ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/SynchronousQueue.java
Revision: 1.89
Committed: Wed Jan 2 06:29:00 2013 UTC (11 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.88: +2 -2 lines
Log Message:
@return javadoc style

File Contents

# Content
1 /*
2 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3 * assistance from members of JCP JSR-166 Expert Group and released to
4 * the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/
6 */
7
8 package java.util.concurrent;
9 import java.util.concurrent.locks.LockSupport;
10 import java.util.concurrent.locks.ReentrantLock;
11 import java.util.*;
12
13 /**
14 * A {@linkplain BlockingQueue blocking queue} in which each insert
15 * operation must wait for a corresponding remove operation by another
16 * thread, and vice versa. A synchronous queue does not have any
17 * internal capacity, not even a capacity of one. You cannot
18 * <tt>peek</tt> at a synchronous queue because an element is only
19 * present when you try to remove it; you cannot insert an element
20 * (using any method) unless another thread is trying to remove it;
21 * you cannot iterate as there is nothing to iterate. The
22 * <em>head</em> of the queue is the element that the first queued
23 * inserting thread is trying to add to the queue; if there is no such
24 * queued thread then no element is available for removal and
25 * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
26 * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
27 * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
28 * does not permit <tt>null</tt> elements.
29 *
30 * <p>Synchronous queues are similar to rendezvous channels used in
31 * CSP and Ada. They are well suited for handoff designs, in which an
32 * object running in one thread must sync up with an object running
33 * in another thread in order to hand it some information, event, or
34 * task.
35 *
36 * <p>This class supports an optional fairness policy for ordering
37 * waiting producer and consumer threads. By default, this ordering
38 * is not guaranteed. However, a queue constructed with fairness set
39 * to <tt>true</tt> grants threads access in FIFO order.
40 *
41 * <p>This class and its iterator implement all of the
42 * <em>optional</em> methods of the {@link Collection} and {@link
43 * Iterator} interfaces.
44 *
45 * <p>This class is a member of the
46 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
47 * Java Collections Framework</a>.
48 *
49 * @since 1.5
50 * @author Doug Lea and Bill Scherer and Michael Scott
51 * @param <E> the type of elements held in this collection
52 */
53 public class SynchronousQueue<E> extends AbstractQueue<E>
54 implements BlockingQueue<E>, java.io.Serializable {
55 private static final long serialVersionUID = -3223113410248163686L;
56
57 /*
58 * This class implements extensions of the dual stack and dual
59 * queue algorithms described in "Nonblocking Concurrent Objects
60 * with Condition Synchronization", by W. N. Scherer III and
61 * M. L. Scott. 18th Annual Conf. on Distributed Computing,
62 * Oct. 2004 (see also
63 * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
64 * The (Lifo) stack is used for non-fair mode, and the (Fifo)
65 * queue for fair mode. The performance of the two is generally
66 * similar. Fifo usually supports higher throughput under
67 * contention but Lifo maintains higher thread locality in common
68 * applications.
69 *
70 * A dual queue (and similarly stack) is one that at any given
71 * time either holds "data" -- items provided by put operations,
72 * or "requests" -- slots representing take operations, or is
73 * empty. A call to "fulfill" (i.e., a call requesting an item
74 * from a queue holding data or vice versa) dequeues a
75 * complementary node. The most interesting feature of these
76 * queues is that any operation can figure out which mode the
77 * queue is in, and act accordingly without needing locks.
78 *
79 * Both the queue and stack extend abstract class Transferer
80 * defining the single method transfer that does a put or a
81 * take. These are unified into a single method because in dual
82 * data structures, the put and take operations are symmetrical,
83 * so nearly all code can be combined. The resulting transfer
84 * methods are on the long side, but are easier to follow than
85 * they would be if broken up into nearly-duplicated parts.
86 *
87 * The queue and stack data structures share many conceptual
88 * similarities but very few concrete details. For simplicity,
89 * they are kept distinct so that they can later evolve
90 * separately.
91 *
92 * The algorithms here differ from the versions in the above paper
93 * in extending them for use in synchronous queues, as well as
94 * dealing with cancellation. The main differences include:
95 *
96 * 1. The original algorithms used bit-marked pointers, but
97 * the ones here use mode bits in nodes, leading to a number
98 * of further adaptations.
99 * 2. SynchronousQueues must block threads waiting to become
100 * fulfilled.
101 * 3. Support for cancellation via timeout and interrupts,
102 * including cleaning out cancelled nodes/threads
103 * from lists to avoid garbage retention and memory depletion.
104 *
105 * Blocking is mainly accomplished using LockSupport park/unpark,
106 * except that nodes that appear to be the next ones to become
107 * fulfilled first spin a bit (on multiprocessors only). On very
108 * busy synchronous queues, spinning can dramatically improve
109 * throughput. And on less busy ones, the amount of spinning is
110 * small enough not to be noticeable.
