ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadLocalRandom.java
Revision: 1.37
Committed: Sun Sep 20 02:42:13 2015 UTC (8 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.36: +6 -3 lines
Log Message:
make nested classes final

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.util.Random;
11 import java.util.Spliterator;
12 import java.util.concurrent.atomic.AtomicInteger;
13 import java.util.concurrent.atomic.AtomicLong;
14 import java.util.function.DoubleConsumer;
15 import java.util.function.IntConsumer;
16 import java.util.function.LongConsumer;
17 import java.util.stream.DoubleStream;
18 import java.util.stream.IntStream;
19 import java.util.stream.LongStream;
20 import java.util.stream.StreamSupport;
21
22 /**
23 * A random number generator isolated to the current thread. Like the
24 * global {@link java.util.Random} generator used by the {@link
25 * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
26 * with an internally generated seed that may not otherwise be
27 * modified. When applicable, use of {@code ThreadLocalRandom} rather
28 * than shared {@code Random} objects in concurrent programs will
29 * typically encounter much less overhead and contention. Use of
30 * {@code ThreadLocalRandom} is particularly appropriate when multiple
31 * tasks (for example, each a {@link ForkJoinTask}) use random numbers
32 * in parallel in thread pools.
33 *
34 * <p>Usages of this class should typically be of the form:
35 * {@code ThreadLocalRandom.current().nextX(...)} (where
36 * {@code X} is {@code Int}, {@code Long}, etc).
37 * When all usages are of this form, it is never possible to
38 * accidently share a {@code ThreadLocalRandom} across multiple threads.
39 *
40 * <p>This class also provides additional commonly used bounded random
41 * generation methods.
42 *
43 * <p>Instances of {@code ThreadLocalRandom} are not cryptographically
44 * secure. Consider instead using {@link java.security.SecureRandom}
45 * in security-sensitive applications. Additionally,
46 * default-constructed instances do not use a cryptographically random
47 * seed unless the {@linkplain System#getProperty system property}
48 * {@code java.util.secureRandomSeed} is set to {@code true}.
49 *
50 * @since 1.7
51 * @author Doug Lea
52 */
53 public class ThreadLocalRandom extends Random {
54 /*
55 * This class implements the java.util.Random API (and subclasses
56 * Random) using a single static instance that accesses random
57 * number state held in class Thread (primarily, field
58 * threadLocalRandomSeed). In doing so, it also provides a home
59 * for managing package-private utilities that rely on exactly the
60 * same state as needed to maintain the ThreadLocalRandom
61 * instances. We leverage the need for an initialization flag
62 * field to also use it as a "probe" -- a self-adjusting thread
63 * hash used for contention avoidance, as well as a secondary
64 * simpler (xorShift) random seed that is conservatively used to
65 * avoid otherwise surprising users by hijacking the
66 * ThreadLocalRandom sequence. The dual use is a marriage of
67 * convenience, but is a simple and efficient way of reducing
68 * application-level overhead and footprint of most concurrent
69 * programs.
70 *
71 * Even though this class subclasses java.util.Random, it uses the
72 * same basic algorithm as java.util.SplittableRandom. (See its
73 * internal documentation for explanations, which are not repeated
74 * here.) Because ThreadLocalRandoms are not splittable
75 * though, we use only a single 64bit gamma.
76 *
77 * Because this class is in a different package than class Thread,
78 * field access methods use Unsafe to bypass access control rules.
79 * To conform to the requirements of the Random superclass
80 * constructor, the common static ThreadLocalRandom maintains an
81 * "initialized" field for the sake of rejecting user calls to
82 * setSeed while still allowing a call from constructor. Note
83 * that serialization is completely unnecessary because there is
84 * only a static singleton. But we generate a serial form
85 * containing "rnd" and "initialized" fields to ensure
86 * compatibility across versions.
87 *
88 * Implementations of non-core methods are mostly the same as in
89 * SplittableRandom, that were in part derived from a previous
90 * version of this class.
