ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadLocalRandom.java
Revision: 1.21
Committed: Thu Aug 22 23:36:02 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.20: +84 -48 lines
Log Message:
Optional SecureRandom initial seed

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.security.SecureRandom;
10 import java.net.InetAddress;
11 import java.io.ObjectStreamField;
12 import java.util.Random;
13 import java.util.Spliterator;
14 import java.util.concurrent.atomic.AtomicInteger;
15 import java.util.concurrent.atomic.AtomicLong;
16 import java.util.function.DoubleConsumer;
17 import java.util.function.IntConsumer;
18 import java.util.function.LongConsumer;
19 import java.util.stream.DoubleStream;
20 import java.util.stream.IntStream;
21 import java.util.stream.LongStream;
22 import java.util.stream.StreamSupport;
23
24 /**
25 * A random number generator isolated to the current thread. Like the
26 * global {@link java.util.Random} generator used by the {@link
27 * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
28 * with an internally generated seed that may not otherwise be
29 * modified. When applicable, use of {@code ThreadLocalRandom} rather
30 * than shared {@code Random} objects in concurrent programs will
31 * typically encounter much less overhead and contention. Use of
32 * {@code ThreadLocalRandom} is particularly appropriate when multiple
33 * tasks (for example, each a {@link ForkJoinTask}) use random numbers
34 * in parallel in thread pools.
35 *
36 * <p>Usages of this class should typically be of the form:
37 * {@code ThreadLocalRandom.current().nextX(...)} (where
38 * {@code X} is {@code Int}, {@code Long}, etc).
39 * When all usages are of this form, it is never possible to
40 * accidently share a {@code ThreadLocalRandom} across multiple threads.
41 *
42 * <p>This class also provides additional commonly used bounded random
43 * generation methods.
44 *
45 * <p>Instances of {@code ThreadLocalRandom} are not cryptographically
46 * secure. Consider instead using {@link java.security.SecureRandom}
47 * in security-sensitive applications. Additionally, instances do not
48 * use a cryptographically random seed unless the {@linkplain
49 * System#getProperty system property} {@code
50 * java.util.secureRandomSeed} is set to {@code true}.
51 *
52 * @since 1.7
53 * @author Doug Lea
54 */
55 public class ThreadLocalRandom extends Random {
56 /*
57 * This class implements the java.util.Random API (and subclasses
58 * Random) using a single static instance that accesses random
59 * number state held in class Thread (primarily, field
60 * threadLocalRandomSeed). In doing so, it also provides a home
61 * for managing package-private utilities that rely on exactly the
62 * same state as needed to maintain the ThreadLocalRandom
63 * instances. We leverage the need for an initialization flag
64 * field to also use it as a "probe" -- a self-adjusting thread
65 * hash used for contention avoidance, as well as a secondary
66 * simpler (xorShift) random seed that is conservatively used to
67 * avoid otherwise surprising users by hijacking the
68 * ThreadLocalRandom sequence. The dual use is a marriage of
69 * convenience, but is a simple and efficient way of reducing
70 * application-level overhead and footprint of most concurrent
71 * programs.
72 *
73 * Even though this class subclasses java.util.Random, it uses the
74 * same basic algorithm as java.util.SplittableRandom. (See its
75 * internal documentation for explanations, which are not repeated
76 * here.) Because ThreadLocalRandoms are not splittable
77 * though, we use only a single 64bit gamma.
78 *
79 * Because this class is in a different package than class Thread,
80 * field access methods use Unsafe to bypass access control rules.
81 * To conform to the requirements of the Random superclass
82 * constructor, the common static ThreadLocalRandom maintains an
83 * "initialized" field for the sake of rejecting user calls to
84 * setSeed while still allowing a call from constructor. Note
85 * that serialization is completely unnecessary because there is
86 * only a static singleton. But we generate a serial form
87 * containing "rnd" and "initialized" fields to ensure
88 * compatibility across versions.
89 *
90 * Implementations of non-core methods are mostly the same as in
91 * SplittableRandom, that were in part derived from a previous
92 * version of this class.
93 *
94 * The nextLocalGaussian ThreadLocal supports the very rarely used
95 * nextGaussian method by providing a holder for the second of a
96 * pair of them. As is true for the base class version of this
97 * method, this time/space tradeoff is probably never worthwhile,
98 * but we provide identical statistical properties.
99 */
100
101 /** Generates per-thread initialization/probe field */
102 private static final AtomicInteger probeGenerator =
103 new AtomicInteger();
104
105 /**
106 * The next seed for default constructors.