111 *
112 * Cleaning is done in different ways in queues vs stacks. For
113 * queues, we can almost always remove a node immediately in O(1)
114 * time (modulo retries for consistency checks) when it is
115 * cancelled. But if it may be pinned as the current tail, it must
116 * wait until some subsequent cancellation. For stacks, we need a
117 * potentially O(n) traversal to be sure that we can remove the
118 * node, but this can run concurrently with other threads
119 * accessing the stack.
120 *
121 * While garbage collection takes care of most node reclamation
122 * issues that otherwise complicate nonblocking algorithms, care
123 * is taken to "forget" references to data, other nodes, and
124 * threads that might be held on to long-term by blocked
125 * threads. In cases where setting to null would otherwise
126 * conflict with main algorithms, this is done by changing a
127 * node's link to now point to the node itself. This doesn't arise
128 * much for Stack nodes (because blocked threads do not hang on to
129 * old head pointers), but references in Queue nodes must be
130 * aggressively forgotten to avoid reachability of everything any
131 * node has ever referred to since arrival.
132 */
133
134 /**
135 * Shared internal API for dual stacks and queues.
136 */
137 abstract static class Transferer<E> {
138 /**
139 * Performs a put or take.
140 *
141 * @param e if non-null, the item to be handed to a consumer;
142 * if null, requests that transfer return an item
143 * offered by producer.
144 * @param timed if this operation should timeout
145 * @param nanos the timeout, in nanoseconds
146 * @return if non-null, the item provided or received; if null,
147 * the operation failed due to timeout or interrupt --
148 * the caller can distinguish which of these occurred
149 * by checking Thread.interrupted.
150 */
151 abstract E transfer(E e, boolean timed, long nanos);
152 }
153
154 /** The number of CPUs, for spin control */
155 static final int NCPUS = Runtime.getRuntime().availableProcessors();
156
157 /**
158 * The number of times to spin before blocking in timed waits.
159 * The value is empirically derived -- it works well across a
160 * variety of processors and OSes. Empirically, the best value
161 * seems not to vary with number of CPUs (beyond 2) so is just
162 * a constant.
163 */
164 static final int maxTimedSpins = (NCPUS < 2) ? 0 : 32;
165
166 /**
167 * The number of times to spin before blocking in untimed waits.
168 * This is greater than timed value because untimed waits spin
169 * faster since they don't need to check times on each spin.
170 */
171 static final int maxUntimedSpins = maxTimedSpins * 16;
172
173 /**
174 * The number of nanoseconds for which it is faster to spin
175 * rather than to use timed park. A rough estimate suffices.
176 */
177 static final long spinForTimeoutThreshold = 1000L;
178
179 /** Dual stack */
180 static final class TransferStack<E> extends Transferer<E> {
181 /*
182 * This extends Scherer-Scott dual stack algorithm, differing,
183 * among other ways, by using "covering" nodes rather than
184 * bit-marked pointers: Fulfilling operations push on marker
185 * nodes (with FULFILLING bit set in mode) to reserve a spot
186 * to match a waiting node.
187 */
188
189 /* Modes for SNodes, ORed together in node fields */
190 /** Node represents an unfulfilled consumer */
191 static final int REQUEST = 0;
192 /** Node represents an unfulfilled producer */
193 static final int DATA = 1;
194 /** Node is fulfilling another unfulfilled DATA or REQUEST */
195 static final int FULFILLING = 2;
196
197 /** Returns true if m has fulfilling bit set. */
198 static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
199
200 /** Node class for TransferStacks. */
201 static final class SNode {
202 volatile SNode next; // next node in stack
203 volatile SNode match; // the node matched to this
204 volatile Thread waiter; // to control park/unpark
205 Object item; // data; or null for REQUESTs
206 int mode;
207 // Note: item and mode fields don't need to be volatile
208 // since they are always written before, and read after,
209 // other volatile/atomic operations.
210
211 SNode(Object item) {
212 this.item = item;
213 }
214
215 boolean casNext(SNode cmp, SNode val) {
216 return cmp == next &&
217 UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
218 }
219
220 /**
221 * Tries to match node s to this node, if so, waking up thread.
222 * Fulfillers call tryMatch to identify their waiters.
223 * Waiters block until they have been matched.
224 *
225 * @param s the node to match
226 * @return true if successfully matched to s
227 */
228 boolean tryMatch(SNode s) {
229 if (match == null &&
230 UNSAFE.compareAndSwapObject(this, matchOffset, null, s)) {
231 Thread w = waiter;
232 if (w != null) { // waiters need at most one unpark
233 waiter = null;
234 LockSupport.unpark(w);
235 }
236 return true;
237 }
238 return match == s;
239 }
240
241 /**
242 * Tries to cancel a wait by matching node to itself.