91 *
92 * The nextLocalGaussian ThreadLocal supports the very rarely used
93 * nextGaussian method by providing a holder for the second of a
94 * pair of them. As is true for the base class version of this
95 * method, this time/space tradeoff is probably never worthwhile,
96 * but we provide identical statistical properties.
97 */
98
99 /** Generates per-thread initialization/probe field */
100 private static final AtomicInteger probeGenerator = new AtomicInteger();
101
102 /**
103 * The next seed for default constructors.
104 */
105 private static final AtomicLong seeder = new AtomicLong(initialSeed());
106
107 private static long initialSeed() {
108 String pp = java.security.AccessController.doPrivileged(
109 new sun.security.action.GetPropertyAction(
110 "java.util.secureRandomSeed"));
111 if (pp != null && pp.equalsIgnoreCase("true")) {
112 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
113 long s = (long)(seedBytes[0]) & 0xffL;
114 for (int i = 1; i < 8; ++i)
115 s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
116 return s;
117 }
118 return (mix64(System.currentTimeMillis()) ^
119 mix64(System.nanoTime()));
120 }
121
122 /**
123 * The seed increment
124 */
125 private static final long GAMMA = 0x9e3779b97f4a7c15L;
126
127 /**
128 * The increment for generating probe values
129 */
130 private static final int PROBE_INCREMENT = 0x9e3779b9;
131
132 /**
133 * The increment of seeder per new instance
134 */
135 private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
136
137 // Constants from SplittableRandom
138 private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
139 private static final float FLOAT_UNIT = 0x1.0p-24f; // 1.0f / (1 << 24)
140
141 /** Rarely-used holder for the second of a pair of Gaussians */
142 private static final ThreadLocal<Double> nextLocalGaussian =
143 new ThreadLocal<>();
144
145 private static long mix64(long z) {
146 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
147 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
148 return z ^ (z >>> 33);
149 }
150
151 private static int mix32(long z) {
152 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
153 return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
154 }
155
156 /**
157 * Field used only during singleton initialization.
158 * True when constructor completes.
159 */
160 boolean initialized;
161
162 /** Constructor used only for static singleton */
163 private ThreadLocalRandom() {
164 initialized = true; // false during super() call
165 }
166
167 /** The common ThreadLocalRandom */
168 static final ThreadLocalRandom instance = new ThreadLocalRandom();
169
170 /**
171 * Initialize Thread fields for the current thread. Called only
172 * when Thread.threadLocalRandomProbe is zero, indicating that a
173 * thread local seed value needs to be generated. Note that even
174 * though the initialization is purely thread-local, we need to
175 * rely on (static) atomic generators to initialize the values.
176 */
177 static final void localInit() {
178 int p = probeGenerator.addAndGet(PROBE_INCREMENT);
179 int probe = (p == 0) ? 1 : p; // skip 0
180 long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
181 Thread t = Thread.currentThread();
182 U.putLong(t, SEED, seed);
183 U.putInt(t, PROBE, probe);
184 }
185
186 /**
187 * Returns the current thread's {@code ThreadLocalRandom}.
188 *
189 * @return the current thread's {@code ThreadLocalRandom}
190 */
191 public static ThreadLocalRandom current() {
192 if (U.getInt(Thread.currentThread(), PROBE) == 0)
193 localInit();
194 return instance;
195 }
196
197 /**
198 * Throws {@code UnsupportedOperationException}. Setting seeds in
199 * this generator is not supported.
200 *
201 * @throws UnsupportedOperationException always
202 */
203 public void setSeed(long seed) {
204 // only allow call from super() constructor
205 if (initialized)
206 throw new UnsupportedOperationException();
207 }
208
209 final long nextSeed() {
210 Thread t; long r; // read and update per-thread seed
211 U.putLong(t = Thread.currentThread(), SEED,
212 r = U.getLong(t, SEED) + GAMMA);
213 return r;
214 }
215
216 // We must define this, but never use it.
