ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.79
Committed: Wed Jun 8 02:42:01 2011 UTC (12 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.78: +0 -1 lines
Log Message:
remove unused locals

File Contents

# Content
1 /*
2 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3 * assistance from members of JCP JSR-166 Expert Group and released to
4 * the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/
6 */
7
8 package java.util.concurrent;
9 import java.util.concurrent.locks.*;
10 import java.util.*;
11
12 /**
13 * A {@linkplain BlockingQueue blocking queue} in which each insert
14 * operation must wait for a corresponding remove operation by another
15 * thread, and vice versa. A synchronous queue does not have any
16 * internal capacity, not even a capacity of one. You cannot
17 * <tt>peek</tt> at a synchronous queue because an element is only
18 * present when you try to remove it; you cannot insert an element
19 * (using any method) unless another thread is trying to remove it;
20 * you cannot iterate as there is nothing to iterate. The
21 * <em>head</em> of the queue is the element that the first queued
22 * inserting thread is trying to add to the queue; if there is no such
23 * queued thread then no element is available for removal and
24 * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
25 * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
26 * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
27 * does not permit <tt>null</tt> elements.
28 *
29 * <p>Synchronous queues are similar to rendezvous channels used in
30 * CSP and Ada. They are well suited for handoff designs, in which an
31 * object running in one thread must sync up with an object running
32 * in another thread in order to hand it some information, event, or
33 * task.
34 *
35 * <p> This class supports an optional fairness policy for ordering
36 * waiting producer and consumer threads. By default, this ordering
37 * is not guaranteed. However, a queue constructed with fairness set
38 * to <tt>true</tt> grants threads access in FIFO order.
39 *
40 * <p>This class and its iterator implement all of the
41 * <em>optional</em> methods of the {@link Collection} and {@link
42 * Iterator} interfaces.
43 *
44 * <p>This class is a member of the
45 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
46 * Java Collections Framework</a>.
47 *
48 * @since 1.5
49 * @author Doug Lea and Bill Scherer and Michael Scott
50 * @param <E> the type of elements held in this collection
51 */
52 public class SynchronousQueue<E> extends AbstractQueue<E>
53 implements BlockingQueue<E>, java.io.Serializable {
54 private static final long serialVersionUID = -3223113410248163686L;
55
56 /*
57 * This class implements extensions of the dual stack and dual
58 * queue algorithms described in "Nonblocking Concurrent Objects
59 * with Condition Synchronization", by W. N. Scherer III and
60 * M. L. Scott. 18th Annual Conf. on Distributed Computing,
61 * Oct. 2004 (see also
62 * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
63 * The (Lifo) stack is used for non-fair mode, and the (Fifo)
64 * queue for fair mode. The performance of the two is generally
65 * similar. Fifo usually supports higher throughput under
66 * contention but Lifo maintains higher thread locality in common
67 * applications.
68 *
69 * A dual queue (and similarly stack) is one that at any given
70 * time either holds "data" -- items provided by put operations,
71 * or "requests" -- slots representing take operations, or is
72 * empty. A call to "fulfill" (i.e., a call requesting an item
73 * from a queue holding data or vice versa) dequeues a
74 * complementary node. The most interesting feature of these
75 * queues is that any operation can figure out which mode the
76 * queue is in, and act accordingly without needing locks.
77 *
78 * Both the queue and stack extend abstract class Transferer
79 * defining the single method transfer that does a put or a
80 * take. These are unified into a single method because in dual
81 * data structures, the put and take operations are symmetrical,
82 * so nearly all code can be combined. The resulting transfer
83 * methods are on the long side, but are easier to follow than
84 * they would be if broken up into nearly-duplicated parts.
85 *
86 * The queue and stack data structures share many conceptual
87 * similarities but very few concrete details. For simplicity,
88 * they are kept distinct so that they can later evolve
89 * separately.
90 *
91 * The algorithms here differ from the versions in the above paper
92 * in extending them for use in synchronous queues, as well as
93 * dealing with cancellation. The main differences include:
94 *
95 * 1. The original algorithms used bit-marked pointers, but
96 * the ones here use mode bits in nodes, leading to a number
97 * of further adaptations.
98 * 2. SynchronousQueues must block threads waiting to become
99 * fulfilled.
100 * 3. Support for cancellation via timeout and interrupts,
101 * including cleaning out cancelled nodes/threads
102 * from lists to avoid garbage retention and memory depletion.
103 *
104 * Blocking is mainly accomplished using LockSupport park/unpark,
105 * except that nodes that appear to be the next ones to become
106 * fulfilled first spin a bit (on multiprocessors only). On very
107 * busy synchronous queues, spinning can dramatically improve
108 * throughput. And on less busy ones, the amount of spinning is
109 * small enough not to be noticeable.
