ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadLocalRandom.java
Revision: 1.19
Committed: Fri Aug 9 12:13:14 2013 UTC (10 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.18: +727 -107 lines
Log Message:
Use variant of SplittableRandom algorithm

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.6 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.9 import java.io.ObjectStreamField;
10 jsr166 1.1 import java.util.Random;
11 dl 1.19 import java.util.Spliterator;
12 dl 1.7 import java.util.concurrent.atomic.AtomicInteger;
13     import java.util.concurrent.atomic.AtomicLong;
14 dl 1.19 import java.util.function.DoubleConsumer;
15     import java.util.function.IntConsumer;
16     import java.util.function.LongConsumer;
17     import java.util.stream.DoubleStream;
18     import java.util.stream.IntStream;
19     import java.util.stream.LongStream;
20     import java.util.stream.StreamSupport;
21 jsr166 1.1
22     /**
23 jsr166 1.3 * A random number generator isolated to the current thread. Like the
24 jsr166 1.2 * global {@link java.util.Random} generator used by the {@link
25 jsr166 1.3 * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
26     * with an internally generated seed that may not otherwise be
27     * modified. When applicable, use of {@code ThreadLocalRandom} rather
28     * than shared {@code Random} objects in concurrent programs will
29     * typically encounter much less overhead and contention. Use of
30     * {@code ThreadLocalRandom} is particularly appropriate when multiple
31     * tasks (for example, each a {@link ForkJoinTask}) use random numbers
32     * in parallel in thread pools.
33 jsr166 1.1 *
34     * <p>Usages of this class should typically be of the form:
35     * {@code ThreadLocalRandom.current().nextX(...)} (where
36     * {@code X} is {@code Int}, {@code Long}, etc).
37     * When all usages are of this form, it is never possible to
38 jsr166 1.3 * accidently share a {@code ThreadLocalRandom} across multiple threads.
39 jsr166 1.1 *
40     * <p>This class also provides additional commonly used bounded random
41     * generation methods.
42     *
43     * @since 1.7
44     * @author Doug Lea
45     */
46     public class ThreadLocalRandom extends Random {
47 dl 1.7 /*
48     * This class implements the java.util.Random API (and subclasses
49     * Random) using a single static instance that accesses random
50     * number state held in class Thread (primarily, field
51     * threadLocalRandomSeed). In doing so, it also provides a home
52     * for managing package-private utilities that rely on exactly the
53     * same state as needed to maintain the ThreadLocalRandom
54     * instances. We leverage the need for an initialization flag
55     * field to also use it as a "probe" -- a self-adjusting thread
56     * hash used for contention avoidance, as well as a secondary
57     * simpler (xorShift) random seed that is conservatively used to
58     * avoid otherwise surprising users by hijacking the
59     * ThreadLocalRandom sequence. The dual use is a marriage of
60     * convenience, but is a simple and efficient way of reducing
61     * application-level overhead and footprint of most concurrent
62     * programs.
63     *
64 dl 1.19 * Even though this class subclasses java.util.Random, it uses the
65     * same basic algorithm as java.util.SplittableRandom. (See its
66     * internal documentation for explanations, which are not repeated
67     * here.) Because ThreadLocalRandoms are not splittable
68     * though, we use only a single 64bit gamma.
69     *
70 dl 1.7 * Because this class is in a different package than class Thread,
71 jsr166 1.15 * field access methods use Unsafe to bypass access control rules.
72 dl 1.19 * To conform to the requirements of the Random superclass
73     * constructor, the common static ThreadLocalRandom maintains an
74     * "initialized" field for the sake of rejecting user calls to
75     * setSeed while still allowing a call from constructor. Note
76     * that serialization is completely unnecessary because there is
77     * only a static singleton. But we generate a serial form
78     * containing "rnd" and "initialized" fields to ensure
79     * compatibility across versions.
80     *
81     * Implementations of non-core methods are mostly the same as in
82     * SplittableRandom, that were in part derived from a previous
83     * version of this class.
84 dl 1.7 *
85     * The nextLocalGaussian ThreadLocal supports the very rarely used
86     * nextGaussian method by providing a holder for the second of a
87     * pair of them. As is true for the base class version of this
88     * method, this time/space tradeoff is probably never worthwhile,
89     * but we provide identical statistical properties.
90     */
91    
92 dl 1.19 /** Generates per-thread initialization/probe field */
93     private static final AtomicInteger probeGenerator =
94     new AtomicInteger();
95 jsr166 1.1
96 dl 1.19 /**
97     * The next seed for default constructors.