217 protected int next(int bits) {
218 return (int)(mix64(nextSeed()) >>> (64 - bits));
219 }
220
221 // IllegalArgumentException messages
222 static final String BAD_BOUND = "bound must be positive";
223 static final String BAD_RANGE = "bound must be greater than origin";
224 static final String BAD_SIZE = "size must be non-negative";
225
226 /**
227 * The form of nextLong used by LongStream Spliterators. If
228 * origin is greater than bound, acts as unbounded form of
229 * nextLong, else as bounded form.
230 *
231 * @param origin the least value, unless greater than bound
232 * @param bound the upper bound (exclusive), must not equal origin
233 * @return a pseudorandom value
234 */
235 final long internalNextLong(long origin, long bound) {
236 long r = mix64(nextSeed());
237 if (origin < bound) {
238 long n = bound - origin, m = n - 1;
239 if ((n & m) == 0L) // power of two
240 r = (r & m) + origin;
241 else if (n > 0L) { // reject over-represented candidates
242 for (long u = r >>> 1; // ensure nonnegative
243 u + m - (r = u % n) < 0L; // rejection check
244 u = mix64(nextSeed()) >>> 1) // retry
245 ;
246 r += origin;
247 }
248 else { // range not representable as long
249 while (r < origin || r >= bound)
250 r = mix64(nextSeed());
251 }
252 }
253 return r;
254 }
255
256 /**
257 * The form of nextInt used by IntStream Spliterators.
258 * Exactly the same as long version, except for types.
259 *
260 * @param origin the least value, unless greater than bound
261 * @param bound the upper bound (exclusive), must not equal origin
262 * @return a pseudorandom value
263 */
264 final int internalNextInt(int origin, int bound) {
265 int r = mix32(nextSeed());
266 if (origin < bound) {
267 int n = bound - origin, m = n - 1;
268 if ((n & m) == 0)
269 r = (r & m) + origin;
270 else if (n > 0) {
271 for (int u = r >>> 1;
272 u + m - (r = u % n) < 0;
273 u = mix32(nextSeed()) >>> 1)
274 ;
275 r += origin;
276 }
277 else {
278 while (r < origin || r >= bound)
279 r = mix32(nextSeed());
280 }
281 }
282 return r;
283 }
284
285 /**
286 * The form of nextDouble used by DoubleStream Spliterators.
287 *
288 * @param origin the least value, unless greater than bound
289 * @param bound the upper bound (exclusive), must not equal origin
290 * @return a pseudorandom value
291 */
292 final double internalNextDouble(double origin, double bound) {
293 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
294 if (origin < bound) {
295 r = r * (bound - origin) + origin;
296 if (r >= bound) // correct for rounding
297 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
298 }
299 return r;
300 }
301
302 /**
303 * Returns a pseudorandom {@code int} value.
304 *
305 * @return a pseudorandom {@code int} value
306 */
307 public int nextInt() {
308 return mix32(nextSeed());
309 }
310
311 /**
312 * Returns a pseudorandom {@code int} value between zero (inclusive)
313 * and the specified bound (exclusive).
314 *
315 * @param bound the upper bound (exclusive). Must be positive.
316 * @return a pseudorandom {@code int} value between zero
317 * (inclusive) and the bound (exclusive)
318 * @throws IllegalArgumentException if {@code bound} is not positive
319 */
320 public int nextInt(int bound) {
321 if (bound <= 0)
322 throw new IllegalArgumentException(BAD_BOUND);
323 int r = mix32(nextSeed());
324 int m = bound - 1;
325 if ((bound & m) == 0) // power of two
326 r &= m;
327 else { // reject over-represented candidates
328 for (int u = r >>> 1;
329 u + m - (r = u % bound) < 0;
330 u = mix32(nextSeed()) >>> 1)
331 ;
332 }
333 return r;
334 }
335
336 /**
337 * Returns a pseudorandom {@code int} value between the specified
338 * origin (inclusive) and the specified bound (exclusive).
