 * Retrieves and removes the head of this queue, waiting if necessary
851 * for another thread to insert it.
852 *
853 * @return the head of this queue
854 * @throws InterruptedException {@inheritDoc}
855 */
856 public E take() throws InterruptedException {
857 Object e = transferer.transfer(null, false, 0);
858 if (e != null)
859 return (E)e;
860 Thread.interrupted();
861 throw new InterruptedException();
862 }
863
864 /**
865 * Retrieves and removes the head of this queue, waiting
866 * if necessary up to the specified wait time, for another thread
867 * to insert it.
868 *
869 * @return the head of this queue, or <tt>null</tt> if the
870 * specified waiting time elapses before an element is present.
871 * @throws InterruptedException {@inheritDoc}
872 */
873 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
874 Object e = transferer.transfer(null, true, unit.toNanos(timeout));
875 if (e != null || !Thread.interrupted())
876 return (E)e;
877 throw new InterruptedException();
878 }
879
880 /**
881 * Retrieves and removes the head of this queue, if another thread
882 * is currently making an element available.
883 *
884 * @return the head of this queue, or <tt>null</tt> if no
885 * element is available.
886 */
887 public E poll() {
888 return (E)transferer.transfer(null, true, 0);
889 }
890
891 /**
892 * Always returns <tt>true</tt>.
893 * A <tt>SynchronousQueue</tt> has no internal capacity.
894 *
895 * @return <tt>true</tt>
896 */
897 public boolean isEmpty() {
898 return true;
899 }
900
901 /**
902 * Always returns zero.
903 * A <tt>SynchronousQueue</tt> has no internal capacity.
904 *
905 * @return zero.
906 */
907 public int size() {
908 return 0;
909 }
910
911 /**
912 * Always returns zero.
913 * A <tt>SynchronousQueue</tt> has no internal capacity.
914 *
915 * @return zero.
916 */
917 public int remainingCapacity() {
918 return 0;
919 }
920
921 /**
922 * Does nothing.
923 * A <tt>SynchronousQueue</tt> has no internal capacity.
924 */
925 public void clear() {
926 }
927
928 /**
929 * Always returns <tt>false</tt>.
930 * A <tt>SynchronousQueue</tt> has no internal capacity.
931 *
932 * @param o the element
933 * @return <tt>false</tt>
934 */
935 public boolean contains(Object o) {
936 return false;
937 }
938
939 /**
940 * Always returns <tt>false</tt>.
941 * A <tt>SynchronousQueue</tt> has no internal capacity.
942 *
943 * @param o the element to remove
944 * @return <tt>false</tt>
945 */
946 public boolean remove(Object o) {
947 return false;
948 }
949
950 /**
951 * Returns <tt>false</tt> unless the given collection is empty.
952 * A <tt>SynchronousQueue</tt> has no internal capacity.
953 *
954 * @param c the collection
955 * @return <tt>false</tt> unless given collection is empty
956 */
957 public boolean containsAll(Collection<?> c) {
958 return c.isEmpty();
959 }
960
961 /**
962 * Always returns <tt>false</tt>.
963 * A <tt>SynchronousQueue</tt> has no internal capacity.
964 *
965 * @param c the collection
966 * @return <tt>false</tt>
967 */
968 public boolean removeAll(Collection<?> c) {
969 return false;
970 }
971
972 /**
973 * Always returns <tt>false</tt>.
974 * A <tt>SynchronousQueue</tt> has no internal capacity.
975 *
976 * @param c the collection
977 * @return <tt>false</tt>
978 */
979 public boolean retainAll(Collection<?> c) {
980 return false;
981 }
982
983 /**
984 * Always returns <tt>null</tt>.
985 * A <tt>SynchronousQueue</tt> does not return elements
986 * unless actively waited on.
987 *
988 * @return <tt>null</tt>
989 */
990 public E peek() {
991 return null;
992 }
993
994 static class EmptyIterator<E> implements Iterator<E> {
995 public boolean hasNext() {
996 return false;
997 }
998 public E next() {
999 throw new NoSuchElementException();
1000 }
1001 public void remove() {
1002 throw new IllegalStateException();
1003 }
1004 }
1005
1006 /**
1007 * Returns an empty iterator in which <tt>hasNext</tt> always returns
1008 * <tt>false</tt>.