110 *
111 * Cleaning is done in different ways in queues vs stacks. For
112 * queues, we can almost always remove a node immediately in O(1)
113 * time (modulo retries for consistency checks) when it is
114 * cancelled. But if it may be pinned as the current tail, it must
115 * wait until some subsequent cancellation. For stacks, we need a
116 * potentially O(n) traversal to be sure that we can remove the
117 * node, but this can run concurrently with other threads
118 * accessing the stack.
119 *
120 * While garbage collection takes care of most node reclamation
121 * issues that otherwise complicate nonblocking algorithms, care
122 * is taken to "forget" references to data, other nodes, and
123 * threads that might be held on to long-term by blocked
124 * threads. In cases where setting to null would otherwise
125 * conflict with main algorithms, this is done by changing a
126 * node's link to now point to the node itself. This doesn't arise
127 * much for Stack nodes (because blocked threads do not hang on to
128 * old head pointers), but references in Queue nodes must be
129 * aggressively forgotten to avoid reachability of everything any
130 * node has ever referred to since arrival.
131 */
132
133 /**
134 * Shared internal API for dual stacks and queues.
135 */
136 abstract static class Transferer {
137 /**
138 * Performs a put or take.
139 *
140 * @param e if non-null, the item to be handed to a consumer;
141 * if null, requests that transfer return an item
142 * offered by producer.
143 * @param timed if this operation should timeout
144 * @param nanos the timeout, in nanoseconds
145 * @return if non-null, the item provided or received; if null,
146 * the operation failed due to timeout or interrupt --
147 * the caller can distinguish which of these occurred
148 * by checking Thread.interrupted.
149 */
150 abstract Object transfer(Object e, boolean timed, long nanos);
151 }
152
153 /** The number of CPUs, for spin control */
154 static final int NCPUS = Runtime.getRuntime().availableProcessors();
155
156 /**
157 * The number of times to spin before blocking in timed waits.
158 * The value is empirically derived -- it works well across a
159 * variety of processors and OSes. Empirically, the best value
160 * seems not to vary with number of CPUs (beyond 2) so is just
161 * a constant.
162 */
163 static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
164
165 /**
166 * The number of times to spin before blocking in untimed waits.
167 * This is greater than timed value because untimed waits spin
168 * faster since they don't need to check times on each spin.
169 */
170 static final int maxUntimedSpins = maxTimedSpins * 16;
171
172 /**
173 * The number of nanoseconds for which it is faster to spin
174 * rather than to use timed park. A rough estimate suffices.
175 */
176 static final long spinForTimeoutThreshold = 1000L;
177
178 /** Dual stack */
179 static final class TransferStack extends Transferer {
180 /*
181 * This extends Scherer-Scott dual stack algorithm, differing,
182 * among other ways, by using "covering" nodes rather than
183 * bit-marked pointers: Fulfilling operations push on marker
184 * nodes (with FULFILLING bit set in mode) to reserve a spot
185 * to match a waiting node.
186 */
187
188 /* Modes for SNodes, ORed together in node fields */
189 /** Node represents an unfulfilled consumer */
190 static final int REQUEST = 0;
191 /** Node represents an unfulfilled producer */
192 static final int DATA = 1;
193 /** Node is fulfilling another unfulfilled DATA or REQUEST */
194 static final int FULFILLING = 2;
195
196 /** Return true if m has fulfilling bit set */
197 static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
198
199 /** Node class for TransferStacks. */
200 static final class SNode {
201 volatile SNode next; // next node in stack
202 volatile SNode match; // the node matched to this
203 volatile Thread waiter; // to control park/unpark
204 Object item; // data; or null for REQUESTs
205 int mode;
206 // Note: item and mode fields don't need to be volatile
207 // since they are always written before, and read after,
208 // other volatile/atomic operations.
209
210 SNode(Object item) {
211 this.item = item;
212 }
213
214 boolean casNext(SNode cmp, SNode val) {
215 return cmp == next &&
216 UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
217 }
218
219 /**
220 * Tries to match node s to this node, if so, waking up thread.
221 * Fulfillers call tryMatch to identify their waiters.
222 * Waiters block until they have been matched.
223 *
224 * @param s the node to match
225 * @return true if successfully matched to s
226 */
227 boolean tryMatch(SNode s) {
228 if (match == null &&
229 UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
230 Thread w = waiter;
231 if (w != null) { // waiters need at most one unpark
232 waiter = null;
233 LockSupport.unpark(w);
234 }
235 return true;
236 }
237 return match == s;
238 }
239
240 /**
241 * Tries to cancel a wait by matching node to itself.
