ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadLocalRandom.java
Revision: 1.24
Committed: Mon Sep 16 23:21:43 2013 UTC (10 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.23: +27 -4 lines
Log Message:
Use interface address for initial seed

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.security.SecureRandom;
10 import java.net.NetworkInterface;
11 import java.io.ObjectStreamField;
12 import java.util.Enumeration;
13 import java.util.Random;
14 import java.util.Spliterator;
15 import java.util.concurrent.atomic.AtomicInteger;
16 import java.util.concurrent.atomic.AtomicLong;
17 import java.util.function.DoubleConsumer;
18 import java.util.function.IntConsumer;
19 import java.util.function.LongConsumer;
20 import java.util.stream.DoubleStream;
21 import java.util.stream.IntStream;
22 import java.util.stream.LongStream;
23 import java.util.stream.StreamSupport;
24
25 /**
26 * A random number generator isolated to the current thread. Like the
27 * global {@link java.util.Random} generator used by the {@link
28 * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
29 * with an internally generated seed that may not otherwise be
30 * modified. When applicable, use of {@code ThreadLocalRandom} rather
31 * than shared {@code Random} objects in concurrent programs will
32 * typically encounter much less overhead and contention. Use of
33 * {@code ThreadLocalRandom} is particularly appropriate when multiple
34 * tasks (for example, each a {@link ForkJoinTask}) use random numbers
35 * in parallel in thread pools.
36 *
37 * <p>Usages of this class should typically be of the form:
38 * {@code ThreadLocalRandom.current().nextX(...)} (where
39 * {@code X} is {@code Int}, {@code Long}, etc).
40 * When all usages are of this form, it is never possible to
41 * accidently share a {@code ThreadLocalRandom} across multiple threads.
42 *
43 * <p>This class also provides additional commonly used bounded random
44 * generation methods.
45 *
46 * <p>Instances of {@code ThreadLocalRandom} are not cryptographically
47 * secure. Consider instead using {@link java.security.SecureRandom}
48 * in security-sensitive applications. Additionally,
49 * default-constructed instances do not use a cryptographically random
50 * seed unless the {@linkplain System#getProperty system property}
51 * {@code java.util.secureRandomSeed} is set to {@code true}.
52 *
53 * @since 1.7
54 * @author Doug Lea
55 */
56 public class ThreadLocalRandom extends Random {
57 /*
58 * This class implements the java.util.Random API (and subclasses
59 * Random) using a single static instance that accesses random
60 * number state held in class Thread (primarily, field
61 * threadLocalRandomSeed). In doing so, it also provides a home
62 * for managing package-private utilities that rely on exactly the
63 * same state as needed to maintain the ThreadLocalRandom
64 * instances. We leverage the need for an initialization flag
65 * field to also use it as a "probe" -- a self-adjusting thread
66 * hash used for contention avoidance, as well as a secondary
67 * simpler (xorShift) random seed that is conservatively used to
68 * avoid otherwise surprising users by hijacking the
69 * ThreadLocalRandom sequence. The dual use is a marriage of
70 * convenience, but is a simple and efficient way of reducing
71 * application-level overhead and footprint of most concurrent
72 * programs.
73 *
74 * Even though this class subclasses java.util.Random, it uses the
75 * same basic algorithm as java.util.SplittableRandom. (See its
76 * internal documentation for explanations, which are not repeated
77 * here.) Because ThreadLocalRandoms are not splittable
78 * though, we use only a single 64bit gamma.
79 *
80 * Because this class is in a different package than class Thread,
81 * field access methods use Unsafe to bypass access control rules.
82 * To conform to the requirements of the Random superclass
83 * constructor, the common static ThreadLocalRandom maintains an
84 * "initialized" field for the sake of rejecting user calls to
85 * setSeed while still allowing a call from constructor. Note
86 * that serialization is completely unnecessary because there is
87 * only a static singleton. But we generate a serial form
88 * containing "rnd" and "initialized" fields to ensure
89 * compatibility across versions.
90 *
91 * Implementations of non-core methods are mostly the same as in
92 * SplittableRandom, that were in part derived from a previous
93 * version of this class.
94 *
95 * The nextLocalGaussian ThreadLocal supports the very rarely used
96 * nextGaussian method by providing a holder for the second of a
97 * pair of them. As is true for the base class version of this
98 * method, this time/space tradeoff is probably never worthwhile,
99 * but we provide identical statistical properties.
100 */
101
102 /** Generates per-thread initialization/probe field */
103 private static final AtomicInteger probeGenerator =
104 new AtomicInteger();
105
106 /**
107 * The next seed for default constructors.