98     */
99 dl 1.7 private static final AtomicLong seedGenerator =
100 dl 1.19 new AtomicLong(mix64(System.currentTimeMillis()) ^
101     mix64(System.nanoTime()));
102 jsr166 1.1
103 dl 1.19 /**
104     * The seed increment
105     */
106     private static final long GAMMA = 0x9e3779b97f4a7c15L;
107    
108     /**
109     * The increment for generating probe values
110     */
111     private static final int PROBE_INCREMENT = 0x9e3779b9;
112    
113     /**
114     * The increment of seedGenerator per new instance
115     */
116     private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
117    
118     // Constants from SplittableRandom
119     private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
120     private static final float FLOAT_UNIT = 1.0f / (1 << 24);
121 jsr166 1.1
122 dl 1.7 /** Rarely-used holder for the second of a pair of Gaussians */
123     private static final ThreadLocal<Double> nextLocalGaussian =
124     new ThreadLocal<Double>();
125 jsr166 1.1
126 dl 1.19 private static long mix64(long z) {
127     z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
128     z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
129     return z ^ (z >>> 33);
130     }
131    
132     private static int mix32(long z) {
133     z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
134     return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
135     }
136    
137 jsr166 1.11 /**
138     * Field used only during singleton initialization.
139     * True when constructor completes.
140 jsr166 1.1 */
141 jsr166 1.11 boolean initialized;
142 dl 1.7
143     /** Constructor used only for static singleton */
144     private ThreadLocalRandom() {
145     initialized = true; // false during super() call
146     }
147 jsr166 1.1
148 dl 1.7 /** The common ThreadLocalRandom */
149     static final ThreadLocalRandom instance = new ThreadLocalRandom();
150 jsr166 1.1
151     /**
152 dl 1.7 * Initialize Thread fields for the current thread. Called only
153     * when Thread.threadLocalRandomProbe is zero, indicating that a
154     * thread local seed value needs to be generated. Note that even
155     * though the initialization is purely thread-local, we need to
156     * rely on (static) atomic generators to initialize the values.
157     */
158     static final void localInit() {
159 dl 1.19 int p = probeGenerator.addAndGet(PROBE_INCREMENT);
160 dl 1.7 int probe = (p == 0) ? 1 : p; // skip 0
161 dl 1.19 long seed = mix64(seedGenerator.getAndAdd(SEEDER_INCREMENT));
162 dl 1.7 Thread t = Thread.currentThread();
163 dl 1.19 UNSAFE.putLong(t, SEED, seed);
164 dl 1.7 UNSAFE.putInt(t, PROBE, probe);
165 jsr166 1.1 }
166    
167     /**
168 jsr166 1.3 * Returns the current thread's {@code ThreadLocalRandom}.
169 jsr166 1.1 *
170 jsr166 1.3 * @return the current thread's {@code ThreadLocalRandom}
171 jsr166 1.1 */
172     public static ThreadLocalRandom current() {
173 dl 1.7 if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
174     localInit();
175     return instance;
176 jsr166 1.1 }
177    
178     /**
179 jsr166 1.3 * Throws {@code UnsupportedOperationException}. Setting seeds in
180     * this generator is not supported.
181 jsr166 1.1 *
182     * @throws UnsupportedOperationException always
183     */
184     public void setSeed(long seed) {
185 jsr166 1.15 // only allow call from super() constructor
186     if (initialized)
187 jsr166 1.1 throw new UnsupportedOperationException();
188     }
189    
190 dl 1.19 final long nextSeed() {
191     Thread t; long r; // read and update per-thread seed
192     UNSAFE.putLong(t = Thread.currentThread(), SEED,
193     r = UNSAFE.getLong(t, SEED) + GAMMA);
194     return r;
195     }
196    
197     // We must define this, but never use it.
198 jsr166 1.1 protected int next(int bits) {
199 dl 1.19 return (int)(mix64(nextSeed()) >>> (64 - bits));
200     }
201    
202     // IllegalArgumentException messages
203     static final String BadBound = "bound must be positive";
204     static final String BadRange = "bound must be greater than origin";
205     static final String BadSize = "size must be non-negative";
206    
207     /**
208     * The form of nextLong used by LongStream Spliterators. If
209     * origin is greater than bound, acts as unbounded form of
210     * nextLong, else as bounded form.