339 *
340 * @param origin the least value returned
341 * @param bound the upper bound (exclusive)
342 * @return a pseudorandom {@code int} value between the origin
343 * (inclusive) and the bound (exclusive)
344 * @throws IllegalArgumentException if {@code origin} is greater than
345 * or equal to {@code bound}
346 */
347 public int nextInt(int origin, int bound) {
348 if (origin >= bound)
349 throw new IllegalArgumentException(BAD_RANGE);
350 return internalNextInt(origin, bound);
351 }
352
353 /**
354 * Returns a pseudorandom {@code long} value.
355 *
356 * @return a pseudorandom {@code long} value
357 */
358 public long nextLong() {
359 return mix64(nextSeed());
360 }
361
362 /**
363 * Returns a pseudorandom {@code long} value between zero (inclusive)
364 * and the specified bound (exclusive).
365 *
366 * @param bound the upper bound (exclusive). Must be positive.
367 * @return a pseudorandom {@code long} value between zero
368 * (inclusive) and the bound (exclusive)
369 * @throws IllegalArgumentException if {@code bound} is not positive
370 */
371 public long nextLong(long bound) {
372 if (bound <= 0)
373 throw new IllegalArgumentException(BAD_BOUND);
374 long r = mix64(nextSeed());
375 long m = bound - 1;
376 if ((bound & m) == 0L) // power of two
377 r &= m;
378 else { // reject over-represented candidates
379 for (long u = r >>> 1;
380 u + m - (r = u % bound) < 0L;
381 u = mix64(nextSeed()) >>> 1)
382 ;
383 }
384 return r;
385 }
386
387 /**
388 * Returns a pseudorandom {@code long} value between the specified
389 * origin (inclusive) and the specified bound (exclusive).
390 *
391 * @param origin the least value returned
392 * @param bound the upper bound (exclusive)
393 * @return a pseudorandom {@code long} value between the origin
394 * (inclusive) and the bound (exclusive)
395 * @throws IllegalArgumentException if {@code origin} is greater than
396 * or equal to {@code bound}
397 */
398 public long nextLong(long origin, long bound) {
399 if (origin >= bound)
400 throw new IllegalArgumentException(BAD_RANGE);
401 return internalNextLong(origin, bound);
402 }
403
404 /**
405 * Returns a pseudorandom {@code double} value between zero
406 * (inclusive) and one (exclusive).
407 *
408 * @return a pseudorandom {@code double} value between zero
409 * (inclusive) and one (exclusive)
410 */
411 public double nextDouble() {
412 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
413 }
414
415 /**
416 * Returns a pseudorandom {@code double} value between 0.0
417 * (inclusive) and the specified bound (exclusive).
418 *
419 * @param bound the upper bound (exclusive). Must be positive.
420 * @return a pseudorandom {@code double} value between zero
421 * (inclusive) and the bound (exclusive)
422 * @throws IllegalArgumentException if {@code bound} is not positive
423 */
424 public double nextDouble(double bound) {
425 if (!(bound > 0.0))
426 throw new IllegalArgumentException(BAD_BOUND);
427 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
428 return (result < bound) ? result : // correct for rounding
429 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
430 }
431
432 /**
433 * Returns a pseudorandom {@code double} value between the specified
434 * origin (inclusive) and bound (exclusive).
435 *
436 * @param origin the least value returned
437 * @param bound the upper bound (exclusive)
438 * @return a pseudorandom {@code double} value between the origin
439 * (inclusive) and the bound (exclusive)
440 * @throws IllegalArgumentException if {@code origin} is greater than
441 * or equal to {@code bound}
442 */
443 public double nextDouble(double origin, double bound) {
444 if (!(origin < bound))
445 throw new IllegalArgumentException(BAD_RANGE);
446 return internalNextDouble(origin, bound);
447 }
448
449 /**
450 * Returns a pseudorandom {@code boolean} value.
451 *
452 * @return a pseudorandom {@code boolean} value
453 */
454 public boolean nextBoolean() {
455 return mix32(nextSeed()) < 0;
456 }
457
458 /**
459 * Returns a pseudorandom {@code float} value between zero
460 * (inclusive) and one (exclusive).