108 */
109 private static final AtomicLong seeder = new AtomicLong(initialSeed());
110
111 private static long initialSeed() {
112 String pp = java.security.AccessController.doPrivileged(
113 new sun.security.action.GetPropertyAction(
114 "java.util.secureRandomSeed"));
115 if (pp != null && pp.equalsIgnoreCase("true")) {
116 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
117 long s = (long)(seedBytes[0]) & 0xffL;
118 for (int i = 1; i < 8; ++i)
119 s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
120 return s;
121 }
122 long h = 0L;
123 try {
124 Enumeration<NetworkInterface> ifcs =
125 NetworkInterface.getNetworkInterfaces();
126 boolean retry = false; // retry once if getHardwareAddress is null
127 while (ifcs.hasMoreElements()) {
128 NetworkInterface ifc = ifcs.nextElement();
129 if (!ifc.isVirtual()) { // skip fake addresses
130 byte[] bs = ifc.getHardwareAddress();
131 if (bs != null) {
132 int n = bs.length;
133 int m = Math.min(n >>> 1, 4);
134 for (int i = 0; i < m; ++i)
135 h = (h << 16) ^ (bs[i] << 8) ^ bs[n-1-i];
136 if (m < 4)
137 h = (h << 8) ^ bs[n-1-m];
138 h = mix64(h);
139 break;
140 }
141 else if (!retry)
142 retry = true;
143 else
144 break;
145 }
146 }
147 } catch (Exception ignore) {
148 }
149 return (h ^ mix64(System.currentTimeMillis()) ^
150 mix64(System.nanoTime()));
151 }
152
153 /**
154 * The seed increment
155 */
156 private static final long GAMMA = 0x9e3779b97f4a7c15L;
157
158 /**
159 * The increment for generating probe values
160 */
161 private static final int PROBE_INCREMENT = 0x9e3779b9;
162
163 /**
164 * The increment of seeder per new instance
165 */
166 private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
167
168 // Constants from SplittableRandom
169 private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
170 private static final float FLOAT_UNIT = 1.0f / (1 << 24);
171
172 /** Rarely-used holder for the second of a pair of Gaussians */
173 private static final ThreadLocal<Double> nextLocalGaussian =
174 new ThreadLocal<Double>();
175
176 private static long mix64(long z) {
177 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
178 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
179 return z ^ (z >>> 33);
180 }
181
182 private static int mix32(long z) {
183 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
184 return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
185 }
186
187 /**
188 * Field used only during singleton initialization.
189 * True when constructor completes.
190 */
191 boolean initialized;
192
193 /** Constructor used only for static singleton */
194 private ThreadLocalRandom() {
195 initialized = true; // false during super() call
196 }
197
198 /** The common ThreadLocalRandom */
199 static final ThreadLocalRandom instance = new ThreadLocalRandom();
200
201 /**
202 * Initialize Thread fields for the current thread. Called only
203 * when Thread.threadLocalRandomProbe is zero, indicating that a
204 * thread local seed value needs to be generated. Note that even
205 * though the initialization is purely thread-local, we need to
206 * rely on (static) atomic generators to initialize the values.
207 */
208 static final void localInit() {
209 int p = probeGenerator.addAndGet(PROBE_INCREMENT);
210 int probe = (p == 0) ? 1 : p; // skip 0
211 long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
212 Thread t = Thread.currentThread();
213 UNSAFE.putLong(t, SEED, seed);
214 UNSAFE.putInt(t, PROBE, probe);
215 }
216
217 /**
218 * Returns the current thread's {@code ThreadLocalRandom}.
219 *
220 * @return the current thread's {@code ThreadLocalRandom}
221 */
222 public static ThreadLocalRandom current() {
223 if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
224 localInit();
225 return instance;
226 }
227
228 /**
229 * Throws {@code UnsupportedOperationException}. Setting seeds in
230 * this generator is not supported.
231 *
232 * @throws UnsupportedOperationException always
233 */
234 public void setSeed(long seed) {
235 // only allow call from super() constructor
236 if (initialized)
237 throw new UnsupportedOperationException();
238 }
239
240 final long nextSeed() {
241 Thread t; long r; // read and update per-thread seed
242 UNSAFE.putLong(t = Thread.currentThread(), SEED,
243 r = UNSAFE.getLong(t, SEED) + GAMMA);
244 return r;
245 }
246
247 // We must define this, but never use it.