243 */
244 void tryCancel() {
245 UNSAFE.compareAndSwapObject(this, matchOffset, null, this);
246 }
247
248 boolean isCancelled() {
249 return match == this;
250 }
251
252 // Unsafe mechanics
253 private static final sun.misc.Unsafe UNSAFE;
254 private static final long matchOffset;
255 private static final long nextOffset;
256
257 static {
258 try {
259 UNSAFE = sun.misc.Unsafe.getUnsafe();
260 Class<?> k = SNode.class;
261 matchOffset = UNSAFE.objectFieldOffset
262 (k.getDeclaredField("match"));
263 nextOffset = UNSAFE.objectFieldOffset
264 (k.getDeclaredField("next"));
265 } catch (Exception e) {
266 throw new Error(e);
267 }
268 }
269 }
270
271 /** The head (top) of the stack */
272 volatile SNode head;
273
274 boolean casHead(SNode h, SNode nh) {
275 return h == head &&
276 UNSAFE.compareAndSwapObject(this, headOffset, h, nh);
277 }
278
279 /**
280 * Creates or resets fields of a node. Called only from transfer
281 * where the node to push on stack is lazily created and
282 * reused when possible to help reduce intervals between reads
283 * and CASes of head and to avoid surges of garbage when CASes
284 * to push nodes fail due to contention.
285 */
286 static SNode snode(SNode s, Object e, SNode next, int mode) {
287 if (s == null) s = new SNode(e);
288 s.mode = mode;
289 s.next = next;
290 return s;
291 }
292
293 /**
294 * Puts or takes an item.
295 */
296 @SuppressWarnings("unchecked")
297 E transfer(E e, boolean timed, long nanos) {
298 /*
299 * Basic algorithm is to loop trying one of three actions:
300 *
301 * 1. If apparently empty or already containing nodes of same
302 * mode, try to push node on stack and wait for a match,
303 * returning it, or null if cancelled.
304 *
305 * 2. If apparently containing node of complementary mode,
306 * try to push a fulfilling node on to stack, match
307 * with corresponding waiting node, pop both from
308 * stack, and return matched item. The matching or
309 * unlinking might not actually be necessary because of
310 * other threads performing action 3:
311 *
312 * 3. If top of stack already holds another fulfilling node,
313 * help it out by doing its match and/or pop
314 * operations, and then continue. The code for helping
315 * is essentially the same as for fulfilling, except
316 * that it doesn't return the item.
317 */
318
319 SNode s = null; // constructed/reused as needed
320 int mode = (e == null) ? REQUEST : DATA;
321
322 for (;;) {
323 SNode h = head;
324 if (h == null || h.mode == mode) { // empty or same-mode
325 if (timed && nanos <= 0) { // can't wait
326 if (h != null && h.isCancelled())
327 casHead(h, h.next); // pop cancelled node
328 else
329 return null;
330 } else if (casHead(h, s = snode(s, e, h, mode))) {
331 SNode m = awaitFulfill(s, timed, nanos);
332 if (m == s) { // wait was cancelled
333 clean(s);
334 return null;
335 }
336 if ((h = head) != null && h.next == s)
337 casHead(h, s.next); // help s's fulfiller
338 return (E) ((mode == REQUEST) ? m.item : s.item);
339 }
340 } else if (!isFulfilling(h.mode)) { // try to fulfill
341 if (h.isCancelled()) // already cancelled
342 casHead(h, h.next); // pop and retry
343 else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
344 for (;;) { // loop until matched or waiters disappear
345 SNode m = s.next; // m is s's match
346 if (m == null) { // all waiters are gone
347 casHead(s, null); // pop fulfill node
348 s = null; // use new node next time
349 break; // restart main loop
350 }
351 SNode mn = m.next;
352 if (m.tryMatch(s)) {
353 casHead(s, mn); // pop both s and m
354 return (E) ((mode == REQUEST) ? m.item : s.item);
355 } else // lost match
356 s.casNext(m, mn); // help unlink
357 }
358 }
359 } else { // help a fulfiller
360 SNode m = h.next; // m is h's match
361 if (m == null) // waiter is gone
362 casHead(h, null); // pop fulfilling node
363 else {
364 SNode mn = m.next;
365 if (m.tryMatch(h)) // help match
366 casHead(h, mn); // pop both h and m
367 else // lost match
368 h.casNext(m, mn); // help unlink
369 }
370 }
371 }
372 }
373
374 /**
375 * Spins/blocks until node s is matched by a fulfill operation.
376 *
377 * @param s the waiting node
378 * @param timed true if timed wait
379 * @param nanos timeout value
380 * @return matched node, or s if cancelled
381 */
382 SNode awaitFulfill(SNode s, boolean timed, long nanos) {
383 /*
384 * When a node/thread is about to block, it sets its waiter
385 * field and then rechecks state at least one more time
386 * before actually parking, thus covering race vs
387 * fulfiller noticing that waiter is non-null so should be
388 * woken.
389 *
390 * When invoked by nodes that appear at the point of call
391 * to be at the head of the stack, calls to park are
392 * preceded by spins to avoid blocking when producers and
393 * consumers are arriving very close in time. This can
394 * happen enough to bother only on multiprocessors.