107 */
108 private static final AtomicLong seeder = new AtomicLong(initialSeed());
109
110 private static long initialSeed() { // same as SplittableRandom
111 try { // ignore exceptions in accessing/parsing properties
112 String pp = System.getProperty
113 ("java.util.secureRandomSeed");
114 if (pp != null && pp.equalsIgnoreCase("true")) {
115 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
116 long s = (long)(seedBytes[0]) & 0xffL;
117 for (int i = 1; i < 8; ++i)
118 s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
119 return s;
120 }
121 } catch (Exception ignore) {
122 }
123 int hh = 0; // hashed host address
124 try {
125 hh = InetAddress.getLocalHost().hashCode();
126 } catch (Exception ignore) {
127 }
128 return (mix64((((long)hh) << 32) ^ System.currentTimeMillis()) ^
129 mix64(System.nanoTime()));
130 }
131
132 /**
133 * The seed increment
134 */
135 private static final long GAMMA = 0x9e3779b97f4a7c15L;
136
137 /**
138 * The increment for generating probe values
139 */
140 private static final int PROBE_INCREMENT = 0x9e3779b9;
141
142 /**
143 * The increment of seeder per new instance
144 */
145 private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
146
147 // Constants from SplittableRandom
148 private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
149 private static final float FLOAT_UNIT = 1.0f / (1 << 24);
150
151 /** Rarely-used holder for the second of a pair of Gaussians */
152 private static final ThreadLocal<Double> nextLocalGaussian =
153 new ThreadLocal<Double>();
154
155 private static long mix64(long z) {
156 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
157 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
158 return z ^ (z >>> 33);
159 }
160
161 private static int mix32(long z) {
162 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
163 return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
164 }
165
166 /**
167 * Field used only during singleton initialization.
168 * True when constructor completes.
169 */
170 boolean initialized;
171
172 /** Constructor used only for static singleton */
173 private ThreadLocalRandom() {
174 initialized = true; // false during super() call
175 }
176
177 /** The common ThreadLocalRandom */
178 static final ThreadLocalRandom instance = new ThreadLocalRandom();
179
180 /**
181 * Initialize Thread fields for the current thread. Called only
182 * when Thread.threadLocalRandomProbe is zero, indicating that a
183 * thread local seed value needs to be generated. Note that even
184 * though the initialization is purely thread-local, we need to
185 * rely on (static) atomic generators to initialize the values.
186 */
187 static final void localInit() {
188 int p = probeGenerator.addAndGet(PROBE_INCREMENT);
189 int probe = (p == 0) ? 1 : p; // skip 0
190 long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
191 Thread t = Thread.currentThread();
192 UNSAFE.putLong(t, SEED, seed);
193 UNSAFE.putInt(t, PROBE, probe);
194 }
195
196 /**
197 * Returns the current thread's {@code ThreadLocalRandom}.
198 *
199 * @return the current thread's {@code ThreadLocalRandom}
200 */
201 public static ThreadLocalRandom current() {
202 if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
203 localInit();
204 return instance;
205 }
206
207 /**
208 * Throws {@code UnsupportedOperationException}. Setting seeds in
209 * this generator is not supported.
210 *
211 * @throws UnsupportedOperationException always
212 */
213 public void setSeed(long seed) {
214 // only allow call from super() constructor
215 if (initialized)
216 throw new UnsupportedOperationException();
217 }
218
219 final long nextSeed() {
220 Thread t; long r; // read and update per-thread seed
221 UNSAFE.putLong(t = Thread.currentThread(), SEED,
222 r = UNSAFE.getLong(t, SEED) + GAMMA);
223 return r;
224 }
225
226 // We must define this, but never use it.
227 protected int next(int bits) {
228 return (int)(mix64(nextSeed()) >>> (64 - bits));
229 }
230
231 // IllegalArgumentException messages
232 static final String BadBound = "bound must be positive";
233 static final String BadRange = "bound must be greater than origin";
234 static final String BadSize = "size must be non-negative";
235
236 /**
237 * The form of nextLong used by LongStream Spliterators. If
238 * origin is greater than bound, acts as unbounded form of
239 * nextLong, else as bounded form.