461 *
462 * @return a pseudorandom {@code float} value between zero
463 * (inclusive) and one (exclusive)
464 */
465 public float nextFloat() {
466 return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
467 }
468
469 public double nextGaussian() {
470 // Use nextLocalGaussian instead of nextGaussian field
471 Double d = nextLocalGaussian.get();
472 if (d != null) {
473 nextLocalGaussian.set(null);
474 return d.doubleValue();
475 }
476 double v1, v2, s;
477 do {
478 v1 = 2 * nextDouble() - 1; // between -1 and 1
479 v2 = 2 * nextDouble() - 1; // between -1 and 1
480 s = v1 * v1 + v2 * v2;
481 } while (s >= 1 || s == 0);
482 double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
483 nextLocalGaussian.set(new Double(v2 * multiplier));
484 return v1 * multiplier;
485 }
486
487 // stream methods, coded in a way intended to better isolate for
488 // maintenance purposes the small differences across forms.
489
490 /**
491 * Returns a stream producing the given {@code streamSize} number of
492 * pseudorandom {@code int} values.
493 *
494 * @param streamSize the number of values to generate
495 * @return a stream of pseudorandom {@code int} values
496 * @throws IllegalArgumentException if {@code streamSize} is
497 * less than zero
498 * @since 1.8
499 */
500 public IntStream ints(long streamSize) {
501 if (streamSize < 0L)
502 throw new IllegalArgumentException(BAD_SIZE);
503 return StreamSupport.intStream
504 (new RandomIntsSpliterator
505 (0L, streamSize, Integer.MAX_VALUE, 0),
506 false);
507 }
508
509 /**
510 * Returns an effectively unlimited stream of pseudorandom {@code int}
511 * values.
512 *
513 * @implNote This method is implemented to be equivalent to {@code
514 * ints(Long.MAX_VALUE)}.
515 *
516 * @return a stream of pseudorandom {@code int} values
517 * @since 1.8
518 */
519 public IntStream ints() {
520 return StreamSupport.intStream
521 (new RandomIntsSpliterator
522 (0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
523 false);
524 }
525
526 /**
527 * Returns a stream producing the given {@code streamSize} number
528 * of pseudorandom {@code int} values, each conforming to the given
529 * origin (inclusive) and bound (exclusive).
530 *
531 * @param streamSize the number of values to generate
532 * @param randomNumberOrigin the origin (inclusive) of each random value
533 * @param randomNumberBound the bound (exclusive) of each random value
534 * @return a stream of pseudorandom {@code int} values,
535 * each with the given origin (inclusive) and bound (exclusive)
536 * @throws IllegalArgumentException if {@code streamSize} is
537 * less than zero, or {@code randomNumberOrigin}
538 * is greater than or equal to {@code randomNumberBound}
539 * @since 1.8
540 */
541 public IntStream ints(long streamSize, int randomNumberOrigin,
542 int randomNumberBound) {
543 if (streamSize < 0L)
544 throw new IllegalArgumentException(BAD_SIZE);
545 if (randomNumberOrigin >= randomNumberBound)
546 throw new IllegalArgumentException(BAD_RANGE);
547 return StreamSupport.intStream
548 (new RandomIntsSpliterator
549 (0L, streamSize, randomNumberOrigin, randomNumberBound),
550 false);
551 }
552
553 /**
554 * Returns an effectively unlimited stream of pseudorandom {@code
555 * int} values, each conforming to the given origin (inclusive) and bound
556 * (exclusive).
557 *
558 * @implNote This method is implemented to be equivalent to {@code
559 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
560 *
561 * @param randomNumberOrigin the origin (inclusive) of each random value
562 * @param randomNumberBound the bound (exclusive) of each random value
563 * @return a stream of pseudorandom {@code int} values,
564 * each with the given origin (inclusive) and bound (exclusive)
565 * @throws IllegalArgumentException if {@code randomNumberOrigin}
566 * is greater than or equal to {@code randomNumberBound}
567 * @since 1.8
568 */
569 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
570 if (randomNumberOrigin >= randomNumberBound)
571 throw new IllegalArgumentException(BAD_RANGE);
572 return StreamSupport.intStream
573 (new RandomIntsSpliterator
574 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
575 false);
576 }
577
578 /**
579 * Returns a stream producing the given {@code streamSize} number of
580 * pseudorandom {@code long} values.