395 *
396 * The order of checks for returning out of main loop
397 * reflects fact that interrupts have precedence over
398 * normal returns, which have precedence over
399 * timeouts. (So, on timeout, one last check for match is
400 * done before giving up.) Except that calls from untimed
401 * SynchronousQueue.{poll/offer} don't check interrupts
402 * and don't wait at all, so are trapped in transfer
403 * method rather than calling awaitFulfill.
404 */
405 final long deadline = timed ? System.nanoTime() + nanos : 0L;
406 Thread w = Thread.currentThread();
407 int spins = (shouldSpin(s) ?
408 (timed ? maxTimedSpins : maxUntimedSpins) : 0);
409 for (;;) {
410 if (w.isInterrupted())
411 s.tryCancel();
412 SNode m = s.match;
413 if (m != null)
414 return m;
415 if (timed) {
416 nanos = deadline - System.nanoTime();
417 if (nanos <= 0L) {
418 s.tryCancel();
419 continue;
420 }
421 }
422 if (spins > 0)
423 spins = shouldSpin(s) ? (spins-1) : 0;
424 else if (s.waiter == null)
425 s.waiter = w; // establish waiter so can park next iter
426 else if (!timed)
427 LockSupport.park(this);
428 else if (nanos > spinForTimeoutThreshold)
429 LockSupport.parkNanos(this, nanos);
430 }
431 }
432
433 /**
434 * Returns true if node s is at head or there is an active
435 * fulfiller.
436 */
437 boolean shouldSpin(SNode s) {
438 SNode h = head;
439 return (h == s || h == null || isFulfilling(h.mode));
440 }
441
442 /**
443 * Unlinks s from the stack.
444 */
445 void clean(SNode s) {
446 s.item = null; // forget item
447 s.waiter = null; // forget thread
448
449 /*
450 * At worst we may need to traverse entire stack to unlink
451 * s. If there are multiple concurrent calls to clean, we
452 * might not see s if another thread has already removed
453 * it. But we can stop when we see any node known to
454 * follow s. We use s.next unless it too is cancelled, in
455 * which case we try the node one past. We don't check any
456 * further because we don't want to doubly traverse just to
457 * find sentinel.
458 */
459
460 SNode past = s.next;
461 if (past != null && past.isCancelled())
462 past = past.next;
463
464 // Absorb cancelled nodes at head
465 SNode p;
466 while ((p = head) != null && p != past && p.isCancelled())
467 casHead(p, p.next);
468
469 // Unsplice embedded nodes
470 while (p != null && p != past) {
471 SNode n = p.next;
472 if (n != null && n.isCancelled())
473 p.casNext(n, n.next);
474 else
475 p = n;
476 }
477 }
478
479 // Unsafe mechanics
480 private static final sun.misc.Unsafe UNSAFE;
481 private static final long headOffset;
482 static {
483 try {
484 UNSAFE = sun.misc.Unsafe.getUnsafe();
485 Class<?> k = TransferStack.class;
486 headOffset = UNSAFE.objectFieldOffset
487 (k.getDeclaredField("head"));
488 } catch (Exception e) {
489 throw new Error(e);
490 }
491 }
492 }
493
494 /** Dual Queue */
495 static final class TransferQueue<E> extends Transferer<E> {
496 /*
497 * This extends Scherer-Scott dual queue algorithm, differing,
498 * among other ways, by using modes within nodes rather than
499 * marked pointers. The algorithm is a little simpler than
500 * that for stacks because fulfillers do not need explicit
501 * nodes, and matching is done by CAS'ing QNode.item field
502 * from non-null to null (for put) or vice versa (for take).
503 */
504
505 /** Node class for TransferQueue. */
506 static final class QNode {
507 volatile QNode next; // next node in queue
508 volatile Object item; // CAS'ed to or from null
509 volatile Thread waiter; // to control park/unpark
510 final boolean isData;
511
512 QNode(Object item, boolean isData) {
513 this.item = item;
514 this.isData = isData;
515 }
516
517 boolean casNext(QNode cmp, QNode val) {
518 return next == cmp &&
519 UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
520 }
521
522 boolean casItem(Object cmp, Object val) {
523 return item == cmp &&
524 UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
525 }
526
527 /**
528 * Tries to cancel by CAS'ing ref to this as item.
529 */
530 void tryCancel(Object cmp) {
531 UNSAFE.compareAndSwapObject(this, itemOffset, cmp, this);
532 }
533
534 boolean isCancelled() {
535 return item == this;
536 }
537
538 /**
539 * Returns true if this node is known to be off the queue
540 * because its next pointer has been forgotten due to
541 * an advanceHead operation.