248 protected int next(int bits) {
249 return (int)(mix64(nextSeed()) >>> (64 - bits));
250 }
251
252 // IllegalArgumentException messages
253 static final String BadBound = "bound must be positive";
254 static final String BadRange = "bound must be greater than origin";
255 static final String BadSize = "size must be non-negative";
256
257 /**
258 * The form of nextLong used by LongStream Spliterators. If
259 * origin is greater than bound, acts as unbounded form of
260 * nextLong, else as bounded form.
261 *
262 * @param origin the least value, unless greater than bound
263 * @param bound the upper bound (exclusive), must not equal origin
264 * @return a pseudorandom value
265 */
266 final long internalNextLong(long origin, long bound) {
267 long r = mix64(nextSeed());
268 if (origin < bound) {
269 long n = bound - origin, m = n - 1;
270 if ((n & m) == 0L) // power of two
271 r = (r & m) + origin;
272 else if (n > 0L) { // reject over-represented candidates
273 for (long u = r >>> 1; // ensure nonnegative
274 u + m - (r = u % n) < 0L; // rejection check
275 u = mix64(nextSeed()) >>> 1) // retry
276 ;
277 r += origin;
278 }
279 else { // range not representable as long
280 while (r < origin || r >= bound)
281 r = mix64(nextSeed());
282 }
283 }
284 return r;
285 }
286
287 /**
288 * The form of nextInt used by IntStream Spliterators.
289 * Exactly the same as long version, except for types.
290 *
291 * @param origin the least value, unless greater than bound
292 * @param bound the upper bound (exclusive), must not equal origin
293 * @return a pseudorandom value
294 */
295 final int internalNextInt(int origin, int bound) {
296 int r = mix32(nextSeed());
297 if (origin < bound) {
298 int n = bound - origin, m = n - 1;
299 if ((n & m) == 0)
300 r = (r & m) + origin;
301 else if (n > 0) {
302 for (int u = r >>> 1;
303 u + m - (r = u % n) < 0;
304 u = mix32(nextSeed()) >>> 1)
305 ;
306 r += origin;
307 }
308 else {
309 while (r < origin || r >= bound)
310 r = mix32(nextSeed());
311 }
312 }
313 return r;
314 }
315
316 /**
317 * The form of nextDouble used by DoubleStream Spliterators.
318 *
319 * @param origin the least value, unless greater than bound
320 * @param bound the upper bound (exclusive), must not equal origin
321 * @return a pseudorandom value
322 */
323 final double internalNextDouble(double origin, double bound) {
324 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
325 if (origin < bound) {
326 r = r * (bound - origin) + origin;
327 if (r >= bound) // correct for rounding
328 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
329 }
330 return r;
331 }
332
333 /**
334 * Returns a pseudorandom {@code int} value.
335 *
336 * @return a pseudorandom {@code int} value
337 */
338 public int nextInt() {
339 return mix32(nextSeed());
340 }
341
342 /**
343 * Returns a pseudorandom {@code int} value between zero (inclusive)
344 * and the specified bound (exclusive).
345 *
346 * @param bound the upper bound (exclusive). Must be positive.
347 * @return a pseudorandom {@code int} value between zero
348 * (inclusive) and the bound (exclusive)
349 * @throws IllegalArgumentException if {@code bound} is not positive
350 */
351 public int nextInt(int bound) {
352 if (bound <= 0)
353 throw new IllegalArgumentException(BadBound);
354 int r = mix32(nextSeed());
355 int m = bound - 1;
356 if ((bound & m) == 0) // power of two
357 r &= m;
358 else { // reject over-represented candidates
359 for (int u = r >>> 1;
360 u + m - (r = u % bound) < 0;
361 u = mix32(nextSeed()) >>> 1)
362 ;
363 }
364 return r;
365 }
366
367 /**
368 * Returns a pseudorandom {@code int} value between the specified
369 * origin (inclusive) and the specified bound (exclusive).
370 *
371 * @param origin the least value returned
372 * @param bound the upper bound (exclusive)
373 * @return a pseudorandom {@code int} value between the origin
374 * (inclusive) and the bound (exclusive)
375 * @throws IllegalArgumentException if {@code origin} is greater than
376 * or equal to {@code bound}
377 */
378 public int nextInt(int origin, int bound) {
379 if (origin >= bound)
380 throw new IllegalArgumentException(BadRange);
381 return internalNextInt(origin, bound);
382 }
383
384 /**
385 * Returns a pseudorandom {@code long} value.
386 *
387 * @return a pseudorandom {@code long} value
388 */
389 public long nextLong() {
390 return mix64(nextSeed());
391 }
392
393 /**
394 * Returns a pseudorandom {@code long} value between zero (inclusive)
395 * and the specified bound (exclusive).
396 *
397 * @param bound the upper bound (exclusive). Must be positive.