211     *
212     * @param origin the least value, unless greater than bound
213     * @param bound the upper bound (exclusive), must not equal origin
214     * @return a pseudorandom value
215     */
216     final long internalNextLong(long origin, long bound) {
217     long r = mix64(nextSeed());
218     if (origin < bound) {
219     long n = bound - origin, m = n - 1;
220     if ((n & m) == 0L) // power of two
221     r = (r & m) + origin;
222     else if (n > 0L) { // reject over-represented candidates
223     for (long u = r >>> 1; // ensure nonnegative
224     u + m - (r = u % n) < 0L; // rejection check
225     u = mix64(nextSeed()) >>> 1) // retry
226     ;
227     r += origin;
228     }
229     else { // range not representable as long
230     while (r < origin || r >= bound)
231     r = mix64(nextSeed());
232     }
233     }
234     return r;
235     }
236    
237     /**
238     * The form of nextInt used by IntStream Spliterators.
239     * Exactly the same as long version, except for types.
240     *
241     * @param origin the least value, unless greater than bound
242     * @param bound the upper bound (exclusive), must not equal origin
243     * @return a pseudorandom value
244     */
245     final int internalNextInt(int origin, int bound) {
246     int r = mix32(nextSeed());
247     if (origin < bound) {
248     int n = bound - origin, m = n - 1;
249     if ((n & m) == 0)
250     r = (r & m) + origin;
251     else if (n > 0) {
252     for (int u = r >>> 1;
253     u + m - (r = u % n) < 0;
254     u = mix32(nextSeed()) >>> 1)
255     ;
256     r += origin;
257     }
258     else {
259     while (r < origin || r >= bound)
260     r = mix32(nextSeed());
261     }
262     }
263     return r;
264     }
265    
266     /**
267     * The form of nextDouble used by DoubleStream Spliterators.
268     *
269     * @param origin the least value, unless greater than bound
270     * @param bound the upper bound (exclusive), must not equal origin
271     * @return a pseudorandom value
272     */
273     final double internalNextDouble(double origin, double bound) {
274     double r = (nextLong() >>> 11) * DOUBLE_UNIT;
275     if (origin < bound) {
276     r = r * (bound - origin) + origin;
277     if (r >= bound) // correct for rounding
278     r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
279     }
280     return r;
281     }
282    
283     /**
284     * Returns a pseudorandom {@code int} value.
285     *
286     * @return a pseudorandom {@code int} value
287     */
288     public int nextInt() {
289     return mix32(nextSeed());
290     }
291    
292     /**
293     * Returns a pseudorandom {@code int} value between zero (inclusive)
294     * and the specified bound (exclusive).
295     *
296     * @param bound the bound on the random number to be returned. Must be
297     * positive.
298     * @return a pseudorandom {@code int} value between zero
299     * (inclusive) and the bound (exclusive)
300     * @throws IllegalArgumentException if the bound is less than zero
301     */
302     public int nextInt(int bound) {
303     if (bound <= 0)
304     throw new IllegalArgumentException(BadBound);
305     int r = mix32(nextSeed());
306     int m = bound - 1;
307     if ((bound & m) == 0) // power of two
308     r &= m;
309     else { // reject over-represented candidates
310     for (int u = r >>> 1;
311     u + m - (r = u % bound) < 0;
312     u = mix32(nextSeed()) >>> 1)
313     ;
314     }
315     return r;
316 jsr166 1.1 }
317    
318     /**
319 dl 1.19 * Returns a pseudorandom {@code int} value between the specified
320     * origin (inclusive) and the specified bound (exclusive).
321 jsr166 1.1 *
322 dl 1.19 * @param origin the least value returned
323 jsr166 1.1 * @param bound the upper bound (exclusive)
324 dl 1.19 * @return a pseudorandom {@code int} value between the origin
325     * (inclusive) and the bound (exclusive)
326     * @throws IllegalArgumentException if {@code origin} is greater than
327     * or equal to {@code bound}
328     */
329     public int nextInt(int origin, int bound) {
330     if (origin >= bound)
331     throw new IllegalArgumentException(BadRange);
332     return internalNextInt(origin, bound);
333     }
334    
335     /**
336     * Returns a pseudorandom {@code long} value.
337     *
338     * @return a pseudorandom {@code long} value
339 jsr166 1.1 */
340 dl 1.19 public long nextLong() {
341     return mix64(nextSeed());
342 jsr166 1.1 }
343    
344     /**
345 dl 1.19 * Returns a pseudorandom {@code long} value between zero (inclusive)
346     * and the specified bound (exclusive).
347 jsr166 1.1 *
348 dl 1.19 * @param bound the bound on the random number to be returned. Must be
349 jsr166 1.1 * positive.