240 *
241 * @param origin the least value, unless greater than bound
242 * @param bound the upper bound (exclusive), must not equal origin
243 * @return a pseudorandom value
244 */
245 final long internalNextLong(long origin, long bound) {
246 long r = mix64(nextSeed());
247 if (origin < bound) {
248 long n = bound - origin, m = n - 1;
249 if ((n & m) == 0L) // power of two
250 r = (r & m) + origin;
251 else if (n > 0L) { // reject over-represented candidates
252 for (long u = r >>> 1; // ensure nonnegative
253 u + m - (r = u % n) < 0L; // rejection check
254 u = mix64(nextSeed()) >>> 1) // retry
255 ;
256 r += origin;
257 }
258 else { // range not representable as long
259 while (r < origin || r >= bound)
260 r = mix64(nextSeed());
261 }
262 }
263 return r;
264 }
265
266 /**
267 * The form of nextInt used by IntStream Spliterators.
268 * Exactly the same as long version, except for types.
269 *
270 * @param origin the least value, unless greater than bound
271 * @param bound the upper bound (exclusive), must not equal origin
272 * @return a pseudorandom value
273 */
274 final int internalNextInt(int origin, int bound) {
275 int r = mix32(nextSeed());
276 if (origin < bound) {
277 int n = bound - origin, m = n - 1;
278 if ((n & m) == 0)
279 r = (r & m) + origin;
280 else if (n > 0) {
281 for (int u = r >>> 1;
282 u + m - (r = u % n) < 0;
283 u = mix32(nextSeed()) >>> 1)
284 ;
285 r += origin;
286 }
287 else {
288 while (r < origin || r >= bound)
289 r = mix32(nextSeed());
290 }
291 }
292 return r;
293 }
294
295 /**
296 * The form of nextDouble used by DoubleStream Spliterators.
297 *
298 * @param origin the least value, unless greater than bound
299 * @param bound the upper bound (exclusive), must not equal origin
300 * @return a pseudorandom value
301 */
302 final double internalNextDouble(double origin, double bound) {
303 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
304 if (origin < bound) {
305 r = r * (bound - origin) + origin;
306 if (r >= bound) // correct for rounding
307 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
308 }
309 return r;
310 }
311
312 /**
313 * Returns a pseudorandom {@code int} value.
314 *
315 * @return a pseudorandom {@code int} value
316 */
317 public int nextInt() {
318 return mix32(nextSeed());
319 }
320
321 /**
322 * Returns a pseudorandom {@code int} value between zero (inclusive)
323 * and the specified bound (exclusive).
324 *
325 * @param bound the upper bound (exclusive). Must be positive.
326 * @return a pseudorandom {@code int} value between zero
327 * (inclusive) and the bound (exclusive)
328 * @throws IllegalArgumentException if {@code bound} is not positive
329 */
330 public int nextInt(int bound) {
331 if (bound <= 0)
332 throw new IllegalArgumentException(BadBound);
333 int r = mix32(nextSeed());
334 int m = bound - 1;
335 if ((bound & m) == 0) // power of two
336 r &= m;
337 else { // reject over-represented candidates
338 for (int u = r >>> 1;
339 u + m - (r = u % bound) < 0;
340 u = mix32(nextSeed()) >>> 1)
341 ;
342 }
343 return r;
344 }
345
346 /**
347 * Returns a pseudorandom {@code int} value between the specified
348 * origin (inclusive) and the specified bound (exclusive).
349 *
350 * @param origin the least value returned
351 * @param bound the upper bound (exclusive)
352 * @return a pseudorandom {@code int} value between the origin
353 * (inclusive) and the bound (exclusive)
354 * @throws IllegalArgumentException if {@code origin} is greater than
355 * or equal to {@code bound}
356 */
357 public int nextInt(int origin, int bound) {
358 if (origin >= bound)
359 throw new IllegalArgumentException(BadRange);
360 return internalNextInt(origin, bound);
361 }
362
363 /**
364 * Returns a pseudorandom {@code long} value.
365 *
366 * @return a pseudorandom {@code long} value
367 */
368 public long nextLong() {
369 return mix64(nextSeed());
370 }
371
372 /**
373 * Returns a pseudorandom {@code long} value between zero (inclusive)
374 * and the specified bound (exclusive).
375 *
376 * @param bound the upper bound (exclusive). Must be positive.
377 * @return a pseudorandom {@code long} value between zero
378 * (inclusive) and the bound (exclusive)
379 * @throws IllegalArgumentException if {@code bound} is not positive
380 */
381 public long nextLong(long bound) {
382 if (bound <= 0)
383 throw new IllegalArgumentException(BadBound);
384 long r = mix64(nextSeed());
385 long m = bound - 1;
386 if ((bound & m) == 0L) // power of two
387 r &= m;
388 else { // reject over-represented candidates
389 for (long u = r >>> 1;
390 u + m - (r = u % bound) < 0L;
391 u = mix64(nextSeed()) >>> 1)
392 ;
393 }
394 return r;
395 }
396
397 /**
398 * Returns a pseudorandom {@code long} value between the specified
399 * origin (inclusive) and the specified bound (exclusive).