1009 *
1010 * @return an empty iterator
1011 */
1012 public Iterator<E> iterator() {
1013 return new EmptyIterator<E>();
1014 }
1015
1016 /**
1017 * Returns a zero-length array.
1018 * @return a zero-length array
1019 */
1020 public Object[] toArray() {
1021 return new Object[0];
1022 }
1023
1024 /**
1025 * Sets the zeroeth element of the specified array to <tt>null</tt>
1026 * (if the array has non-zero length) and returns it.
1027 *
1028 * @param a the array
1029 * @return the specified array
1030 * @throws NullPointerException if the specified array is null
1031 */
1032 public <T> T[] toArray(T[] a) {
1033 if (a.length > 0)
1034 a[0] = null;
1035 return a;
1036 }
1037
1038 /**
1039 * @throws UnsupportedOperationException {@inheritDoc}
1040 * @throws ClassCastException {@inheritDoc}
1041 * @throws NullPointerException {@inheritDoc}
1042 * @throws IllegalArgumentException {@inheritDoc}
1043 */
1044 public int drainTo(Collection<? super E> c) {
1045 if (c == null)
1046 throw new NullPointerException();
1047 if (c == this)
1048 throw new IllegalArgumentException();
1049 int n = 0;
1050 E e;
1051 while ( (e = poll()) != null) {
1052 c.add(e);
1053 ++n;
1054 }
1055 return n;
1056 }
1057
1058 /**
1059 * @throws UnsupportedOperationException {@inheritDoc}
1060 * @throws ClassCastException {@inheritDoc}
1061 * @throws NullPointerException {@inheritDoc}
1062 * @throws IllegalArgumentException {@inheritDoc}
1063 */
1064 public int drainTo(Collection<? super E> c, int maxElements) {
1065 if (c == null)
1066 throw new NullPointerException();
1067 if (c == this)
1068 throw new IllegalArgumentException();
1069 int n = 0;
1070 E e;
1071 while (n < maxElements && (e = poll()) != null) {
1072 c.add(e);
1073 ++n;
1074 }
1075 return n;
1076 }
1077
1078 /*
1079 * To cope with serialization strategy in the 1.5 version of
1080 * SynchronousQueue, we declare some unused classes and fields
1081 * that exist solely to enable serializability across versions.
1082 * These fields are never used, so are initialized only if this
1083 * object is ever serialized or deserialized.
1084 */
1085
1086 static class WaitQueue implements java.io.Serializable { }
1087 static class LifoWaitQueue extends WaitQueue {
1088 private static final long serialVersionUID = -3633113410248163686L;
1089 }
1090 static class FifoWaitQueue extends WaitQueue {
1091 private static final long serialVersionUID = -3623113410248163686L;
1092 }
1093 private ReentrantLock qlock;
1094 private WaitQueue waitingProducers;
1095 private WaitQueue waitingConsumers;
1096
1097 /**
1098 * Save the state to a stream (that is, serialize it).
1099 *
1100 * @param s the stream
1101 */
1102 private void writeObject(java.io.ObjectOutputStream s)
1103 throws java.io.IOException {
1104 boolean fair = transferer instanceof TransferQueue;
1105 if (fair) {
1106 qlock = new ReentrantLock(true);
1107 waitingProducers = new FifoWaitQueue();
1108 waitingConsumers = new FifoWaitQueue();
1109 }
1110 else {
1111 qlock = new ReentrantLock();
1112 waitingProducers = new LifoWaitQueue();
1113 waitingConsumers = new LifoWaitQueue();
1114 }
1115 s.defaultWriteObject();
1116 }
1117
1118 private void readObject(final java.io.ObjectInputStream s)
1119 throws java.io.IOException, ClassNotFoundException {
1120 s.defaultReadObject();
1121 if (waitingProducers instanceof FifoWaitQueue)
1122 transferer = new TransferQueue();
1123 else
1124 transferer = new TransferStack();
1125 }
1126
1127 }