398 * @return a pseudorandom {@code long} value between zero
399 * (inclusive) and the bound (exclusive)
400 * @throws IllegalArgumentException if {@code bound} is not positive
401 */
402 public long nextLong(long bound) {
403 if (bound <= 0)
404 throw new IllegalArgumentException(BadBound);
405 long r = mix64(nextSeed());
406 long m = bound - 1;
407 if ((bound & m) == 0L) // power of two
408 r &= m;
409 else { // reject over-represented candidates
410 for (long u = r >>> 1;
411 u + m - (r = u % bound) < 0L;
412 u = mix64(nextSeed()) >>> 1)
413 ;
414 }
415 return r;
416 }
417
418 /**
419 * Returns a pseudorandom {@code long} value between the specified
420 * origin (inclusive) and the specified bound (exclusive).
421 *
422 * @param origin the least value returned
423 * @param bound the upper bound (exclusive)
424 * @return a pseudorandom {@code long} value between the origin
425 * (inclusive) and the bound (exclusive)
426 * @throws IllegalArgumentException if {@code origin} is greater than
427 * or equal to {@code bound}
428 */
429 public long nextLong(long origin, long bound) {
430 if (origin >= bound)
431 throw new IllegalArgumentException(BadRange);
432 return internalNextLong(origin, bound);
433 }
434
435 /**
436 * Returns a pseudorandom {@code double} value between zero
437 * (inclusive) and one (exclusive).
438 *
439 * @return a pseudorandom {@code double} value between zero
440 * (inclusive) and one (exclusive)
441 */
442 public double nextDouble() {
443 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
444 }
445
446 /**
447 * Returns a pseudorandom {@code double} value between 0.0
448 * (inclusive) and the specified bound (exclusive).
449 *
450 * @param bound the upper bound (exclusive). Must be positive.
451 * @return a pseudorandom {@code double} value between zero
452 * (inclusive) and the bound (exclusive)
453 * @throws IllegalArgumentException if {@code bound} is not positive
454 */
455 public double nextDouble(double bound) {
456 if (!(bound > 0.0))
457 throw new IllegalArgumentException(BadBound);
458 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
459 return (result < bound) ? result : // correct for rounding
460 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
461 }
462
463 /**
464 * Returns a pseudorandom {@code double} value between the specified
465 * origin (inclusive) and bound (exclusive).
466 *
467 * @param origin the least value returned
468 * @param bound the upper bound (exclusive)
469 * @return a pseudorandom {@code double} value between the origin
470 * (inclusive) and the bound (exclusive)
471 * @throws IllegalArgumentException if {@code origin} is greater than
472 * or equal to {@code bound}
473 */
474 public double nextDouble(double origin, double bound) {
475 if (!(origin < bound))
476 throw new IllegalArgumentException(BadRange);
477 return internalNextDouble(origin, bound);
478 }
479
480 /**
481 * Returns a pseudorandom {@code boolean} value.
482 *
483 * @return a pseudorandom {@code boolean} value
484 */
485 public boolean nextBoolean() {
486 return mix32(nextSeed()) < 0;
487 }
488
489 /**
490 * Returns a pseudorandom {@code float} value between zero
491 * (inclusive) and one (exclusive).
492 *
493 * @return a pseudorandom {@code float} value between zero
494 * (inclusive) and one (exclusive)
495 */
496 public float nextFloat() {
497 return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
498 }
499
500 public double nextGaussian() {
501 // Use nextLocalGaussian instead of nextGaussian field
502 Double d = nextLocalGaussian.get();
503 if (d != null) {
504 nextLocalGaussian.set(null);
505 return d.doubleValue();
506 }
507 double v1, v2, s;
508 do {
509 v1 = 2 * nextDouble() - 1; // between -1 and 1
510 v2 = 2 * nextDouble() - 1; // between -1 and 1
511 s = v1 * v1 + v2 * v2;
512 } while (s >= 1 || s == 0);
513 double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
514 nextLocalGaussian.set(new Double(v2 * multiplier));
515 return v1 * multiplier;
516 }
517
518 // stream methods, coded in a way intended to better isolate for
519 // maintenance purposes the small differences across forms.
520
521 /**
522 * Returns a stream producing the given {@code streamSize} number of
523 * pseudorandom {@code int} values.
524 *
525 * @param streamSize the number of values to generate
526 * @return a stream of pseudorandom {@code int} values
527 * @throws IllegalArgumentException if {@code streamSize} is
528 * less than zero
529 * @since 1.8
530 */
531 public IntStream ints(long streamSize) {
532 if (streamSize < 0L)
533 throw new IllegalArgumentException(BadSize);
534 return StreamSupport.intStream
535 (new RandomIntsSpliterator
536 (0L, streamSize, Integer.MAX_VALUE, 0),
537 false);
538 }
539
540 /**
541 * Returns an effectively unlimited stream of pseudorandom {@code int}
542 * values.