350 dl 1.19 * @return a pseudorandom {@code long} value between zero
351     * (inclusive) and the bound (exclusive)
352     * @throws IllegalArgumentException if {@code bound} is less than zero
353     */
354     public long nextLong(long bound) {
355     if (bound <= 0)
356     throw new IllegalArgumentException(BadBound);
357     long r = mix64(nextSeed());
358     long m = bound - 1;
359     if ((bound & m) == 0L) // power of two
360     r &= m;
361     else { // reject over-represented candidates
362     for (long u = r >>> 1;
363     u + m - (r = u % bound) < 0L;
364     u = mix64(nextSeed()) >>> 1)
365     ;
366 jsr166 1.1 }
367 dl 1.19 return r;
368 jsr166 1.1 }
369    
370     /**
371 dl 1.19 * Returns a pseudorandom {@code long} value between the specified
372     * origin (inclusive) and the specified bound (exclusive).
373 jsr166 1.1 *
374 dl 1.19 * @param origin the least value returned
375 jsr166 1.1 * @param bound the upper bound (exclusive)
376 dl 1.19 * @return a pseudorandom {@code long} value between the origin
377     * (inclusive) and the bound (exclusive)
378     * @throws IllegalArgumentException if {@code origin} is greater than
379     * or equal to {@code bound}
380     */
381     public long nextLong(long origin, long bound) {
382     if (origin >= bound)
383     throw new IllegalArgumentException(BadRange);
384     return internalNextLong(origin, bound);
385     }
386    
387     /**
388     * Returns a pseudorandom {@code double} value between zero
389     * (inclusive) and one (exclusive).
390     *
391     * @return a pseudorandom {@code double} value between zero
392     * (inclusive) and one (exclusive)
393 jsr166 1.1 */
394 dl 1.19 public double nextDouble() {
395     return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
396 jsr166 1.1 }
397    
398     /**
399 dl 1.19 * Returns a pseudorandom {@code double} value between 0.0
400     * (inclusive) and the specified bound (exclusive).
401 jsr166 1.1 *
402 dl 1.19 * @param bound the bound on the random number to be returned. Must be
403 jsr166 1.1 * positive.
404 dl 1.19 * @return a pseudorandom {@code double} value between zero
405     * (inclusive) and the bound (exclusive)
406     * @throws IllegalArgumentException if {@code bound} is less than zero
407     */
408     public double nextDouble(double bound) {
409     if (!(bound > 0.0))
410     throw new IllegalArgumentException(BadBound);
411     double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
412     return (result < bound) ? result : // correct for rounding
413     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
414     }
415    
416     /**
417     * Returns a pseudorandom {@code double} value between the specified
418     * origin (inclusive) and bound (exclusive).
419     *
420     * @param origin the least value returned
421     * @param bound the upper bound
422     * @return a pseudorandom {@code double} value between the origin
423     * (inclusive) and the bound (exclusive)
424     * @throws IllegalArgumentException if {@code origin} is greater than
425     * or equal to {@code bound}
426     */
427     public double nextDouble(double origin, double bound) {
428     if (!(origin < bound))
429     throw new IllegalArgumentException(BadRange);
430     return internalNextDouble(origin, bound);
431     }
432    
433     /**
434     * Returns a pseudorandom {@code boolean} value.
435     *
436     * @return a pseudorandom {@code boolean} value
437 jsr166 1.1 */
438 dl 1.19 public boolean nextBoolean() {
439     return mix32(nextSeed()) < 0;
440 jsr166 1.1 }
441    
442     /**
443 dl 1.19 * Returns a pseudorandom {@code float} value between zero
444     * (inclusive) and one (exclusive).
445 jsr166 1.1 *
446 dl 1.19 * @return a pseudorandom {@code float} value between zero
447     * (inclusive) and one (exclusive)
448     */
449     public float nextFloat() {
450     return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
451 jsr166 1.1 }
452    
453 dl 1.7 public double nextGaussian() {
454     // Use nextLocalGaussian instead of nextGaussian field
455     Double d = nextLocalGaussian.get();
456     if (d != null) {
457     nextLocalGaussian.set(null);
458     return d.doubleValue();
459     }
460     double v1, v2, s;
461     do {
462     v1 = 2 * nextDouble() - 1; // between -1 and 1
463     v2 = 2 * nextDouble() - 1; // between -1 and 1
464     s = v1 * v1 + v2 * v2;
465     } while (s >= 1 || s == 0);
466     double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
467     nextLocalGaussian.set(new Double(v2 * multiplier));
468     return v1 * multiplier;
469     }
470    
471 dl 1.19 @Override
472     public DoubleStream gaussians() {
473     return DoubleStream.generate(() -> current().nextGaussian());
474     }
475    
476     // stream methods, coded in a way intended to better isolate for
477     // maintenance purposes the small differences across forms.
478    
479     /**
480     * Returns a stream producing the given {@code streamSize} number of
481     * pseudorandom {@code int} values.