400 *
401 * @param origin the least value returned
402 * @param bound the upper bound (exclusive)
403 * @return a pseudorandom {@code long} value between the origin
404 * (inclusive) and the bound (exclusive)
405 * @throws IllegalArgumentException if {@code origin} is greater than
406 * or equal to {@code bound}
407 */
408 public long nextLong(long origin, long bound) {
409 if (origin >= bound)
410 throw new IllegalArgumentException(BadRange);
411 return internalNextLong(origin, bound);
412 }
413
414 /**
415 * Returns a pseudorandom {@code double} value between zero
416 * (inclusive) and one (exclusive).
417 *
418 * @return a pseudorandom {@code double} value between zero
419 * (inclusive) and one (exclusive)
420 */
421 public double nextDouble() {
422 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
423 }
424
425 /**
426 * Returns a pseudorandom {@code double} value between 0.0
427 * (inclusive) and the specified bound (exclusive).
428 *
429 * @param bound the upper bound (exclusive). Must be positive.
430 * @return a pseudorandom {@code double} value between zero
431 * (inclusive) and the bound (exclusive)
432 * @throws IllegalArgumentException if {@code bound} is not positive
433 */
434 public double nextDouble(double bound) {
435 if (!(bound > 0.0))
436 throw new IllegalArgumentException(BadBound);
437 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
438 return (result < bound) ? result : // correct for rounding
439 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
440 }
441
442 /**
443 * Returns a pseudorandom {@code double} value between the specified
444 * origin (inclusive) and bound (exclusive).
445 *
446 * @param origin the least value returned
447 * @param bound the upper bound (exclusive)
448 * @return a pseudorandom {@code double} value between the origin
449 * (inclusive) and the bound (exclusive)
450 * @throws IllegalArgumentException if {@code origin} is greater than
451 * or equal to {@code bound}
452 */
453 public double nextDouble(double origin, double bound) {
454 if (!(origin < bound))
455 throw new IllegalArgumentException(BadRange);
456 return internalNextDouble(origin, bound);
457 }
458
459 /**
460 * Returns a pseudorandom {@code boolean} value.
461 *
462 * @return a pseudorandom {@code boolean} value
463 */
464 public boolean nextBoolean() {
465 return mix32(nextSeed()) < 0;
466 }
467
468 /**
469 * Returns a pseudorandom {@code float} value between zero
470 * (inclusive) and one (exclusive).
471 *
472 * @return a pseudorandom {@code float} value between zero
473 * (inclusive) and one (exclusive)
474 */
475 public float nextFloat() {
476 return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
477 }
478
479 public double nextGaussian() {
480 // Use nextLocalGaussian instead of nextGaussian field
481 Double d = nextLocalGaussian.get();
482 if (d != null) {
483 nextLocalGaussian.set(null);
484 return d.doubleValue();
485 }
486 double v1, v2, s;
487 do {
488 v1 = 2 * nextDouble() - 1; // between -1 and 1
489 v2 = 2 * nextDouble() - 1; // between -1 and 1
490 s = v1 * v1 + v2 * v2;
491 } while (s >= 1 || s == 0);
492 double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
493 nextLocalGaussian.set(new Double(v2 * multiplier));
494 return v1 * multiplier;
495 }
496
497 // stream methods, coded in a way intended to better isolate for
498 // maintenance purposes the small differences across forms.
499
500 /**
501 * Returns a stream producing the given {@code streamSize} number of
502 * pseudorandom {@code int} values.
503 *
504 * @param streamSize the number of values to generate
505 * @return a stream of pseudorandom {@code int} values
506 * @throws IllegalArgumentException if {@code streamSize} is
507 * less than zero
508 * @since 1.8
509 */
510 public IntStream ints(long streamSize) {
511 if (streamSize < 0L)
512 throw new IllegalArgumentException(BadSize);
513 return StreamSupport.intStream
514 (new RandomIntsSpliterator
515 (0L, streamSize, Integer.MAX_VALUE, 0),
516 false);
517 }
518
519 /**
520 * Returns an effectively unlimited stream of pseudorandom {@code int}
521 * values.
522 *
523 * @implNote This method is implemented to be equivalent to {@code
524 * ints(Long.MAX_VALUE)}.