581 *
582 * @param streamSize the number of values to generate
583 * @return a stream of pseudorandom {@code long} values
584 * @throws IllegalArgumentException if {@code streamSize} is
585 * less than zero
586 * @since 1.8
587 */
588 public LongStream longs(long streamSize) {
589 if (streamSize < 0L)
590 throw new IllegalArgumentException(BAD_SIZE);
591 return StreamSupport.longStream
592 (new RandomLongsSpliterator
593 (0L, streamSize, Long.MAX_VALUE, 0L),
594 false);
595 }
596
597 /**
598 * Returns an effectively unlimited stream of pseudorandom {@code long}
599 * values.
600 *
601 * @implNote This method is implemented to be equivalent to {@code
602 * longs(Long.MAX_VALUE)}.
603 *
604 * @return a stream of pseudorandom {@code long} values
605 * @since 1.8
606 */
607 public LongStream longs() {
608 return StreamSupport.longStream
609 (new RandomLongsSpliterator
610 (0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
611 false);
612 }
613
614 /**
615 * Returns a stream producing the given {@code streamSize} number of
616 * pseudorandom {@code long}, each conforming to the given origin
617 * (inclusive) and bound (exclusive).
618 *
619 * @param streamSize the number of values to generate
620 * @param randomNumberOrigin the origin (inclusive) of each random value
621 * @param randomNumberBound the bound (exclusive) of each random value
622 * @return a stream of pseudorandom {@code long} values,
623 * each with the given origin (inclusive) and bound (exclusive)
624 * @throws IllegalArgumentException if {@code streamSize} is
625 * less than zero, or {@code randomNumberOrigin}
626 * is greater than or equal to {@code randomNumberBound}
627 * @since 1.8
628 */
629 public LongStream longs(long streamSize, long randomNumberOrigin,
630 long randomNumberBound) {
631 if (streamSize < 0L)
632 throw new IllegalArgumentException(BAD_SIZE);
633 if (randomNumberOrigin >= randomNumberBound)
634 throw new IllegalArgumentException(BAD_RANGE);
635 return StreamSupport.longStream
636 (new RandomLongsSpliterator
637 (0L, streamSize, randomNumberOrigin, randomNumberBound),
638 false);
639 }
640
641 /**
642 * Returns an effectively unlimited stream of pseudorandom {@code
643 * long} values, each conforming to the given origin (inclusive) and bound
644 * (exclusive).
645 *
646 * @implNote This method is implemented to be equivalent to {@code
647 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
648 *
649 * @param randomNumberOrigin the origin (inclusive) of each random value
650 * @param randomNumberBound the bound (exclusive) of each random value
651 * @return a stream of pseudorandom {@code long} values,
652 * each with the given origin (inclusive) and bound (exclusive)
653 * @throws IllegalArgumentException if {@code randomNumberOrigin}
654 * is greater than or equal to {@code randomNumberBound}
655 * @since 1.8
656 */
657 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
658 if (randomNumberOrigin >= randomNumberBound)
659 throw new IllegalArgumentException(BAD_RANGE);
660 return StreamSupport.longStream
661 (new RandomLongsSpliterator
662 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
663 false);
664 }
665
666 /**
667 * Returns a stream producing the given {@code streamSize} number of
668 * pseudorandom {@code double} values, each between zero
669 * (inclusive) and one (exclusive).
670 *
671 * @param streamSize the number of values to generate
672 * @return a stream of {@code double} values
673 * @throws IllegalArgumentException if {@code streamSize} is
674 * less than zero
675 * @since 1.8
676 */
677 public DoubleStream doubles(long streamSize) {
678 if (streamSize < 0L)
679 throw new IllegalArgumentException(BAD_SIZE);
680 return StreamSupport.doubleStream
681 (new RandomDoublesSpliterator
682 (0L, streamSize, Double.MAX_VALUE, 0.0),
683 false);
684 }
685
686 /**
687 * Returns an effectively unlimited stream of pseudorandom {@code
688 * double} values, each between zero (inclusive) and one
689 * (exclusive).