482     *
483     * @param streamSize the number of values to generate
484     * @return a stream of pseudorandom {@code int} values
485     * @throws IllegalArgumentException if {@code streamSize} is
486     * less than zero
487     */
488     public IntStream ints(long streamSize) {
489     if (streamSize < 0L)
490     throw new IllegalArgumentException(BadSize);
491     return StreamSupport.intStream
492     (new RandomIntsSpliterator
493     (0L, streamSize, Integer.MAX_VALUE, 0),
494     false);
495     }
496    
497     /**
498     * Returns an effectively unlimited stream of pseudorandom {@code int}
499     * values.
500     *
501     * @implNote This method is implemented to be equivalent to {@code
502     * ints(Long.MAX_VALUE)}.
503     *
504     * @return a stream of pseudorandom {@code int} values
505     */
506     public IntStream ints() {
507     return StreamSupport.intStream
508     (new RandomIntsSpliterator
509     (0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
510     false);
511     }
512    
513     /**
514     * Returns a stream producing the given {@code streamSize} number of
515     * pseudorandom {@code int} values, each conforming to the given
516     * origin and bound.
517     *
518     * @param streamSize the number of values to generate
519     * @param randomNumberOrigin the origin of each random value
520     * @param randomNumberBound the bound of each random value
521     * @return a stream of pseudorandom {@code int} values,
522     * each with the given origin and bound
523     * @throws IllegalArgumentException if {@code streamSize} is
524     * less than zero, or {@code randomNumberOrigin}
525     * is greater than or equal to {@code randomNumberBound}
526     */
527     public IntStream ints(long streamSize, int randomNumberOrigin,
528     int randomNumberBound) {
529     if (streamSize < 0L)
530     throw new IllegalArgumentException(BadSize);
531     if (randomNumberOrigin >= randomNumberBound)
532     throw new IllegalArgumentException(BadRange);
533     return StreamSupport.intStream
534     (new RandomIntsSpliterator
535     (0L, streamSize, randomNumberOrigin, randomNumberBound),
536     false);
537     }
538    
539     /**
540     * Returns an effectively unlimited stream of pseudorandom {@code
541     * int} values, each conforming to the given origin and bound.
542     *
543     * @implNote This method is implemented to be equivalent to {@code
544     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
545     *
546     * @param randomNumberOrigin the origin of each random value
547     * @param randomNumberBound the bound of each random value
548     * @return a stream of pseudorandom {@code int} values,
549     * each with the given origin and bound
550     * @throws IllegalArgumentException if {@code randomNumberOrigin}
551     * is greater than or equal to {@code randomNumberBound}
552     */
553     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
554     if (randomNumberOrigin >= randomNumberBound)
555     throw new IllegalArgumentException(BadRange);
556     return StreamSupport.intStream
557     (new RandomIntsSpliterator
558     (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
559     false);
560     }
561    
562     /**
563     * Returns a stream producing the given {@code streamSize} number of
564     * pseudorandom {@code long} values.
565     *
566     * @param streamSize the number of values to generate
567     * @return a stream of pseudorandom {@code long} values
568     * @throws IllegalArgumentException if {@code streamSize} is
569     * less than zero
570     */
571     public LongStream longs(long streamSize) {
572     if (streamSize < 0L)
573     throw new IllegalArgumentException(BadSize);
574     return StreamSupport.longStream
575     (new RandomLongsSpliterator
576     (0L, streamSize, Long.MAX_VALUE, 0L),
577     false);
578     }
579    
580     /**
581     * Returns an effectively unlimited stream of pseudorandom {@code long}
582     * values.
583     *
584     * @implNote This method is implemented to be equivalent to {@code
585     * longs(Long.MAX_VALUE)}.
586     *
587     * @return a stream of pseudorandom {@code long} values
588     */
589     public LongStream longs() {
590     return StreamSupport.longStream
591     (new RandomLongsSpliterator
592     (0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
593     false);
594     }
595    
596     /**
597     * Returns a stream producing the given {@code streamSize} number of
598     * pseudorandom {@code long} values, each conforming to the
599     * given origin and bound.