525 *
526 * @return a stream of pseudorandom {@code int} values
527 * @since 1.8
528 */
529 public IntStream ints() {
530 return StreamSupport.intStream
531 (new RandomIntsSpliterator
532 (0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
533 false);
534 }
535
536 /**
537 * Returns a stream producing the given {@code streamSize} number
538 * of pseudorandom {@code int} values, each conforming to the given
539 * origin (inclusive) and bound (exclusive).
540 *
541 * @param streamSize the number of values to generate
542 * @param randomNumberOrigin the origin (inclusive) of each random value
543 * @param randomNumberBound the bound (exclusive) of each random value
544 * @return a stream of pseudorandom {@code int} values,
545 * each with the given origin (inclusive) and bound (exclusive)
546 * @throws IllegalArgumentException if {@code streamSize} is
547 * less than zero, or {@code randomNumberOrigin}
548 * is greater than or equal to {@code randomNumberBound}
549 * @since 1.8
550 */
551 public IntStream ints(long streamSize, int randomNumberOrigin,
552 int randomNumberBound) {
553 if (streamSize < 0L)
554 throw new IllegalArgumentException(BadSize);
555 if (randomNumberOrigin >= randomNumberBound)
556 throw new IllegalArgumentException(BadRange);
557 return StreamSupport.intStream
558 (new RandomIntsSpliterator
559 (0L, streamSize, randomNumberOrigin, randomNumberBound),
560 false);
561 }
562
563 /**
564 * Returns an effectively unlimited stream of pseudorandom {@code
565 * int} values, each conforming to the given origin (inclusive) and bound
566 * (exclusive).
567 *
568 * @implNote This method is implemented to be equivalent to {@code
569 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
570 *
571 * @param randomNumberOrigin the origin (inclusive) of each random value
572 * @param randomNumberBound the bound (exclusive) of each random value
573 * @return a stream of pseudorandom {@code int} values,
574 * each with the given origin (inclusive) and bound (exclusive)
575 * @throws IllegalArgumentException if {@code randomNumberOrigin}
576 * is greater than or equal to {@code randomNumberBound}
577 * @since 1.8
578 */
579 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
580 if (randomNumberOrigin >= randomNumberBound)
581 throw new IllegalArgumentException(BadRange);
582 return StreamSupport.intStream
583 (new RandomIntsSpliterator
584 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
585 false);
586 }
587
588 /**
589 * Returns a stream producing the given {@code streamSize} number of
590 * pseudorandom {@code long} values.
591 *
592 * @param streamSize the number of values to generate
593 * @return a stream of pseudorandom {@code long} values
594 * @throws IllegalArgumentException if {@code streamSize} is
595 * less than zero
596 * @since 1.8
597 */
598 public LongStream longs(long streamSize) {
599 if (streamSize < 0L)
600 throw new IllegalArgumentException(BadSize);
601 return StreamSupport.longStream
602 (new RandomLongsSpliterator
603 (0L, streamSize, Long.MAX_VALUE, 0L),
604 false);
605 }
606
607 /**
608 * Returns an effectively unlimited stream of pseudorandom {@code long}
609 * values.
610 *
611 * @implNote This method is implemented to be equivalent to {@code
612 * longs(Long.MAX_VALUE)}.
613 *
614 * @return a stream of pseudorandom {@code long} values
615 * @since 1.8
616 */
617 public LongStream longs() {
618 return StreamSupport.longStream
619 (new RandomLongsSpliterator
620 (0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
621 false);
622 }
623
624 /**
625 * Returns a stream producing the given {@code streamSize} number of
626 * pseudorandom {@code long}, each conforming to the given origin
627 * (inclusive) and bound (exclusive).
628 *
629 * @param streamSize the number of values to generate
630 * @param randomNumberOrigin the origin (inclusive) of each random value
631 * @param randomNumberBound the bound (exclusive) of each random value
632 * @return a stream of pseudorandom {@code long} values,
633 * each with the given origin (inclusive) and bound (exclusive)
634 * @throws IllegalArgumentException if {@code streamSize} is
635 * less than zero, or {@code randomNumberOrigin}
636 * is greater than or equal to {@code randomNumberBound}
637 * @since 1.8
638 */
639 public LongStream longs(long streamSize, long randomNumberOrigin,
640 long randomNumberBound) {
641 if (streamSize < 0L)
642 throw new IllegalArgumentException(BadSize);
643 if (randomNumberOrigin >= randomNumberBound)
644 throw new IllegalArgumentException(BadRange);
645 return StreamSupport.longStream
646 (new RandomLongsSpliterator
647 (0L, streamSize, randomNumberOrigin, randomNumberBound),
648 false);
649 }
650
651 /**
652 * Returns an effectively unlimited stream of pseudorandom {@code
653 * long} values, each conforming to the given origin (inclusive) and bound
654 * (exclusive).