543 *
544 * @implNote This method is implemented to be equivalent to {@code
545 * ints(Long.MAX_VALUE)}.
546 *
547 * @return a stream of pseudorandom {@code int} values
548 * @since 1.8
549 */
550 public IntStream ints() {
551 return StreamSupport.intStream
552 (new RandomIntsSpliterator
553 (0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
554 false);
555 }
556
557 /**
558 * Returns a stream producing the given {@code streamSize} number
559 * of pseudorandom {@code int} values, each conforming to the given
560 * origin (inclusive) and bound (exclusive).
561 *
562 * @param streamSize the number of values to generate
563 * @param randomNumberOrigin the origin (inclusive) of each random value
564 * @param randomNumberBound the bound (exclusive) of each random value
565 * @return a stream of pseudorandom {@code int} values,
566 * each with the given origin (inclusive) and bound (exclusive)
567 * @throws IllegalArgumentException if {@code streamSize} is
568 * less than zero, or {@code randomNumberOrigin}
569 * is greater than or equal to {@code randomNumberBound}
570 * @since 1.8
571 */
572 public IntStream ints(long streamSize, int randomNumberOrigin,
573 int randomNumberBound) {
574 if (streamSize < 0L)
575 throw new IllegalArgumentException(BadSize);
576 if (randomNumberOrigin >= randomNumberBound)
577 throw new IllegalArgumentException(BadRange);
578 return StreamSupport.intStream
579 (new RandomIntsSpliterator
580 (0L, streamSize, randomNumberOrigin, randomNumberBound),
581 false);
582 }
583
584 /**
585 * Returns an effectively unlimited stream of pseudorandom {@code
586 * int} values, each conforming to the given origin (inclusive) and bound
587 * (exclusive).
588 *
589 * @implNote This method is implemented to be equivalent to {@code
590 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
591 *
592 * @param randomNumberOrigin the origin (inclusive) of each random value
593 * @param randomNumberBound the bound (exclusive) of each random value
594 * @return a stream of pseudorandom {@code int} values,
595 * each with the given origin (inclusive) and bound (exclusive)
596 * @throws IllegalArgumentException if {@code randomNumberOrigin}
597 * is greater than or equal to {@code randomNumberBound}
598 * @since 1.8
599 */
600 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
601 if (randomNumberOrigin >= randomNumberBound)
602 throw new IllegalArgumentException(BadRange);
603 return StreamSupport.intStream
604 (new RandomIntsSpliterator
605 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
606 false);
607 }
608
609 /**
610 * Returns a stream producing the given {@code streamSize} number of
611 * pseudorandom {@code long} values.
612 *
613 * @param streamSize the number of values to generate
614 * @return a stream of pseudorandom {@code long} values
615 * @throws IllegalArgumentException if {@code streamSize} is
616 * less than zero
617 * @since 1.8
618 */
619 public LongStream longs(long streamSize) {
620 if (streamSize < 0L)
621 throw new IllegalArgumentException(BadSize);
622 return StreamSupport.longStream
623 (new RandomLongsSpliterator
624 (0L, streamSize, Long.MAX_VALUE, 0L),
625 false);
626 }
627
628 /**
629 * Returns an effectively unlimited stream of pseudorandom {@code long}
630 * values.
631 *
632 * @implNote This method is implemented to be equivalent to {@code
633 * longs(Long.MAX_VALUE)}.
634 *
635 * @return a stream of pseudorandom {@code long} values
636 * @since 1.8
637 */
638 public LongStream longs() {
639 return StreamSupport.longStream
640 (new RandomLongsSpliterator
641 (0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
642 false);
643 }
644
645 /**
646 * Returns a stream producing the given {@code streamSize} number of
647 * pseudorandom {@code long}, each conforming to the given origin
648 * (inclusive) and bound (exclusive).