600     *
601     * @param streamSize the number of values to generate
602     * @param randomNumberOrigin the origin of each random value
603     * @param randomNumberBound the bound of each random value
604     * @return a stream of pseudorandom {@code long} values,
605     * each with the given origin and bound
606     * @throws IllegalArgumentException if {@code streamSize} is
607     * less than zero, or {@code randomNumberOrigin}
608     * is greater than or equal to {@code randomNumberBound}
609     */
610     public LongStream longs(long streamSize, long randomNumberOrigin,
611     long randomNumberBound) {
612     if (streamSize < 0L)
613     throw new IllegalArgumentException(BadSize);
614     if (randomNumberOrigin >= randomNumberBound)
615     throw new IllegalArgumentException(BadRange);
616     return StreamSupport.longStream
617     (new RandomLongsSpliterator
618     (0L, streamSize, randomNumberOrigin, randomNumberBound),
619     false);
620     }
621    
622     /**
623     * Returns an effectively unlimited stream of pseudorandom {@code
624     * long} values, each conforming to the given origin and bound.
625     *
626     * @implNote This method is implemented to be equivalent to {@code
627     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
628     *
629     * @param randomNumberOrigin the origin of each random value
630     * @param randomNumberBound the bound of each random value
631     * @return a stream of pseudorandom {@code long} values,
632     * each with the given origin and bound
633     * @throws IllegalArgumentException if {@code randomNumberOrigin}
634     * is greater than or equal to {@code randomNumberBound}
635     */
636     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
637     if (randomNumberOrigin >= randomNumberBound)
638     throw new IllegalArgumentException(BadRange);
639     return StreamSupport.longStream
640     (new RandomLongsSpliterator
641     (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
642     false);
643     }
644    
645     /**
646     * Returns a stream producing the given {@code streamSize} number of
647     * pseudorandom {@code double} values, each between zero
648     * (inclusive) and one (exclusive).
649     *
650     * @param streamSize the number of values to generate
651     * @return a stream of {@code double} values
652     * @throws IllegalArgumentException if {@code streamSize} is
653     * less than zero
654     */
655     public DoubleStream doubles(long streamSize) {
656     if (streamSize < 0L)
657     throw new IllegalArgumentException(BadSize);
658     return StreamSupport.doubleStream
659     (new RandomDoublesSpliterator
660     (0L, streamSize, Double.MAX_VALUE, 0.0),
661     false);
662     }
663    
664     /**
665     * Returns an effectively unlimited stream of pseudorandom {@code
666     * double} values, each between zero (inclusive) and one
667     * (exclusive).
668     *
669     * @implNote This method is implemented to be equivalent to {@code
670     * doubles(Long.MAX_VALUE)}.
671     *
672     * @return a stream of pseudorandom {@code double} values
673     */
674     public DoubleStream doubles() {
675     return StreamSupport.doubleStream
676     (new RandomDoublesSpliterator
677     (0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
678     false);
679     }
680    
681     /**
682     * Returns a stream producing the given {@code streamSize} number of
683     * pseudorandom {@code double} values, each conforming to the
684     * given origin and bound.
685     *
686     * @param streamSize the number of values to generate
687     * @param randomNumberOrigin the origin of each random value
688     * @param randomNumberBound the bound of each random value
689     * @return a stream of pseudorandom {@code double} values,
690     * each with the given origin and bound
691     * @throws IllegalArgumentException if {@code streamSize} is
692     * less than zero
693     * @throws IllegalArgumentException if {@code randomNumberOrigin}
694     * is greater than or equal to {@code randomNumberBound}
695     */
696     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
697     double randomNumberBound) {
698     if (streamSize < 0L)
699     throw new IllegalArgumentException(BadSize);
700     if (!(randomNumberOrigin < randomNumberBound))
701     throw new IllegalArgumentException(BadRange);
702     return StreamSupport.doubleStream
703     (new RandomDoublesSpliterator
704     (0L, streamSize, randomNumberOrigin, randomNumberBound),
705     false);
706     }
707    
708     /**
709     * Returns an effectively unlimited stream of pseudorandom {@code
710     * double} values, each conforming to the given origin and bound.
711     *
712     * @implNote This method is implemented to be equivalent to {@code
713     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
714     *
715     * @param randomNumberOrigin the origin of each random value
716     * @param randomNumberBound the bound of each random value
717     * @return a stream of pseudorandom {@code double} values,
718     * each with the given origin and bound
719     * @throws IllegalArgumentException if {@code randomNumberOrigin}
720     * is greater than or equal to {@code randomNumberBound}
721     */
722     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
723     if (!(randomNumberOrigin < randomNumberBound))
724     throw new IllegalArgumentException(BadRange);
725     return StreamSupport.doubleStream
726     (new RandomDoublesSpliterator
727     (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
728     false);
729     }
730    
731     /**
732     * Spliterator for int streams. We multiplex the four int
733     * versions into one class by treating a bound less than origin as
734     * unbounded, and also by treating "infinite" as equivalent to
735     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
736     * approach. The long and double versions of this class are
737     * identical except for types.