655 *
656 * @implNote This method is implemented to be equivalent to {@code
657 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
658 *
659 * @param randomNumberOrigin the origin (inclusive) of each random value
660 * @param randomNumberBound the bound (exclusive) of each random value
661 * @return a stream of pseudorandom {@code long} values,
662 * each with the given origin (inclusive) and bound (exclusive)
663 * @throws IllegalArgumentException if {@code randomNumberOrigin}
664 * is greater than or equal to {@code randomNumberBound}
665 * @since 1.8
666 */
667 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
668 if (randomNumberOrigin >= randomNumberBound)
669 throw new IllegalArgumentException(BadRange);
670 return StreamSupport.longStream
671 (new RandomLongsSpliterator
672 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
673 false);
674 }
675
676 /**
677 * Returns a stream producing the given {@code streamSize} number of
678 * pseudorandom {@code double} values, each between zero
679 * (inclusive) and one (exclusive).
680 *
681 * @param streamSize the number of values to generate
682 * @return a stream of {@code double} values
683 * @throws IllegalArgumentException if {@code streamSize} is
684 * less than zero
685 * @since 1.8
686 */
687 public DoubleStream doubles(long streamSize) {
688 if (streamSize < 0L)
689 throw new IllegalArgumentException(BadSize);
690 return StreamSupport.doubleStream
691 (new RandomDoublesSpliterator
692 (0L, streamSize, Double.MAX_VALUE, 0.0),
693 false);
694 }
695
696 /**
697 * Returns an effectively unlimited stream of pseudorandom {@code
698 * double} values, each between zero (inclusive) and one
699 * (exclusive).
700 *
701 * @implNote This method is implemented to be equivalent to {@code
702 * doubles(Long.MAX_VALUE)}.
703 *
704 * @return a stream of pseudorandom {@code double} values
705 * @since 1.8
706 */
707 public DoubleStream doubles() {
708 return StreamSupport.doubleStream
709 (new RandomDoublesSpliterator
710 (0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
711 false);
712 }
713
714 /**
715 * Returns a stream producing the given {@code streamSize} number of
716 * pseudorandom {@code double} values, each conforming to the given origin
717 * (inclusive) and bound (exclusive).
718 *
719 * @param streamSize the number of values to generate
720 * @param randomNumberOrigin the origin (inclusive) of each random value
721 * @param randomNumberBound the bound (exclusive) of each random value
722 * @return a stream of pseudorandom {@code double} values,
723 * each with the given origin (inclusive) and bound (exclusive)
724 * @throws IllegalArgumentException if {@code streamSize} is
725 * less than zero
726 * @throws IllegalArgumentException if {@code randomNumberOrigin}
727 * is greater than or equal to {@code randomNumberBound}
728 * @since 1.8
729 */
730 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
731 double randomNumberBound) {
732 if (streamSize < 0L)
733 throw new IllegalArgumentException(BadSize);
734 if (!(randomNumberOrigin < randomNumberBound))
735 throw new IllegalArgumentException(BadRange);
736 return StreamSupport.doubleStream
737 (new RandomDoublesSpliterator
738 (0L, streamSize, randomNumberOrigin, randomNumberBound),
739 false);
740 }
741
742 /**
743 * Returns an effectively unlimited stream of pseudorandom {@code
744 * double} values, each conforming to the given origin (inclusive) and bound
745 * (exclusive).
746 *
747 * @implNote This method is implemented to be equivalent to {@code
748 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
749 *
750 * @param randomNumberOrigin the origin (inclusive) of each random value
751 * @param randomNumberBound the bound (exclusive) of each random value
752 * @return a stream of pseudorandom {@code double} values,
753 * each with the given origin (inclusive) and bound (exclusive)
754 * @throws IllegalArgumentException if {@code randomNumberOrigin}
755 * is greater than or equal to {@code randomNumberBound}
756 * @since 1.8
757 */
758 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
759 if (!(randomNumberOrigin < randomNumberBound))
760 throw new IllegalArgumentException(BadRange);
761 return StreamSupport.doubleStream
762 (new RandomDoublesSpliterator
763 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
764 false);
765 }
766
767 /**
768 * Spliterator for int streams. We multiplex the four int
769 * versions into one class by treating a bound less than origin as
770 * unbounded, and also by treating "infinite" as equivalent to
771 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
772 * approach. The long and double versions of this class are
773 * identical except for types.