242 */
243 void tryCancel() {
244 UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
245 }
246
247 boolean isCancelled() {
248 return match == this;
249 }
250
251 // Unsafe mechanics
252 private static final sun.misc.Unsafe UNSAFE;
253 private static final long matchOffset;
254 private static final long nextOffset;
255
256 static {
257 try {
258 UNSAFE = sun.misc.Unsafe.getUnsafe();
259 Class<?> k = SNode.class;
260 matchOffset = UNSAFE.objectFieldOffset
261 (k.getDeclaredField("match"));
262 nextOffset = UNSAFE.objectFieldOffset
263 (k.getDeclaredField("next"));
264 } catch (Exception e) {
265 throw new Error(e);
266 }
267 }
268 }
269
270 /** The head (top) of the stack */
271 volatile SNode head;
272
273 boolean casHead(SNode h, SNode nh) {
274 return h == head &&
275 UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
276 }
277
278 /**
279 * Creates or resets fields of a node. Called only from transfer
280 * where the node to push on stack is lazily created and
281 * reused when possible to help reduce intervals between reads
282 * and CASes of head and to avoid surges of garbage when CASes
283 * to push nodes fail due to contention.
284 */
285 static SNode snode(SNode s, Object e, SNode next, int mode) {
286 if (s == null) s = new SNode(e);
287 s.mode = mode;
288 s.next = next;
289 return s;
290 }
291
292 /**
293 * Puts or takes an item.
294 */
295 Object transfer(Object e, boolean timed, long nanos) {
296 /*
297 * Basic algorithm is to loop trying one of three actions:
298 *
299 * 1. If apparently empty or already containing nodes of same
300 * mode, try to push node on stack and wait for a match,
301 * returning it, or null if cancelled.
302 *
303 * 2. If apparently containing node of complementary mode,
304 * try to push a fulfilling node on to stack, match
305 * with corresponding waiting node, pop both from
306 * stack, and return matched item. The matching or
307 * unlinking might not actually be necessary because of
308 * other threads performing action 3:
309 *
310 * 3. If top of stack already holds another fulfilling node,
311 * help it out by doing its match and/or pop
312 * operations, and then continue. The code for helping
313 * is essentially the same as for fulfilling, except
314 * that it doesn't return the item.
315 */
316
317 SNode s = null; // constructed/reused as needed
318 int mode = (e == null) ? REQUEST : DATA;
319
320 for (;;) {
321 SNode h = head;
322 if (h == null || h.mode == mode) { // empty or same-mode
323 if (timed && nanos <= 0) { // can't wait
324 if (h != null && h.isCancelled())
325 casHead(h, h.next); // pop cancelled node
326 else
327 return null;
328 } else if (casHead(h, s = snode(s, e, h, mode))) {
329 SNode m = awaitFulfill(s, timed, nanos);
330 if (m == s) { // wait was cancelled
331 clean(s);
332 return null;
333 }
334 if ((h = head) != null && h.next == s)
335 casHead(h, s.next); // help s's fulfiller
336 return (mode == REQUEST) ? m.item : s.item;
337 }
338 } else if (!isFulfilling(h.mode)) { // try to fulfill
339 if (h.isCancelled()) // already cancelled
340 casHead(h, h.next); // pop and retry
341 else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
342 for (;;) { // loop until matched or waiters disappear
343 SNode m = s.next; // m is s's match
344 if (m == null) { // all waiters are gone
345 casHead(s, null); // pop fulfill node
346 s = null; // use new node next time
347 break; // restart main loop
348 }
349 SNode mn = m.next;
350 if (m.tryMatch(s)) {
351 casHead(s, mn); // pop both s and m
352 return (mode == REQUEST) ? m.item : s.item;
353 } else // lost match
354 s.casNext(m, mn); // help unlink
355 }
356 }
357 } else { // help a fulfiller
358 SNode m = h.next; // m is h's match
359 if (m == null) // waiter is gone
360 casHead(h, null); // pop fulfilling node
361 else {
362 SNode mn = m.next;
363 if (m.tryMatch(h)) // help match
364 casHead(h, mn); // pop both h and m
365 else // lost match
366 h.casNext(m, mn); // help unlink
367 }
368 }
369 }
370 }
371
372 /**
373 * Spins/blocks until node s is matched by a fulfill operation.
374 *
375 * @param s the waiting node
376 * @param timed true if timed wait
377 * @param nanos timeout value
378 * @return matched node, or s if cancelled
379 */
380 SNode awaitFulfill(SNode s, boolean timed, long nanos) {
381 /*
382 * When a node/thread is about to block, it sets its waiter
383 * field and then rechecks state at least one more time
384 * before actually parking, thus covering race vs
385 * fulfiller noticing that waiter is non-null so should be
386 * woken.
387 *
388 * When invoked by nodes that appear at the point of call
389 * to be at the head of the stack, calls to park are
390 * preceded by spins to avoid blocking when producers and
391 * consumers are arriving very close in time. This can
392 * happen enough to bother only on multiprocessors.