738     */
739     static final class RandomIntsSpliterator implements Spliterator.OfInt {
740     long index;
741     final long fence;
742     final int origin;
743     final int bound;
744     RandomIntsSpliterator(long index, long fence,
745     int origin, int bound) {
746     this.index = index; this.fence = fence;
747     this.origin = origin; this.bound = bound;
748     }
749    
750     public RandomIntsSpliterator trySplit() {
751     long i = index, m = (i + fence) >>> 1;
752     return (m <= i) ? null :
753     new RandomIntsSpliterator(i, index = m, origin, bound);
754     }
755    
756     public long estimateSize() {
757     return fence - index;
758     }
759    
760     public int characteristics() {
761     return (Spliterator.SIZED | Spliterator.SUBSIZED |
762     Spliterator.NONNULL | Spliterator.IMMUTABLE);
763     }
764    
765     public boolean tryAdvance(IntConsumer consumer) {
766     if (consumer == null) throw new NullPointerException();
767     long i = index, f = fence;
768     if (i < f) {
769     consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
770     index = i + 1;
771     return true;
772     }
773     return false;
774     }
775    
776     public void forEachRemaining(IntConsumer consumer) {
777     if (consumer == null) throw new NullPointerException();
778     long i = index, f = fence;
779     if (i < f) {
780     index = f;
781     int o = origin, b = bound;
782     ThreadLocalRandom rng = ThreadLocalRandom.current();
783     do {
784     consumer.accept(rng.internalNextInt(o, b));
785     } while (++i < f);
786     }
787     }
788     }
789    
790     /**
791     * Spliterator for long streams.
792     */
793     static final class RandomLongsSpliterator implements Spliterator.OfLong {
794     long index;
795     final long fence;
796     final long origin;
797     final long bound;
798     RandomLongsSpliterator(long index, long fence,
799     long origin, long bound) {
800     this.index = index; this.fence = fence;
801     this.origin = origin; this.bound = bound;
802     }
803    
804     public RandomLongsSpliterator trySplit() {
805     long i = index, m = (i + fence) >>> 1;
806     return (m <= i) ? null :
807     new RandomLongsSpliterator(i, index = m, origin, bound);
808     }
809    
810     public long estimateSize() {
811     return fence - index;
812     }
813    
814     public int characteristics() {
815     return (Spliterator.SIZED | Spliterator.SUBSIZED |
816     Spliterator.NONNULL | Spliterator.IMMUTABLE);
817     }
818    
819     public boolean tryAdvance(LongConsumer consumer) {
820     if (consumer == null) throw new NullPointerException();
821     long i = index, f = fence;
822     if (i < f) {
823     consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
824     index = i + 1;
825     return true;
826     }
827     return false;
828     }
829    
830     public void forEachRemaining(LongConsumer consumer) {
831     if (consumer == null) throw new NullPointerException();
832     long i = index, f = fence;
833     if (i < f) {
834     index = f;
835     long o = origin, b = bound;
836     ThreadLocalRandom rng = ThreadLocalRandom.current();
837     do {
838     consumer.accept(rng.internalNextLong(o, b));
839     } while (++i < f);
840     }
841     }
842    
843     }
844    
845     /**
846     * Spliterator for double streams.
847     */
848     static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
849     long index;
850     final long fence;
851     final double origin;
852     final double bound;
853     RandomDoublesSpliterator(long index, long fence,
854     double origin, double bound) {
855     this.index = index; this.fence = fence;
856     this.origin = origin; this.bound = bound;
857     }
858    
859     public RandomDoublesSpliterator trySplit() {
860     long i = index, m = (i + fence) >>> 1;
861     return (m <= i) ? null :
862     new RandomDoublesSpliterator(i, index = m, origin, bound);
863     }
864    
865     public long estimateSize() {
866     return fence - index;
867     }
868    
869     public int characteristics() {
870     return (Spliterator.SIZED | Spliterator.SUBSIZED |
871     Spliterator.NONNULL | Spliterator.IMMUTABLE);
872     }
873    
874     public boolean tryAdvance(DoubleConsumer consumer) {
875     if (consumer == null) throw new NullPointerException();
876     long i = index, f = fence;
877     if (i < f) {
878     consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
879     index = i + 1;
880     return true;
881     }
882     return false;
883     }
884    
885     public void forEachRemaining(DoubleConsumer consumer) {
886     if (consumer == null) throw new NullPointerException();
887     long i = index, f = fence;
888     if (i < f) {
889     index = f;
890     double o = origin, b = bound;
891     ThreadLocalRandom rng = ThreadLocalRandom.current();
892     do {
893     consumer.accept(rng.internalNextDouble(o, b));
894     } while (++i < f);
895     }
896     }
897     }
898    
899    
900 dl 1.7 // Within-package utilities
901    
902     /*
903     * Descriptions of the usages of the methods below can be found in
904     * the classes that use them. Briefly, a thread's "probe" value is
905     * a non-zero hash code that (probably) does not collide with
906     * other existing threads with respect to any power of two
907     * collision space. When it does collide, it is pseudo-randomly
908     * adjusted (using a Marsaglia XorShift). The nextSecondarySeed
909     * method is used in the same contexts as ThreadLocalRandom, but
910     * only for transient usages such as random adaptive spin/block
911     * sequences for which a cheap RNG suffices and for which it could
912     * in principle disrupt user-visible statistical properties of the
913     * main ThreadLocalRandom if we were to use it.