690 *
691 * @implNote This method is implemented to be equivalent to {@code
692 * doubles(Long.MAX_VALUE)}.
693 *
694 * @return a stream of pseudorandom {@code double} values
695 * @since 1.8
696 */
697 public DoubleStream doubles() {
698 return StreamSupport.doubleStream
699 (new RandomDoublesSpliterator
700 (0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
701 false);
702 }
703
704 /**
705 * Returns a stream producing the given {@code streamSize} number of
706 * pseudorandom {@code double} values, each conforming to the given origin
707 * (inclusive) and bound (exclusive).
708 *
709 * @param streamSize the number of values to generate
710 * @param randomNumberOrigin the origin (inclusive) of each random value
711 * @param randomNumberBound the bound (exclusive) of each random value
712 * @return a stream of pseudorandom {@code double} values,
713 * each with the given origin (inclusive) and bound (exclusive)
714 * @throws IllegalArgumentException if {@code streamSize} is
715 * less than zero
716 * @throws IllegalArgumentException if {@code randomNumberOrigin}
717 * is greater than or equal to {@code randomNumberBound}
718 * @since 1.8
719 */
720 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
721 double randomNumberBound) {
722 if (streamSize < 0L)
723 throw new IllegalArgumentException(BAD_SIZE);
724 if (!(randomNumberOrigin < randomNumberBound))
725 throw new IllegalArgumentException(BAD_RANGE);
726 return StreamSupport.doubleStream
727 (new RandomDoublesSpliterator
728 (0L, streamSize, randomNumberOrigin, randomNumberBound),
729 false);
730 }
731
732 /**
733 * Returns an effectively unlimited stream of pseudorandom {@code
734 * double} values, each conforming to the given origin (inclusive) and bound
735 * (exclusive).
736 *
737 * @implNote This method is implemented to be equivalent to {@code
738 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
739 *
740 * @param randomNumberOrigin the origin (inclusive) of each random value
741 * @param randomNumberBound the bound (exclusive) of each random value
742 * @return a stream of pseudorandom {@code double} values,
743 * each with the given origin (inclusive) and bound (exclusive)
744 * @throws IllegalArgumentException if {@code randomNumberOrigin}
745 * is greater than or equal to {@code randomNumberBound}
746 * @since 1.8
747 */
748 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
749 if (!(randomNumberOrigin < randomNumberBound))
750 throw new IllegalArgumentException(BAD_RANGE);
751 return StreamSupport.doubleStream
752 (new RandomDoublesSpliterator
753 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
754 false);
755 }
756
757 /**
758 * Spliterator for int streams. We multiplex the four int
759 * versions into one class by treating a bound less than origin as
760 * unbounded, and also by treating "infinite" as equivalent to
761 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
762 * approach. The long and double versions of this class are
763 * identical except for types.
764 */
765 private static final class RandomIntsSpliterator
766 implements Spliterator.OfInt {
767 long index;
768 final long fence;
769 final int origin;
770 final int bound;
771 RandomIntsSpliterator(long index, long fence,
772 int origin, int bound) {
773 this.index = index; this.fence = fence;
774 this.origin = origin; this.bound = bound;
775 }
776
777 public RandomIntsSpliterator trySplit() {
778 long i = index, m = (i + fence) >>> 1;
779 return (m <= i) ? null :
780 new RandomIntsSpliterator(i, index = m, origin, bound);
781 }
782
783 public long estimateSize() {
784 return fence - index;
785 }
786
787 public int characteristics() {
788 return (Spliterator.SIZED | Spliterator.SUBSIZED |
789 Spliterator.NONNULL | Spliterator.IMMUTABLE);
790 }
791
792 public boolean tryAdvance(IntConsumer consumer) {
793 if (consumer == null) throw new NullPointerException();
794 long i = index, f = fence;
795 if (i < f) {
796 consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
797 index = i + 1;
798 return true;
799 }
800 return false;
801 }
802
803 public void forEachRemaining(IntConsumer consumer) {
804 if (consumer == null) throw new NullPointerException();
805 long i = index, f = fence;
806 if (i < f) {
807 index = f;
808 int o = origin, b = bound;
809 ThreadLocalRandom rng = ThreadLocalRandom.current();
810 do {
811 consumer.accept(rng.internalNextInt(o, b));
812 } while (++i < f);
813 }
814 }
815 }
816
817 /**
818 * Spliterator for long streams.