649 *
650 * @param streamSize the number of values to generate
651 * @param randomNumberOrigin the origin (inclusive) of each random value
652 * @param randomNumberBound the bound (exclusive) of each random value
653 * @return a stream of pseudorandom {@code long} values,
654 * each with the given origin (inclusive) and bound (exclusive)
655 * @throws IllegalArgumentException if {@code streamSize} is
656 * less than zero, or {@code randomNumberOrigin}
657 * is greater than or equal to {@code randomNumberBound}
658 * @since 1.8
659 */
660 public LongStream longs(long streamSize, long randomNumberOrigin,
661 long randomNumberBound) {
662 if (streamSize < 0L)
663 throw new IllegalArgumentException(BadSize);
664 if (randomNumberOrigin >= randomNumberBound)
665 throw new IllegalArgumentException(BadRange);
666 return StreamSupport.longStream
667 (new RandomLongsSpliterator
668 (0L, streamSize, randomNumberOrigin, randomNumberBound),
669 false);
670 }
671
672 /**
673 * Returns an effectively unlimited stream of pseudorandom {@code
674 * long} values, each conforming to the given origin (inclusive) and bound
675 * (exclusive).
676 *
677 * @implNote This method is implemented to be equivalent to {@code
678 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
679 *
680 * @param randomNumberOrigin the origin (inclusive) of each random value
681 * @param randomNumberBound the bound (exclusive) of each random value
682 * @return a stream of pseudorandom {@code long} values,
683 * each with the given origin (inclusive) and bound (exclusive)
684 * @throws IllegalArgumentException if {@code randomNumberOrigin}
685 * is greater than or equal to {@code randomNumberBound}
686 * @since 1.8
687 */
688 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
689 if (randomNumberOrigin >= randomNumberBound)
690 throw new IllegalArgumentException(BadRange);
691 return StreamSupport.longStream
692 (new RandomLongsSpliterator
693 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
694 false);
695 }
696
697 /**
698 * Returns a stream producing the given {@code streamSize} number of
699 * pseudorandom {@code double} values, each between zero
700 * (inclusive) and one (exclusive).
701 *
702 * @param streamSize the number of values to generate
703 * @return a stream of {@code double} values
704 * @throws IllegalArgumentException if {@code streamSize} is
705 * less than zero
706 * @since 1.8
707 */
708 public DoubleStream doubles(long streamSize) {
709 if (streamSize < 0L)
710 throw new IllegalArgumentException(BadSize);
711 return StreamSupport.doubleStream
712 (new RandomDoublesSpliterator
713 (0L, streamSize, Double.MAX_VALUE, 0.0),
714 false);
715 }
716
717 /**
718 * Returns an effectively unlimited stream of pseudorandom {@code
719 * double} values, each between zero (inclusive) and one
720 * (exclusive).
721 *
722 * @implNote This method is implemented to be equivalent to {@code
723 * doubles(Long.MAX_VALUE)}.
724 *
725 * @return a stream of pseudorandom {@code double} values
726 * @since 1.8
727 */
728 public DoubleStream doubles() {
729 return StreamSupport.doubleStream
730 (new RandomDoublesSpliterator
731 (0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
732 false);
733 }
734
735 /**
736 * Returns a stream producing the given {@code streamSize} number of
737 * pseudorandom {@code double} values, each conforming to the given origin
738 * (inclusive) and bound (exclusive).
739 *
740 * @param streamSize the number of values to generate
741 * @param randomNumberOrigin the origin (inclusive) of each random value
742 * @param randomNumberBound the bound (exclusive) of each random value
743 * @return a stream of pseudorandom {@code double} values,
744 * each with the given origin (inclusive) and bound (exclusive)
745 * @throws IllegalArgumentException if {@code streamSize} is
746 * less than zero
747 * @throws IllegalArgumentException if {@code randomNumberOrigin}
748 * is greater than or equal to {@code randomNumberBound}
749 * @since 1.8
750 */
751 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
752 double randomNumberBound) {
753 if (streamSize < 0L)
754 throw new IllegalArgumentException(BadSize);
755 if (!(randomNumberOrigin < randomNumberBound))
756 throw new IllegalArgumentException(BadRange);
757 return StreamSupport.doubleStream
758 (new RandomDoublesSpliterator
759 (0L, streamSize, randomNumberOrigin, randomNumberBound),
760 false);
761 }
762
763 /**
764 * Returns an effectively unlimited stream of pseudorandom {@code
765 * double} values, each conforming to the given origin (inclusive) and bound
766 * (exclusive).
767 *
768 * @implNote This method is implemented to be equivalent to {@code
769 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
770 *
771 * @param randomNumberOrigin the origin (inclusive) of each random value
772 * @param randomNumberBound the bound (exclusive) of each random value
773 * @return a stream of pseudorandom {@code double} values,
774 * each with the given origin (inclusive) and bound (exclusive)
775 * @throws IllegalArgumentException if {@code randomNumberOrigin}
776 * is greater than or equal to {@code randomNumberBound}
777 * @since 1.8
778 */
779 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
780 if (!(randomNumberOrigin < randomNumberBound))
781 throw new IllegalArgumentException(BadRange);
782 return StreamSupport.doubleStream
783 (new RandomDoublesSpliterator
784 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
785 false);
786 }
787
788 /**
789 * Spliterator for int streams. We multiplex the four int
790 * versions into one class by treating a bound less than origin as
791 * unbounded, and also by treating "infinite" as equivalent to
792 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
793 * approach. The long and double versions of this class are
794 * identical except for types.