914     *
915     * Note: Because of package-protection issues, versions of some
916 dl 1.9 * these methods also appear in some subpackage classes.
917 dl 1.7 */
918    
919     /**
920     * Returns the probe value for the current thread without forcing
921     * initialization. Note that invoking ThreadLocalRandom.current()
922     * can be used to force initialization on zero return.
923     */
924     static final int getProbe() {
925     return UNSAFE.getInt(Thread.currentThread(), PROBE);
926     }
927    
928     /**
929     * Pseudo-randomly advances and records the given probe value for the
930     * given thread.
931     */
932     static final int advanceProbe(int probe) {
933     probe ^= probe << 13; // xorshift
934     probe ^= probe >>> 17;
935     probe ^= probe << 5;
936     UNSAFE.putInt(Thread.currentThread(), PROBE, probe);
937     return probe;
938     }
939    
940     /**
941     * Returns the pseudo-randomly initialized or updated secondary seed.
942     */
943     static final int nextSecondarySeed() {
944     int r;
945     Thread t = Thread.currentThread();
946     if ((r = UNSAFE.getInt(t, SECONDARY)) != 0) {
947     r ^= r << 13; // xorshift
948     r ^= r >>> 17;
949     r ^= r << 5;
950     }
951 dl 1.10 else {
952     localInit();
953     if ((r = (int)UNSAFE.getLong(t, SEED)) == 0)
954     r = 1; // avoid zero
955     }
956 dl 1.7 UNSAFE.putInt(t, SECONDARY, r);
957     return r;
958     }
959    
960 jsr166 1.13 // Serialization support
961 dl 1.9
962 jsr166 1.1 private static final long serialVersionUID = -5851777807851030925L;
963 dl 1.7
964 dl 1.9 /**
965 jsr166 1.14 * @serialField rnd long
966     * seed for random computations
967     * @serialField initialized boolean
968     * always true
969     */
970     private static final ObjectStreamField[] serialPersistentFields = {
971     new ObjectStreamField("rnd", long.class),
972     new ObjectStreamField("initialized", boolean.class),
973     };
974    
975     /**
976     * Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
977 jsr166 1.16 * @param s the stream
978 jsr166 1.17 * @throws java.io.IOException if an I/O error occurs
979 jsr166 1.14 */
980 jsr166 1.16 private void writeObject(java.io.ObjectOutputStream s)
981 jsr166 1.14 throws java.io.IOException {
982    
983 jsr166 1.16 java.io.ObjectOutputStream.PutField fields = s.putFields();
984 jsr166 1.14 fields.put("rnd", UNSAFE.getLong(Thread.currentThread(), SEED));
985     fields.put("initialized", true);
986 jsr166 1.16 s.writeFields();
987 jsr166 1.14 }
988    
989     /**
990 dl 1.9 * Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
991 jsr166 1.16 * @return the {@link #current() current} thread's {@code ThreadLocalRandom}
992 dl 1.9 */
993     private Object readResolve() {
994     return current();
995     }
996    
997 dl 1.7 // Unsafe mechanics
998     private static final sun.misc.Unsafe UNSAFE;
999     private static final long SEED;
1000     private static final long PROBE;
1001     private static final long SECONDARY;
1002     static {
1003     try {
1004     UNSAFE = sun.misc.Unsafe.getUnsafe();
1005     Class<?> tk = Thread.class;
1006     SEED = UNSAFE.objectFieldOffset
1007     (tk.getDeclaredField("threadLocalRandomSeed"));
1008     PROBE = UNSAFE.objectFieldOffset
1009     (tk.getDeclaredField("threadLocalRandomProbe"));
1010     SECONDARY = UNSAFE.objectFieldOffset
1011     (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
1012     } catch (Exception e) {
1013     throw new Error(e);
1014     }
1015     }
1016 jsr166 1.1 }