542 */
543 boolean isOffList() {
544 return next == this;
545 }
546
547 // Unsafe mechanics
548 private static final sun.misc.Unsafe UNSAFE;
549 private static final long itemOffset;
550 private static final long nextOffset;
551
552 static {
553 try {
554 UNSAFE = sun.misc.Unsafe.getUnsafe();
555 Class<?> k = QNode.class;
556 itemOffset = UNSAFE.objectFieldOffset
557 (k.getDeclaredField("item"));
558 nextOffset = UNSAFE.objectFieldOffset
559 (k.getDeclaredField("next"));
560 } catch (Exception e) {
561 throw new Error(e);
562 }
563 }
564 }
565
566 /** Head of queue */
567 transient volatile QNode head;
568 /** Tail of queue */
569 transient volatile QNode tail;
570 /**
571 * Reference to a cancelled node that might not yet have been
572 * unlinked from queue because it was the last inserted node
573 * when it cancelled.
574 */
575 transient volatile QNode cleanMe;
576
577 TransferQueue() {
578 QNode h = new QNode(null, false); // initialize to dummy node.
579 head = h;
580 tail = h;
581 }
582
583 /**
584 * Tries to cas nh as new head; if successful, unlink
585 * old head's next node to avoid garbage retention.
586 */
587 void advanceHead(QNode h, QNode nh) {
588 if (h == head &&
589 UNSAFE.compareAndSwapObject(this, headOffset, h, nh))
590 h.next = h; // forget old next
591 }
592
593 /**
594 * Tries to cas nt as new tail.
595 */
596 void advanceTail(QNode t, QNode nt) {
597 if (tail == t)
598 UNSAFE.compareAndSwapObject(this, tailOffset, t, nt);
599 }
600
601 /**
602 * Tries to CAS cleanMe slot.
603 */
604 boolean casCleanMe(QNode cmp, QNode val) {
605 return cleanMe == cmp &&
606 UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
607 }
608
609 /**
610 * Puts or takes an item.
611 */
612 @SuppressWarnings("unchecked")
613 E transfer(E e, boolean timed, long nanos) {
614 /* Basic algorithm is to loop trying to take either of
615 * two actions:
616 *
617 * 1. If queue apparently empty or holding same-mode nodes,
618 * try to add node to queue of waiters, wait to be
619 * fulfilled (or cancelled) and return matching item.
620 *
621 * 2. If queue apparently contains waiting items, and this
622 * call is of complementary mode, try to fulfill by CAS'ing
623 * item field of waiting node and dequeuing it, and then
624 * returning matching item.
625 *
626 * In each case, along the way, check for and try to help
627 * advance head and tail on behalf of other stalled/slow
628 * threads.
629 *
630 * The loop starts off with a null check guarding against
631 * seeing uninitialized head or tail values. This never
632 * happens in current SynchronousQueue, but could if
633 * callers held non-volatile/final ref to the
634 * transferer. The check is here anyway because it places
635 * null checks at top of loop, which is usually faster
636 * than having them implicitly interspersed.
637 */
638
639 QNode s = null; // constructed/reused as needed
640 boolean isData = (e != null);
641
642 for (;;) {
643 QNode t = tail;
644 QNode h = head;
645 if (t == null || h == null) // saw uninitialized value
646 continue; // spin
647
648 if (h == t || t.isData == isData) { // empty or same-mode
649 QNode tn = t.next;
650 if (t != tail) // inconsistent read
651 continue;
652 if (tn != null) { // lagging tail
653 advanceTail(t, tn);
654 continue;
655 }
656 if (timed && nanos <= 0) // can't wait
657 return null;
658 if (s == null)
659 s = new QNode(e, isData);
660 if (!t.casNext(null, s)) // failed to link in
661 continue;
662
663 advanceTail(t, s); // swing tail and wait
664 Object x = awaitFulfill(s, e, timed, nanos);
665 if (x == s) { // wait was cancelled
666 clean(t, s);
667 return null;
668 }
669
670 if (!s.isOffList()) { // not already unlinked
671 advanceHead(t, s); // unlink if head
672 if (x != null) // and forget fields
673 s.item = s;
674 s.waiter = null;
675 }
676 return (x != null) ? (E)x : e;
677
678 } else { // complementary-mode
679 QNode m = h.next; // node to fulfill
680 if (t != tail || m == null || h != head)
681 continue; // inconsistent read
682
683 Object x = m.item;
684 if (isData == (x != null) || // m already fulfilled
685 x == m || // m cancelled
686 !m.casItem(x, e)) { // lost CAS
687 advanceHead(h, m); // dequeue and retry
688 continue;
689 }
690
691 advanceHead(h, m); // successfully fulfilled
692 LockSupport.unpark(m.waiter);
693 return (x != null) ? (E)x : e;
694 }
695 }
696 }
697
698 /**
699 * Spins/blocks until node s is fulfilled.