795 */
796 static final class RandomIntsSpliterator implements Spliterator.OfInt {
797 long index;
798 final long fence;
799 final int origin;
800 final int bound;
801 RandomIntsSpliterator(long index, long fence,
802 int origin, int bound) {
803 this.index = index; this.fence = fence;
804 this.origin = origin; this.bound = bound;
805 }
806
807 public RandomIntsSpliterator trySplit() {
808 long i = index, m = (i + fence) >>> 1;
809 return (m <= i) ? null :
810 new RandomIntsSpliterator(i, index = m, origin, bound);
811 }
812
813 public long estimateSize() {
814 return fence - index;
815 }
816
817 public int characteristics() {
818 return (Spliterator.SIZED | Spliterator.SUBSIZED |
819 Spliterator.NONNULL | Spliterator.IMMUTABLE);
820 }
821
822 public boolean tryAdvance(IntConsumer consumer) {
823 if (consumer == null) throw new NullPointerException();
824 long i = index, f = fence;
825 if (i < f) {
826 consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
827 index = i + 1;
828 return true;
829 }
830 return false;
831 }
832
833 public void forEachRemaining(IntConsumer consumer) {
834 if (consumer == null) throw new NullPointerException();
835 long i = index, f = fence;
836 if (i < f) {
837 index = f;
838 int o = origin, b = bound;
839 ThreadLocalRandom rng = ThreadLocalRandom.current();
840 do {
841 consumer.accept(rng.internalNextInt(o, b));
842 } while (++i < f);
843 }
844 }
845 }
846
847 /**
848 * Spliterator for long streams.
849 */
850 static final class RandomLongsSpliterator implements Spliterator.OfLong {
851 long index;
852 final long fence;
853 final long origin;
854 final long bound;
855 RandomLongsSpliterator(long index, long fence,
856 long origin, long bound) {
857 this.index = index; this.fence = fence;
858 this.origin = origin; this.bound = bound;
859 }
860
861 public RandomLongsSpliterator trySplit() {
862 long i = index, m = (i + fence) >>> 1;
863 return (m <= i) ? null :
864 new RandomLongsSpliterator(i, index = m, origin, bound);
865 }
866
867 public long estimateSize() {
868 return fence - index;
869 }
870
871 public int characteristics() {
872 return (Spliterator.SIZED | Spliterator.SUBSIZED |
873 Spliterator.NONNULL | Spliterator.IMMUTABLE);
874 }
875
876 public boolean tryAdvance(LongConsumer consumer) {
877 if (consumer == null) throw new NullPointerException();
878 long i = index, f = fence;
879 if (i < f) {
880 consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
881 index = i + 1;
882 return true;
883 }
884 return false;
885 }
886
887 public void forEachRemaining(LongConsumer consumer) {
888 if (consumer == null) throw new NullPointerException();
889 long i = index, f = fence;
890 if (i < f) {
891 index = f;
892 long o = origin, b = bound;
893 ThreadLocalRandom rng = ThreadLocalRandom.current();
894 do {
895 consumer.accept(rng.internalNextLong(o, b));
896 } while (++i < f);
897 }
898 }
899
900 }
901
902 /**
903 * Spliterator for double streams.