393 *
394 * The order of checks for returning out of main loop
395 * reflects fact that interrupts have precedence over
396 * normal returns, which have precedence over
397 * timeouts. (So, on timeout, one last check for match is
398 * done before giving up.) Except that calls from untimed
399 * SynchronousQueue.{poll/offer} don't check interrupts
400 * and don't wait at all, so are trapped in transfer
401 * method rather than calling awaitFulfill.
402 */
403 long lastTime = timed ? System.nanoTime() : 0;
404 Thread w = Thread.currentThread();
405 int spins = (shouldSpin(s) ?
406 (timed ? maxTimedSpins : maxUntimedSpins) : 0);
407 for (;;) {
408 if (w.isInterrupted())
409 s.tryCancel();
410 SNode m = s.match;
411 if (m != null)
412 return m;
413 if (timed) {
414 long now = System.nanoTime();
415 nanos -= now - lastTime;
416 lastTime = now;
417 if (nanos <= 0) {
418 s.tryCancel();
419 continue;
420 }
421 }
422 if (spins > 0)
423 spins = shouldSpin(s) ? (spins-1) : 0;
424 else if (s.waiter == null)
425 s.waiter = w; // establish waiter so can park next iter
426 else if (!timed)
427 LockSupport.park(this);
428 else if (nanos > spinForTimeoutThreshold)
429 LockSupport.parkNanos(this, nanos);
430 }
431 }
432
433 /**
434 * Returns true if node s is at head or there is an active
435 * fulfiller.
436 */
437 boolean shouldSpin(SNode s) {
438 SNode h = head;
439 return (h == s || h == null || isFulfilling(h.mode));
440 }
441
442 /**
443 * Unlinks s from the stack.
444 */
445 void clean(SNode s) {
446 s.item = null; // forget item
447 s.waiter = null; // forget thread
448
449 /*
450 * At worst we may need to traverse entire stack to unlink
451 * s. If there are multiple concurrent calls to clean, we
452 * might not see s if another thread has already removed
453 * it. But we can stop when we see any node known to
454 * follow s. We use s.next unless it too is cancelled, in
455 * which case we try the node one past. We don't check any
456 * further because we don't want to doubly traverse just to
457 * find sentinel.
458 */
459
460 SNode past = s.next;
461 if (past != null && past.isCancelled())
462 past = past.next;
463
464 // Absorb cancelled nodes at head
465 SNode p;
466 while ((p = head) != null && p != past && p.isCancelled())
467 casHead(p, p.next);
468
469 // Unsplice embedded nodes
470 while (p != null && p != past) {
471 SNode n = p.next;
472 if (n != null && n.isCancelled())
473 p.casNext(n, n.next);
474 else
475 p = n;
476 }
477 }
478
479 // Unsafe mechanics
480 private static final sun.misc.Unsafe UNSAFE;
481 private static final long headOffset;
482 static {
483 try {
484 UNSAFE = sun.misc.Unsafe.getUnsafe();
485 Class<?> k = TransferStack.class;
486 headOffset = UNSAFE.objectFieldOffset
487 (k.getDeclaredField("head"));
488 } catch (Exception e) {
489 throw new Error(e);
490 }
491 }
492 }
493
494 /** Dual Queue */
495 static final class TransferQueue extends Transferer {
496 /*
497 * This extends Scherer-Scott dual queue algorithm, differing,
498 * among other ways, by using modes within nodes rather than
499 * marked pointers. The algorithm is a little simpler than
500 * that for stacks because fulfillers do not need explicit
501 * nodes, and matching is done by CAS'ing QNode.item field
502 * from non-null to null (for put) or vice versa (for take).
503 */
504
505 /** Node class for TransferQueue. */
506 static final class QNode {
507 volatile QNode next; // next node in queue
508 volatile Object item; // CAS'ed to or from null
509 volatile Thread waiter; // to control park/unpark
510 final boolean isData;
511
512 QNode(Object item, boolean isData) {
513 this.item = item;
514 this.isData = isData;
515 }
516
517 boolean casNext(QNode cmp, QNode val) {
518 return next == cmp &&
519 UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
520 }
521
522 boolean casItem(Object cmp, Object val) {
523 return item == cmp &&
524 UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
525 }
526
527 /**
528 * Tries to cancel by CAS'ing ref to this as item.
529 */
530 void tryCancel(Object cmp) {
531 UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
532 }
533
534 boolean isCancelled() {
535 return item == this;
536 }
537
538 /**
539 * Returns true if this node is known to be off the queue
540 * because its next pointer has been forgotten due to
541 * an advanceHead operation.