700 *
701 * @param s the waiting node
702 * @param e the comparison value for checking match
703 * @param timed true if timed wait
704 * @param nanos timeout value
705 * @return matched item, or s if cancelled
706 */
707 Object awaitFulfill(QNode s, E e, boolean timed, long nanos) {
708 /* Same idea as TransferStack.awaitFulfill */
709 final long deadline = timed ? System.nanoTime() + nanos : 0L;
710 Thread w = Thread.currentThread();
711 int spins = ((head.next == s) ?
712 (timed ? maxTimedSpins : maxUntimedSpins) : 0);
713 for (;;) {
714 if (w.isInterrupted())
715 s.tryCancel(e);
716 Object x = s.item;
717 if (x != e)
718 return x;
719 if (timed) {
720 nanos = deadline - System.nanoTime();
721 if (nanos <= 0L) {
722 s.tryCancel(e);
723 continue;
724 }
725 }
726 if (spins > 0)
727 --spins;
728 else if (s.waiter == null)
729 s.waiter = w;
730 else if (!timed)
731 LockSupport.park(this);
732 else if (nanos > spinForTimeoutThreshold)
733 LockSupport.parkNanos(this, nanos);
734 }
735 }
736
737 /**
738 * Gets rid of cancelled node s with original predecessor pred.
739 */
740 void clean(QNode pred, QNode s) {
741 s.waiter = null; // forget thread
742 /*
743 * At any given time, exactly one node on list cannot be
744 * deleted -- the last inserted node. To accommodate this,
745 * if we cannot delete s, we save its predecessor as
746 * "cleanMe", deleting the previously saved version
747 * first. At least one of node s or the node previously
748 * saved can always be deleted, so this always terminates.
749 */
750 while (pred.next == s) { // Return early if already unlinked
751 QNode h = head;
752 QNode hn = h.next; // Absorb cancelled first node as head
753 if (hn != null && hn.isCancelled()) {
754 advanceHead(h, hn);
755 continue;
756 }
757 QNode t = tail; // Ensure consistent read for tail
758 if (t == h)
759 return;
760 QNode tn = t.next;
761 if (t != tail)
762 continue;
763 if (tn != null) {
764 advanceTail(t, tn);
765 continue;
766 }
767 if (s != t) { // If not tail, try to unsplice
768 QNode sn = s.next;
769 if (sn == s || pred.casNext(s, sn))
770 return;
771 }
772 QNode dp = cleanMe;
773 if (dp != null) { // Try unlinking previous cancelled node
774 QNode d = dp.next;
775 QNode dn;
776 if (d == null || // d is gone or
777 d == dp || // d is off list or
778 !d.isCancelled() || // d not cancelled or
779 (d != t && // d not tail and
780 (dn = d.next) != null && // has successor
781 dn != d && // that is on list
782 dp.casNext(d, dn))) // d unspliced
783 casCleanMe(dp, null);
784 if (dp == pred)
785 return; // s is already saved node
786 } else if (casCleanMe(null, pred))
787 return; // Postpone cleaning s
788 }
789 }
790
791 private static final sun.misc.Unsafe UNSAFE;
792 private static final long headOffset;
793 private static final long tailOffset;
794 private static final long cleanMeOffset;
795 static {
796 try {
797 UNSAFE = sun.misc.Unsafe.getUnsafe();
798 Class<?> k = TransferQueue.class;
799 headOffset = UNSAFE.objectFieldOffset
800 (k.getDeclaredField("head"));
801 tailOffset = UNSAFE.objectFieldOffset
802 (k.getDeclaredField("tail"));
803 cleanMeOffset = UNSAFE.objectFieldOffset
804 (k.getDeclaredField("cleanMe"));
805 } catch (Exception e) {
806 throw new Error(e);
807 }
808 }
809 }
810
811 /**
812 * The transferer. Set only in constructor, but cannot be declared
813 * as final without further complicating serialization. Since
814 * this is accessed only at most once per public method, there
815 * isn't a noticeable performance penalty for using volatile
816 * instead of final here.
817 */
818 private transient volatile Transferer<E> transferer;
819
820 /**
821 * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
822 */
823 public SynchronousQueue() {
824 this(false);
825 }
826
827 /**
828 * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
829 *
830 * @param fair if true, waiting threads contend in FIFO order for
831 * access; otherwise the order is unspecified.
832 */
833 public SynchronousQueue(boolean fair) {
834 transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
835 }
836
837 /**
838 * Adds the specified element to this queue, waiting if necessary for
839 * another thread to receive it.
840 *
841 * @throws InterruptedException {@inheritDoc}
842 * @throws NullPointerException {@inheritDoc}
843 */
844 public void put(E e) throws InterruptedException {
845 if (e == null) throw new NullPointerException();
846 if (transferer.transfer(e, false, 0) == null) {
847 Thread.interrupted();
848 throw new InterruptedException();
849 }
850 }
851
852 /**
853 * Inserts the specified element into this queue, waiting if necessary
854 * up to the specified wait time for another thread to receive it.
855 *
856 * @return <tt>true</tt> if successful, or <tt>false</tt> if the
857 * specified waiting time elapses before a consumer appears.