774 */
775 static final class RandomIntsSpliterator implements Spliterator.OfInt {
776 long index;
777 final long fence;
778 final int origin;
779 final int bound;
780 RandomIntsSpliterator(long index, long fence,
781 int origin, int bound) {
782 this.index = index; this.fence = fence;
783 this.origin = origin; this.bound = bound;
784 }
785
786 public RandomIntsSpliterator trySplit() {
787 long i = index, m = (i + fence) >>> 1;
788 return (m <= i) ? null :
789 new RandomIntsSpliterator(i, index = m, origin, bound);
790 }
791
792 public long estimateSize() {
793 return fence - index;
794 }
795
796 public int characteristics() {
797 return (Spliterator.SIZED | Spliterator.SUBSIZED |
798 Spliterator.NONNULL | Spliterator.IMMUTABLE);
799 }
800
801 public boolean tryAdvance(IntConsumer consumer) {
802 if (consumer == null) throw new NullPointerException();
803 long i = index, f = fence;
804 if (i < f) {
805 consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
806 index = i + 1;
807 return true;
808 }
809 return false;
810 }
811
812 public void forEachRemaining(IntConsumer consumer) {
813 if (consumer == null) throw new NullPointerException();
814 long i = index, f = fence;
815 if (i < f) {
816 index = f;
817 int o = origin, b = bound;
818 ThreadLocalRandom rng = ThreadLocalRandom.current();
819 do {
820 consumer.accept(rng.internalNextInt(o, b));
821 } while (++i < f);
822 }
823 }
824 }
825
826 /**
827 * Spliterator for long streams.
828 */
829 static final class RandomLongsSpliterator implements Spliterator.OfLong {
830 long index;
831 final long fence;
832 final long origin;
833 final long bound;
834 RandomLongsSpliterator(long index, long fence,
835 long origin, long bound) {
836 this.index = index; this.fence = fence;
837 this.origin = origin; this.bound = bound;
838 }
839
840 public RandomLongsSpliterator trySplit() {
841 long i = index, m = (i + fence) >>> 1;
842 return (m <= i) ? null :
843 new RandomLongsSpliterator(i, index = m, origin, bound);
844 }
845
846 public long estimateSize() {
847 return fence - index;
848 }
849
850 public int characteristics() {
851 return (Spliterator.SIZED | Spliterator.SUBSIZED |
852 Spliterator.NONNULL | Spliterator.IMMUTABLE);
853 }
854
855 public boolean tryAdvance(LongConsumer consumer) {
856 if (consumer == null) throw new NullPointerException();
857 long i = index, f = fence;
858 if (i < f) {
859 consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
860 index = i + 1;
861 return true;
862 }
863 return false;
864 }
865
866 public void forEachRemaining(LongConsumer consumer) {
867 if (consumer == null) throw new NullPointerException();
868 long i = index, f = fence;
869 if (i < f) {
870 index = f;
871 long o = origin, b = bound;
872 ThreadLocalRandom rng = ThreadLocalRandom.current();
873 do {
874 consumer.accept(rng.internalNextLong(o, b));
875 } while (++i < f);
876 }
877 }
878
879 }
880
881 /**
882 * Spliterator for double streams.