542 */
543 boolean isOffList() {
544 return next == this;
545 }
546
547 // Unsafe mechanics
548 private static final sun.misc.Unsafe UNSAFE;
549 private static final long itemOffset;
550 private static final long nextOffset;
551
552 static {
553 try {
554 UNSAFE = sun.misc.Unsafe.getUnsafe();
555 Class<?> k = QNode.class;
556 itemOffset = UNSAFE.objectFieldOffset
557 (k.getDeclaredField("item"));
558 nextOffset = UNSAFE.objectFieldOffset
559 (k.getDeclaredField("next"));
560 } catch (Exception e) {
561 throw new Error(e);
562 }
563 }
564 }
565
566 /** Head of queue */
567 transient volatile QNode head;
568 /** Tail of queue */
569 transient volatile QNode tail;
570 /**
571 * Reference to a cancelled node that might not yet have been
572 * unlinked from queue because it was the last inserted node
573 * when it cancelled.
574 */
575 transient volatile QNode cleanMe;
576
577 TransferQueue() {
578 QNode h = new QNode(null, false); // initialize to dummy node.
579 head = h;
580 tail = h;
581 }
582
583 /**
584 * Tries to cas nh as new head; if successful, unlink
585 * old head's next node to avoid garbage retention.
586 */
587 void advanceHead(QNode h, QNode nh) {
588 if (h == head &&
589 UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
590 h.next = h; // forget old next
591 }
592
593 /**
594 * Tries to cas nt as new tail.
595 */
596 void advanceTail(QNode t, QNode nt) {
597 if (tail == t)
598 UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
599 }
600
601 /**
602 * Tries to CAS cleanMe slot.
603 */
604 boolean casCleanMe(QNode cmp, QNode val) {
605 return cleanMe == cmp &&
606 UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
607 }
608
609 /**
610 * Puts or takes an item.
611 */
612 Object transfer(Object e, boolean timed, long nanos) {
613 /* Basic algorithm is to loop trying to take either of
614 * two actions:
615 *
616 * 1. If queue apparently empty or holding same-mode nodes,
617 * try to add node to queue of waiters, wait to be
618 * fulfilled (or cancelled) and return matching item.
619 *
620 * 2. If queue apparently contains waiting items, and this
621 * call is of complementary mode, try to fulfill by CAS'ing
622 * item field of waiting node and dequeuing it, and then
623 * returning matching item.
624 *
625 * In each case, along the way, check for and try to help
626 * advance head and tail on behalf of other stalled/slow
627 * threads.
628 *
629 * The loop starts off with a null check guarding against
630 * seeing uninitialized head or tail values. This never
631 * happens in current SynchronousQueue, but could if
632 * callers held non-volatile/final ref to the
633 * transferer. The check is here anyway because it places
634 * null checks at top of loop, which is usually faster
635 * than having them implicitly interspersed.
636 */
637
638 QNode s = null; // constructed/reused as needed
639 boolean isData = (e != null);
640
641 for (;;) {
642 QNode t = tail;
643 QNode h = head;
644 if (t == null || h == null) // saw uninitialized value
645 continue; // spin
646
647 if (h == t || t.isData == isData) { // empty or same-mode
648 QNode tn = t.next;
649 if (t != tail) // inconsistent read
650 continue;
651 if (tn != null) { // lagging tail
652 advanceTail(t, tn);
653 continue;
654 }
655 if (timed && nanos <= 0) // can't wait
656 return null;
657 if (s == null)
658 s = new QNode(e, isData);
659 if (!t.casNext(null, s)) // failed to link in
660 continue;
661
662 advanceTail(t, s); // swing tail and wait
663 Object x = awaitFulfill(s, e, timed, nanos);
664 if (x == s) { // wait was cancelled
665 clean(t, s);
666 return null;
667 }
668
669 if (!s.isOffList()) { // not already unlinked
670 advanceHead(t, s); // unlink if head
671 if (x != null) // and forget fields
672 s.item = s;
673 s.waiter = null;
674 }
675 return (x != null) ? x : e;
676
677 } else { // complementary-mode
678 QNode m = h.next; // node to fulfill
679 if (t != tail || m == null || h != head)
680 continue; // inconsistent read
681
682 Object x = m.item;
683 if (isData == (x != null) || // m already fulfilled
684 x == m || // m cancelled
685 !m.casItem(x, e)) { // lost CAS
686 advanceHead(h, m); // dequeue and retry
687 continue;
688 }
689
690 advanceHead(h, m); // successfully fulfilled
691 LockSupport.unpark(m.waiter);
692 return (x != null) ? x : e;
693 }
694 }
695 }
696
697 /**
698 * Spins/blocks until node s is fulfilled.
699 *
700 * @param s the waiting node
701 * @param e the comparison value for checking match
702 * @param timed true if timed wait
703 * @param nanos timeout value
704 * @return matched item, or s if cancelled
705 */
706 Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
707 /* Same idea as TransferStack.awaitFulfill */
708 long lastTime = timed ? System.nanoTime() : 0;
709 Thread w = Thread.currentThread();
710 int spins = ((head.next == s) ?