858 * @throws InterruptedException {@inheritDoc}
859 * @throws NullPointerException {@inheritDoc}
860 */
861 public boolean offer(E e, long timeout, TimeUnit unit)
862 throws InterruptedException {
863 if (e == null) throw new NullPointerException();
864 if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
865 return true;
866 if (!Thread.interrupted())
867 return false;
868 throw new InterruptedException();
869 }
870
871 /**
872 * Inserts the specified element into this queue, if another thread is
873 * waiting to receive it.
874 *
875 * @param e the element to add
876 * @return <tt>true</tt> if the element was added to this queue, else
877 * <tt>false</tt>
878 * @throws NullPointerException if the specified element is null
879 */
880 public boolean offer(E e) {
881 if (e == null) throw new NullPointerException();
882 return transferer.transfer(e, true, 0) != null;
883 }
884
885 /**
886 * Retrieves and removes the head of this queue, waiting if necessary
887 * for another thread to insert it.
888 *
889 * @return the head of this queue
890 * @throws InterruptedException {@inheritDoc}
891 */
892 public E take() throws InterruptedException {
893 E e = transferer.transfer(null, false, 0);
894 if (e != null)
895 return e;
896 Thread.interrupted();
897 throw new InterruptedException();
898 }
899
900 /**
901 * Retrieves and removes the head of this queue, waiting
902 * if necessary up to the specified wait time, for another thread
903 * to insert it.
904 *
905 * @return the head of this queue, or <tt>null</tt> if the
906 * specified waiting time elapses before an element is present.
907 * @throws InterruptedException {@inheritDoc}
908 */
909 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
910 E e = transferer.transfer(null, true, unit.toNanos(timeout));
911 if (e != null || !Thread.interrupted())
912 return e;
913 throw new InterruptedException();
914 }
915
916 /**
917 * Retrieves and removes the head of this queue, if another thread
918 * is currently making an element available.
919 *
920 * @return the head of this queue, or <tt>null</tt> if no
921 * element is available.
922 */
923 public E poll() {
924 return transferer.transfer(null, true, 0);
925 }
926
927 /**
928 * Always returns <tt>true</tt>.
929 * A <tt>SynchronousQueue</tt> has no internal capacity.
930 *
931 * @return <tt>true</tt>
932 */
933 public boolean isEmpty() {
934 return true;
935 }
936
937 /**
938 * Always returns zero.
939 * A <tt>SynchronousQueue</tt> has no internal capacity.
940 *
941 * @return zero
942 */
943 public int size() {
944 return 0;
945 }
946
947 /**
948 * Always returns zero.
949 * A <tt>SynchronousQueue</tt> has no internal capacity.
950 *
951 * @return zero
952 */
953 public int remainingCapacity() {
954 return 0;
955 }
956
957 /**
958 * Does nothing.
959 * A <tt>SynchronousQueue</tt> has no internal capacity.
960 */
961 public void clear() {
962 }
963
964 /**
965 * Always returns <tt>false</tt>.
966 * A <tt>SynchronousQueue</tt> has no internal capacity.
967 *
968 * @param o the element
969 * @return <tt>false</tt>
970 */
971 public boolean contains(Object o) {
972 return false;
973 }
974
975 /**
976 * Always returns <tt>false</tt>.
977 * A <tt>SynchronousQueue</tt> has no internal capacity.
978 *
979 * @param o the element to remove
980 * @return <tt>false</tt>
981 */
982 public boolean remove(Object o) {
983 return false;
984 }
985
986 /**
987 * Returns <tt>false</tt> unless the given collection is empty.
988 * A <tt>SynchronousQueue</tt> has no internal capacity.
989 *
990 * @param c the collection
991 * @return <tt>false</tt> unless given collection is empty
992 */
993 public boolean containsAll(Collection<?> c) {
994 return c.isEmpty();
995 }
996
997 /**
998 * Always returns <tt>false</tt>.
999 * A <tt>SynchronousQueue</tt> has no internal capacity.
1000 *
1001 * @param c the collection
1002 * @return <tt>false</tt>
1003 */
1004 public boolean removeAll(Collection<?> c) {
1005 return false;
1006 }
1007
1008 /**
1009 * Always returns <tt>false</tt>.
1010 * A <tt>SynchronousQueue</tt> has no internal capacity.
1011 *
1012 * @param c the collection
1013 * @return <tt>false</tt>
1014 */
1015 public boolean retainAll(Collection<?> c) {
1016 return false;
1017 }
1018
1019 /**
1020 * Always returns <tt>null</tt>.
1021 * A <tt>SynchronousQueue</tt> does not return elements
1022 * unless actively waited on.
1023 *
1024 * @return <tt>null</tt>
1025 */
1026 public E peek() {
1027 return null;
1028 }
1029
1030 /**
1031 * Returns an empty iterator in which <tt>hasNext</tt> always returns
1032 * <tt>false</tt>.