904 */
905 static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
906 long index;
907 final long fence;
908 final double origin;
909 final double bound;
910 RandomDoublesSpliterator(long index, long fence,
911 double origin, double bound) {
912 this.index = index; this.fence = fence;
913 this.origin = origin; this.bound = bound;
914 }
915
916 public RandomDoublesSpliterator trySplit() {
917 long i = index, m = (i + fence) >>> 1;
918 return (m <= i) ? null :
919 new RandomDoublesSpliterator(i, index = m, origin, bound);
920 }
921
922 public long estimateSize() {
923 return fence - index;
924 }
925
926 public int characteristics() {
927 return (Spliterator.SIZED | Spliterator.SUBSIZED |
928 Spliterator.NONNULL | Spliterator.IMMUTABLE);
929 }
930
931 public boolean tryAdvance(DoubleConsumer consumer) {
932 if (consumer == null) throw new NullPointerException();
933 long i = index, f = fence;
934 if (i < f) {
935 consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
936 index = i + 1;
937 return true;
938 }
939 return false;
940 }
941
942 public void forEachRemaining(DoubleConsumer consumer) {
943 if (consumer == null) throw new NullPointerException();
944 long i = index, f = fence;
945 if (i < f) {
946 index = f;
947 double o = origin, b = bound;
948 ThreadLocalRandom rng = ThreadLocalRandom.current();
949 do {
950 consumer.accept(rng.internalNextDouble(o, b));
951 } while (++i < f);
952 }
953 }
954 }
955
956
957 // Within-package utilities
958
959 /*
960 * Descriptions of the usages of the methods below can be found in
961 * the classes that use them. Briefly, a thread's "probe" value is
962 * a non-zero hash code that (probably) does not collide with
963 * other existing threads with respect to any power of two
964 * collision space. When it does collide, it is pseudo-randomly
965 * adjusted (using a Marsaglia XorShift). The nextSecondarySeed
966 * method is used in the same contexts as ThreadLocalRandom, but
967 * only for transient usages such as random adaptive spin/block
968 * sequences for which a cheap RNG suffices and for which it could
969 * in principle disrupt user-visible statistical properties of the
970 * main ThreadLocalRandom if we were to use it.
971 *
972 * Note: Because of package-protection issues, versions of some
973 * these methods also appear in some subpackage classes.
974 */
975
976 /**
977 * Returns the probe value for the current thread without forcing
978 * initialization. Note that invoking ThreadLocalRandom.current()
979 * can be used to force initialization on zero return.
980 */
981 static final int getProbe() {
982 return UNSAFE.getInt(Thread.currentThread(), PROBE);
983 }
984
985 /**
986 * Pseudo-randomly advances and records the given probe value for the
987 * given thread.
988 */
989 static final int advanceProbe(int probe) {
990 probe ^= probe << 13; // xorshift
991 probe ^= probe >>> 17;
992 probe ^= probe << 5;
993 UNSAFE.putInt(Thread.currentThread(), PROBE, probe);
994 return probe;
995 }
996
997 /**
998 * Returns the pseudo-randomly initialized or updated secondary seed.
999 */
1000 static final int nextSecondarySeed() {
1001 int r;
1002 Thread t = Thread.currentThread();
1003 if ((r = UNSAFE.getInt(t, SECONDARY)) != 0) {
1004 r ^= r << 13; // xorshift
1005 r ^= r >>> 17;
1006 r ^= r << 5;
1007 }
1008 else {
1009 localInit();
1010 if ((r = (int)UNSAFE.getLong(t, SEED)) == 0)
1011 r = 1; // avoid zero
1012 }
1013 UNSAFE.putInt(t, SECONDARY, r);
1014 return r;
1015 }
1016
1017 // Serialization support
1018
1019 private static final long serialVersionUID = -5851777807851030925L;
1020
1021 /**
1022 * @serialField rnd long
1023 * seed for random computations
1024 * @serialField initialized boolean
1025 * always true
1026 */
1027 private static final ObjectStreamField[] serialPersistentFields = {
1028 new ObjectStreamField("rnd", long.class),
1029 new ObjectStreamField("initialized", boolean.class),
1030 };
1031
1032 /**
1033 * Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
1034 * @param s the stream
1035 * @throws java.io.IOException if an I/O error occurs
1036 */
1037 private void writeObject(java.io.ObjectOutputStream s)
1038 throws java.io.IOException {
1039
1040 java.io.ObjectOutputStream.PutField fields = s.putFields();
1041 fields.put("rnd", UNSAFE.getLong(Thread.currentThread(), SEED));
1042 fields.put("initialized", true);
1043 s.writeFields();
1044 }
1045
1046 /**
1047 * Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
1048 * @return the {@link #current() current} thread's {@code ThreadLocalRandom}
1049 */
1050 private Object readResolve() {
1051 return current();
1052 }
1053
1054 // Unsafe mechanics
1055 private static final sun.misc.Unsafe UNSAFE;
1056 private static final long SEED;
1057 private static final long PROBE;
1058 private static final long SECONDARY;
1059 static {
1060 try {
1061 UNSAFE = sun.misc.Unsafe.getUnsafe();
1062 Class<?> tk = Thread.class;
1063 SEED = UNSAFE.objectFieldOffset
1064 (tk.getDeclaredField("threadLocalRandomSeed"));
1065 PROBE = UNSAFE.objectFieldOffset
1066 (tk.getDeclaredField("threadLocalRandomProbe"));
1067 SECONDARY = UNSAFE.objectFieldOffset
1068 (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
1069 } catch (Exception e) {
1070 throw new Error(e);
1071 }
1072 }
1073 }