711 (timed ? maxTimedSpins : maxUntimedSpins) : 0);
712 for (;;) {
713 if (w.isInterrupted())
714 s.tryCancel(e);
715 Object x = s.item;
716 if (x != e)
717 return x;
718 if (timed) {
719 long now = System.nanoTime();
720 nanos -= now - lastTime;
721 lastTime = now;
722 if (nanos <= 0) {
723 s.tryCancel(e);
724 continue;
725 }
726 }
727 if (spins > 0)
728 --spins;
729 else if (s.waiter == null)
730 s.waiter = w;
731 else if (!timed)
732 LockSupport.park(this);
733 else if (nanos > spinForTimeoutThreshold)
734 LockSupport.parkNanos(this, nanos);
735 }
736 }
737
738 /**
739 * Gets rid of cancelled node s with original predecessor pred.
740 */
741 void clean(QNode pred, QNode s) {
742 s.waiter = null; // forget thread
743 /*
744 * At any given time, exactly one node on list cannot be
745 * deleted -- the last inserted node. To accommodate this,
746 * if we cannot delete s, we save its predecessor as
747 * "cleanMe", deleting the previously saved version
748 * first. At least one of node s or the node previously
749 * saved can always be deleted, so this always terminates.
750 */
751 while (pred.next == s) { // Return early if already unlinked
752 QNode h = head;
753 QNode hn = h.next; // Absorb cancelled first node as head
754 if (hn != null && hn.isCancelled()) {
755 advanceHead(h, hn);
756 continue;
757 }
758 QNode t = tail; // Ensure consistent read for tail
759 if (t == h)
760 return;
761 QNode tn = t.next;
762 if (t != tail)
763 continue;
764 if (tn != null) {
765 advanceTail(t, tn);
766 continue;
767 }
768 if (s != t) { // If not tail, try to unsplice
769 QNode sn = s.next;
770 if (sn == s || pred.casNext(s, sn))
771 return;
772 }
773 QNode dp = cleanMe;
774 if (dp != null) { // Try unlinking previous cancelled node
775 QNode d = dp.next;
776 QNode dn;
777 if (d == null || // d is gone or
778 d == dp || // d is off list or
779 !d.isCancelled() || // d not cancelled or
780 (d != t && // d not tail and
781 (dn = d.next) != null && // has successor
782 dn != d && // that is on list
783 dp.casNext(d, dn))) // d unspliced
784 casCleanMe(dp, null);
785 if (dp == pred)
786 return; // s is already saved node
787 } else if (casCleanMe(null, pred))
788 return; // Postpone cleaning s
789 }
790 }
791
792 private static final sun.misc.Unsafe UNSAFE;
793 private static final long headOffset;
794 private static final long tailOffset;
795 private static final long cleanMeOffset;
796 static {
797 try {
798 UNSAFE = sun.misc.Unsafe.getUnsafe();
799 Class<?> k = TransferQueue.class;
800 headOffset = UNSAFE.objectFieldOffset
801 (k.getDeclaredField("head"));
802 tailOffset = UNSAFE.objectFieldOffset
803 (k.getDeclaredField("tail"));
804 cleanMeOffset = UNSAFE.objectFieldOffset
805 (k.getDeclaredField("cleanMe"));
806 } catch (Exception e) {
807 throw new Error(e);
808 }
809 }
810 }
811
812 /**
813 * The transferer. Set only in constructor, but cannot be declared
814 * as final without further complicating serialization. Since
815 * this is accessed only at most once per public method, there
816 * isn't a noticeable performance penalty for using volatile
817 * instead of final here.
818 */
819 private transient volatile Transferer transferer;
820
821 /**
822 * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
823 */
824 public SynchronousQueue() {
825 this(false);
826 }
827
828 /**
829 * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
830 *
831 * @param fair if true, waiting threads contend in FIFO order for
832 * access; otherwise the order is unspecified.
833 */
834 public SynchronousQueue(boolean fair) {
835 transferer = fair ? new TransferQueue() : new TransferStack();
836 }
837
838 /**
839 * Adds the specified element to this queue, waiting if necessary for
840 * another thread to receive it.
841 *
842 * @throws InterruptedException {@inheritDoc}
843 * @throws NullPointerException {@inheritDoc}
844 */
845 public void put(E o) throws InterruptedException {
846 if (o == null) throw new NullPointerException();
847 if (transferer.transfer(o, false, 0) == null) {
848 Thread.interrupted();
849 throw new InterruptedException();
850 }
851 }
852
853 /**
854 * Inserts the specified element into this queue, waiting if necessary
855 * up to the specified wait time for another thread to receive it.
856 *
857 * @return <tt>true</tt> if successful, or <tt>false</tt> if the
858 * specified waiting time elapses before a consumer appears.