1033 *
1034 * @return an empty iterator
1035 */
1036 @SuppressWarnings("unchecked")
1037 public Iterator<E> iterator() {
1038 return (Iterator<E>) EmptyIterator.EMPTY_ITERATOR;
1039 }
1040
1041 // Replicated from a previous version of Collections
1042 private static class EmptyIterator<E> implements Iterator<E> {
1043 static final EmptyIterator<Object> EMPTY_ITERATOR
1044 = new EmptyIterator<Object>();
1045
1046 public boolean hasNext() { return false; }
1047 public E next() { throw new NoSuchElementException(); }
1048 public void remove() { throw new IllegalStateException(); }
1049 }
1050
1051 /**
1052 * Returns a zero-length array.
1053 * @return a zero-length array
1054 */
1055 public Object[] toArray() {
1056 return new Object[0];
1057 }
1058
1059 /**
1060 * Sets the zeroeth element of the specified array to <tt>null</tt>
1061 * (if the array has non-zero length) and returns it.
1062 *
1063 * @param a the array
1064 * @return the specified array
1065 * @throws NullPointerException if the specified array is null
1066 */
1067 public <T> T[] toArray(T[] a) {
1068 if (a.length > 0)
1069 a[0] = null;
1070 return a;
1071 }
1072
1073 /**
1074 * @throws UnsupportedOperationException {@inheritDoc}
1075 * @throws ClassCastException {@inheritDoc}
1076 * @throws NullPointerException {@inheritDoc}
1077 * @throws IllegalArgumentException {@inheritDoc}
1078 */
1079 public int drainTo(Collection<? super E> c) {
1080 if (c == null)
1081 throw new NullPointerException();
1082 if (c == this)
1083 throw new IllegalArgumentException();
1084 int n = 0;
1085 for (E e; (e = poll()) != null;) {
1086 c.add(e);
1087 ++n;
1088 }
1089 return n;
1090 }
1091
1092 /**
1093 * @throws UnsupportedOperationException {@inheritDoc}
1094 * @throws ClassCastException {@inheritDoc}
1095 * @throws NullPointerException {@inheritDoc}
1096 * @throws IllegalArgumentException {@inheritDoc}
1097 */
1098 public int drainTo(Collection<? super E> c, int maxElements) {
1099 if (c == null)
1100 throw new NullPointerException();
1101 if (c == this)
1102 throw new IllegalArgumentException();
1103 int n = 0;
1104 for (E e; n < maxElements && (e = poll()) != null;) {
1105 c.add(e);
1106 ++n;
1107 }
1108 return n;
1109 }
1110
1111 /*
1112 * To cope with serialization strategy in the 1.5 version of
1113 * SynchronousQueue, we declare some unused classes and fields
1114 * that exist solely to enable serializability across versions.
1115 * These fields are never used, so are initialized only if this
1116 * object is ever serialized or deserialized.
1117 */
1118
1119 @SuppressWarnings("serial")
1120 static class WaitQueue implements java.io.Serializable { }
1121 static class LifoWaitQueue extends WaitQueue {
1122 private static final long serialVersionUID = -3633113410248163686L;
1123 }
1124 static class FifoWaitQueue extends WaitQueue {
1125 private static final long serialVersionUID = -3623113410248163686L;
1126 }
1127 private ReentrantLock qlock;
1128 private WaitQueue waitingProducers;
1129 private WaitQueue waitingConsumers;
1130
1131 /**
1132 * Saves this queue to a stream (that is, serializes it).
1133 */
1134 private void writeObject(java.io.ObjectOutputStream s)
1135 throws java.io.IOException {
1136 boolean fair = transferer instanceof TransferQueue;
1137 if (fair) {
1138 qlock = new ReentrantLock(true);
1139 waitingProducers = new FifoWaitQueue();
1140 waitingConsumers = new FifoWaitQueue();
1141 }
1142 else {
1143 qlock = new ReentrantLock();
1144 waitingProducers = new LifoWaitQueue();
1145 waitingConsumers = new LifoWaitQueue();
1146 }
1147 s.defaultWriteObject();
1148 }
1149
1150 /**
1151 * Reconstitutes this queue from a stream (that is, deserializes it).
1152 */
1153 private void readObject(final java.io.ObjectInputStream s)
1154 throws java.io.IOException, ClassNotFoundException {
1155 s.defaultReadObject();
1156 if (waitingProducers instanceof FifoWaitQueue)
1157 transferer = new TransferQueue<E>();
1158 else
1159 transferer = new TransferStack<E>();
1160 }
1161
1162 // Unsafe mechanics
1163 static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1164 String field, Class<?> klazz) {
1165 try {
1166 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1167 } catch (NoSuchFieldException e) {
1168 // Convert Exception to corresponding Error
1169 NoSuchFieldError error = new NoSuchFieldError(field);
1170 error.initCause(e);
1171 throw error;
1172 }
1173 }
1174
1175 }