883 */
884 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
885 long index;
886 final long fence;
887 final double origin;
888 final double bound;
889 RandomDoublesSpliterator(long index, long fence,
890 double origin, double bound) {
891 this.index = index; this.fence = fence;
892 this.origin = origin; this.bound = bound;
893 }
894
895 public RandomDoublesSpliterator trySplit() {
896 long i = index, m = (i + fence) >>> 1;
897 return (m <= i) ? null :
898 new RandomDoublesSpliterator(i, index = m, origin, bound);
899 }
900
901 public long estimateSize() {
902 return fence - index;
903 }
904
905 public int characteristics() {
906 return (Spliterator.SIZED | Spliterator.SUBSIZED |
907 Spliterator.NONNULL | Spliterator.IMMUTABLE);
908 }
909
910 public boolean tryAdvance(DoubleConsumer consumer) {
911 if (consumer == null) throw new NullPointerException();
912 long i = index, f = fence;
913 if (i < f) {
914 consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
915 index = i + 1;
916 return true;
917 }
918 return false;
919 }
920
921 public void forEachRemaining(DoubleConsumer consumer) {
922 if (consumer == null) throw new NullPointerException();
923 long i = index, f = fence;
924 if (i < f) {
925 index = f;
926 double o = origin, b = bound;
927 ThreadLocalRandom rng = ThreadLocalRandom.current();
928 do {
929 consumer.accept(rng.internalNextDouble(o, b));
930 } while (++i < f);
931 }
932 }
933 }
934
935
936 // Within-package utilities
937
938 /*
939 * Descriptions of the usages of the methods below can be found in
940 * the classes that use them. Briefly, a thread's "probe" value is
941 * a non-zero hash code that (probably) does not collide with
942 * other existing threads with respect to any power of two
943 * collision space. When it does collide, it is pseudo-randomly
944 * adjusted (using a Marsaglia XorShift). The nextSecondarySeed
945 * method is used in the same contexts as ThreadLocalRandom, but
946 * only for transient usages such as random adaptive spin/block
947 * sequences for which a cheap RNG suffices and for which it could
948 * in principle disrupt user-visible statistical properties of the
949 * main ThreadLocalRandom if we were to use it.
950 *
951 * Note: Because of package-protection issues, versions of some
952 * these methods also appear in some subpackage classes.
953 */
954
955 /**
956 * Returns the probe value for the current thread without forcing
957 * initialization. Note that invoking ThreadLocalRandom.current()
958 * can be used to force initialization on zero return.
959 */
960 static final int getProbe() {
961 return UNSAFE.getInt(Thread.currentThread(), PROBE);
962 }
963
964 /**
965 * Pseudo-randomly advances and records the given probe value for the
966 * given thread.
967 */
968 static final int advanceProbe(int probe) {
969 probe ^= probe << 13; // xorshift
970 probe ^= probe >>> 17;
971 probe ^= probe << 5;
972 UNSAFE.putInt(Thread.currentThread(), PROBE, probe);
973 return probe;
974 }
975
976 /**
977 * Returns the pseudo-randomly initialized or updated secondary seed.
978 */
979 static final int nextSecondarySeed() {
980 int r;
981 Thread t = Thread.currentThread();
982 if ((r = UNSAFE.getInt(t, SECONDARY)) != 0) {
983 r ^= r << 13; // xorshift
984 r ^= r >>> 17;
985 r ^= r << 5;
986 }
987 else {
988 localInit();
989 if ((r = (int)UNSAFE.getLong(t, SEED)) == 0)
990 r = 1; // avoid zero
991 }
992 UNSAFE.putInt(t, SECONDARY, r);
993 return r;
994 }
995
996 // Serialization support
997
998 private static final long serialVersionUID = -5851777807851030925L;
999
1000 /**
1001 * @serialField rnd long
1002 * seed for random computations
1003 * @serialField initialized boolean
1004 * always true
1005 */
1006 private static final ObjectStreamField[] serialPersistentFields = {
1007 new ObjectStreamField("rnd", long.class),
1008 new ObjectStreamField("initialized", boolean.class),
1009 };
1010
1011 /**
1012 * Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
1013 * @param s the stream
1014 * @throws java.io.IOException if an I/O error occurs
1015 */
1016 private void writeObject(java.io.ObjectOutputStream s)
1017 throws java.io.IOException {
1018
1019 java.io.ObjectOutputStream.PutField fields = s.putFields();
1020 fields.put("rnd", UNSAFE.getLong(Thread.currentThread(), SEED));
1021 fields.put("initialized", true);
1022 s.writeFields();
1023 }
1024
1025 /**
1026 * Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
1027 * @return the {@link #current() current} thread's {@code ThreadLocalRandom}
1028 */
1029 private Object readResolve() {
1030 return current();
1031 }
1032
1033 // Unsafe mechanics
1034 private static final sun.misc.Unsafe UNSAFE;
1035 private static final long SEED;
1036 private static final long PROBE;
1037 private static final long SECONDARY;
1038 static {
1039 try {
1040 UNSAFE = sun.misc.Unsafe.getUnsafe();
1041 Class<?> tk = Thread.class;
1042 SEED = UNSAFE.objectFieldOffset
1043 (tk.getDeclaredField("threadLocalRandomSeed"));
1044 PROBE = UNSAFE.objectFieldOffset
1045 (tk.getDeclaredField("threadLocalRandomProbe"));
1046 SECONDARY = UNSAFE.objectFieldOffset
1047 (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
1048 } catch (Exception e) {
1049 throw new Error(e);
1050 }
1051 }
1052 }