859 * @throws InterruptedException {@inheritDoc}
860 * @throws NullPointerException {@inheritDoc}
861 */
862 public boolean offer(E o, long timeout, TimeUnit unit)
863 throws InterruptedException {
864 if (o == null) throw new NullPointerException();
865 if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
866 return true;
867 if (!Thread.interrupted())
868 return false;
869 throw new InterruptedException();
870 }
871
872 /**
873 * Inserts the specified element into this queue, if another thread is
874 * waiting to receive it.
875 *
876 * @param e the element to add
877 * @return <tt>true</tt> if the element was added to this queue, else
878 * <tt>false</tt>
879 * @throws NullPointerException if the specified element is null
880 */
881 public boolean offer(E e) {
882 if (e == null) throw new NullPointerException();
883 return transferer.transfer(e, true, 0) != null;
884 }
885
886 /**
887 * Retrieves and removes the head of this queue, waiting if necessary
888 * for another thread to insert it.
889 *
890 * @return the head of this queue
891 * @throws InterruptedException {@inheritDoc}
892 */
893 public E take() throws InterruptedException {
894 Object e = transferer.transfer(null, false, 0);
895 if (e != null)
896 return (E)e;
897 Thread.interrupted();
898 throw new InterruptedException();
899 }
900
901 /**
902 * Retrieves and removes the head of this queue, waiting
903 * if necessary up to the specified wait time, for another thread
904 * to insert it.
905 *
906 * @return the head of this queue, or <tt>null</tt> if the
907 * specified waiting time elapses before an element is present.
908 * @throws InterruptedException {@inheritDoc}
909 */
910 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
911 Object e = transferer.transfer(null, true, unit.toNanos(timeout));
912 if (e != null || !Thread.interrupted())
913 return (E)e;
914 throw new InterruptedException();
915 }
916
917 /**
918 * Retrieves and removes the head of this queue, if another thread
919 * is currently making an element available.
920 *
921 * @return the head of this queue, or <tt>null</tt> if no
922 * element is available.
923 */
924 public E poll() {
925 return (E)transferer.transfer(null, true, 0);
926 }
927
928 /**
929 * Always returns <tt>true</tt>.
930 * A <tt>SynchronousQueue</tt> has no internal capacity.
931 *
932 * @return <tt>true</tt>
933 */
934 public boolean isEmpty() {
935 return true;
936 }
937
938 /**
939 * Always returns zero.
940 * A <tt>SynchronousQueue</tt> has no internal capacity.
941 *
942 * @return zero.
943 */
944 public int size() {
945 return 0;
946 }
947
948 /**
949 * Always returns zero.
950 * A <tt>SynchronousQueue</tt> has no internal capacity.
951 *
952 * @return zero.
953 */
954 public int remainingCapacity() {
955 return 0;
956 }
957
958 /**
959 * Does nothing.
960 * A <tt>SynchronousQueue</tt> has no internal capacity.
961 */
962 public void clear() {
963 }
964
965 /**
966 * Always returns <tt>false</tt>.
967 * A <tt>SynchronousQueue</tt> has no internal capacity.
968 *
969 * @param o the element
970 * @return <tt>false</tt>
971 */
972 public boolean contains(Object o) {
973 return false;
974 }
975
976 /**
977 * Always returns <tt>false</tt>.
978 * A <tt>SynchronousQueue</tt> has no internal capacity.
979 *
980 * @param o the element to remove
981 * @return <tt>false</tt>
982 */
983 public boolean remove(Object o) {
984 return false;
985 }
986
987 /**
988 * Returns <tt>false</tt> unless the given collection is empty.
989 * A <tt>SynchronousQueue</tt> has no internal capacity.
990 *
991 * @param c the collection
992 * @return <tt>false</tt> unless given collection is empty
993 */
994 public boolean containsAll(Collection<?> c) {
995 return c.isEmpty();
996 }
997
998 /**
999 * Always returns <tt>false</tt>.
1000 * A <tt>SynchronousQueue</tt> has no internal capacity.
1001 *
1002 * @param c the collection
1003 * @return <tt>false</tt>
1004 */
1005 public boolean removeAll(Collection<?> c) {
1006 return false;
1007 }
1008
1009 /**
1010 * Always returns <tt>false</tt>.
1011 * A <tt>SynchronousQueue</tt> has no internal capacity.
1012 *
1013 * @param c the collection
1014 * @return <tt>false</tt>
1015 */
1016 public boolean retainAll(Collection<?> c) {
1017 return false;
1018 }
1019
1020 /**
1021 * Always returns <tt>null</tt>.
1022 * A <tt>SynchronousQueue</tt> does not return elements
1023 * unless actively waited on.
1024 *
1025 * @return <tt>null</tt>
1026 */
1027 public E peek() {
1028 return null;
1029 }
1030
1031 /**
1032 * Returns an empty iterator in which <tt>hasNext</tt> always returns
1033 * <tt>false</tt>.
1034 *
1035 * @return an empty iterator
1036 */
1037 @SuppressWarnings("unchecked")
1038 public Iterator<E> iterator() {
1039 return (Iterator<E>) EmptyIterator.EMPTY_ITERATOR;
1040 }
1041
1042 // Replicated from a previous version of Collections
1043 private static class EmptyIterator<E> implements Iterator<E> {
1044 static final EmptyIterator<Object> EMPTY_ITERATOR
1045 = new EmptyIterator<Object>();
1046
1047 public boolean hasNext() { return false; }
1048 public E next() { throw new NoSuchElementException(); }
1049 public void remove() { throw new IllegalStateException(); }
1050 }
1051
1052 /**
1053 * Returns a zero-length array.
1054 * @return a zero-length array
1055 */
1056 public Object[] toArray() {
1057 return new Object[0];
1058 }
1059
1060 /**
1061 * Sets the zeroeth element of the specified array to <tt>null</tt>
1062 * (if the array has non-zero length) and returns it.
1063 *
1064 * @param a the array
1065 * @return the specified array
1066 * @throws NullPointerException if the specified array is null
1067 */
1068 public <T> T[] toArray(T[] a) {
1069 if (a.length > 0)
1070 a[0] = null;
1071 return a;
1072 }
1073
1074 /**
1075 * @throws UnsupportedOperationException {@inheritDoc}
1076 * @throws ClassCastException {@inheritDoc}
1077 * @throws NullPointerException {@inheritDoc}
1078 * @throws IllegalArgumentException {@inheritDoc}
1079 */
1080 public int drainTo(Collection<? super E> c) {
1081 if (c == null)
1082 throw new NullPointerException();
1083 if (c == this)
1084 throw new IllegalArgumentException();
1085 int n = 0;
1086 E e;
1087 while ( (e = poll()) != null) {
1088 c.add(e);
1089 ++n;
1090 }
1091 return n;
1092 }
1093
1094 /**
1095 * @throws UnsupportedOperationException {@inheritDoc}
1096 * @throws ClassCastException {@inheritDoc}
1097 * @throws NullPointerException {@inheritDoc}
1098 * @throws IllegalArgumentException {@inheritDoc}
1099 */
1100 public int drainTo(Collection<? super E> c, int maxElements) {
1101 if (c == null)
1102 throw new NullPointerException();
1103 if (c == this)
1104 throw new IllegalArgumentException();
1105 int n = 0;
1106 E e;
1107 while (n < maxElements && (e = poll()) != null) {
1108 c.add(e);
1109 ++n;
1110 }
1111 return n;
1112 }
1113
1114 /*
1115 * To cope with serialization strategy in the 1.5 version of
1116 * SynchronousQueue, we declare some unused classes and fields
1117 * that exist solely to enable serializability across versions.
1118 * These fields are never used, so are initialized only if this
1119 * object is ever serialized or deserialized.
1120 */
1121
1122 static class WaitQueue implements java.io.Serializable { }
1123 static class LifoWaitQueue extends WaitQueue {
1124 private static final long serialVersionUID = -3633113410248163686L;
1125 }
1126 static class FifoWaitQueue extends WaitQueue {
1127 private static final long serialVersionUID = -3623113410248163686L;
1128 }
1129 private ReentrantLock qlock;
1130 private WaitQueue waitingProducers;
1131 private WaitQueue waitingConsumers;
1132
1133 /**
1134 * Save the state to a stream (that is, serialize it).
1135 *
1136 * @param s the stream
1137 */
1138 private void writeObject(java.io.ObjectOutputStream s)
1139 throws java.io.IOException {
1140 boolean fair = transferer instanceof TransferQueue;
1141 if (fair) {
1142 qlock = new ReentrantLock(true);
1143 waitingProducers = new FifoWaitQueue();
1144 waitingConsumers = new FifoWaitQueue();
1145 }
1146 else {
1147 qlock = new ReentrantLock();
1148 waitingProducers = new LifoWaitQueue();
1149 waitingConsumers = new LifoWaitQueue();
1150 }
1151 s.defaultWriteObject();
1152 }
1153
1154 private void readObject(final java.io.ObjectInputStream s)
1155 throws java.io.IOException, ClassNotFoundException {
1156 s.defaultReadObject();
1157 if (waitingProducers instanceof FifoWaitQueue)
1158 transferer = new TransferQueue();
1159 else
1160 transferer = new TransferStack();
1161 }
1162
1163 // Unsafe mechanics
1164 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1165 String field, Class<?> klazz) {
1166 try {
1167 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1168 } catch (NoSuchFieldException e) {
1169 // Convert Exception to corresponding Error
1170 NoSuchFieldError error = new NoSuchFieldError(field);
1171 error.initCause(e);
1172 throw error;
1173 }
1174 }
1175
1176 }