819 */
820 private static final class RandomLongsSpliterator
821 implements Spliterator.OfLong {
822 long index;
823 final long fence;
824 final long origin;
825 final long bound;
826 RandomLongsSpliterator(long index, long fence,
827 long origin, long bound) {
828 this.index = index; this.fence = fence;
829 this.origin = origin; this.bound = bound;
830 }
831
832 public RandomLongsSpliterator trySplit() {
833 long i = index, m = (i + fence) >>> 1;
834 return (m <= i) ? null :
835 new RandomLongsSpliterator(i, index = m, origin, bound);
836 }
837
838 public long estimateSize() {
839 return fence - index;
840 }
841
842 public int characteristics() {
843 return (Spliterator.SIZED | Spliterator.SUBSIZED |
844 Spliterator.NONNULL | Spliterator.IMMUTABLE);
845 }
846
847 public boolean tryAdvance(LongConsumer consumer) {
848 if (consumer == null) throw new NullPointerException();
849 long i = index, f = fence;
850 if (i < f) {
851 consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
852 index = i + 1;
853 return true;
854 }
855 return false;
856 }
857
858 public void forEachRemaining(LongConsumer consumer) {
859 if (consumer == null) throw new NullPointerException();
860 long i = index, f = fence;
861 if (i < f) {
862 index = f;
863 long o = origin, b = bound;
864 ThreadLocalRandom rng = ThreadLocalRandom.current();
865 do {
866 consumer.accept(rng.internalNextLong(o, b));
867 } while (++i < f);
868 }
869 }
870
871 }
872
873 /**
874 * Spliterator for double streams.
875 */
876 private static final class RandomDoublesSpliterator
877 implements Spliterator.OfDouble {
878 long index;
879 final long fence;
880 final double origin;
881 final double bound;
882 RandomDoublesSpliterator(long index, long fence,
883 double origin, double bound) {
884 this.index = index; this.fence = fence;
885 this.origin = origin; this.bound = bound;
886 }
887
888 public RandomDoublesSpliterator trySplit() {
889 long i = index, m = (i + fence) >>> 1;
890 return (m <= i) ? null :
891 new RandomDoublesSpliterator(i, index = m, origin, bound);
892 }
893
894 public long estimateSize() {
895 return fence - index;
896 }
897
898 public int characteristics() {
899 return (Spliterator.SIZED | Spliterator.SUBSIZED |
900 Spliterator.NONNULL | Spliterator.IMMUTABLE);
901 }
902
903 public boolean tryAdvance(DoubleConsumer consumer) {
904 if (consumer == null) throw new NullPointerException();
905 long i = index, f = fence;
906 if (i < f) {
907 consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
908 index = i + 1;
909 return true;
910 }
911 return false;
912 }
913
914 public void forEachRemaining(DoubleConsumer consumer) {
915 if (consumer == null) throw new NullPointerException();
916 long i = index, f = fence;
917 if (i < f) {
918 index = f;
919 double o = origin, b = bound;
920 ThreadLocalRandom rng = ThreadLocalRandom.current();
921 do {
922 consumer.accept(rng.internalNextDouble(o, b));
923 } while (++i < f);
924 }
925 }
926 }
927
928
929 // Within-package utilities
930
931 /*
932 * Descriptions of the usages of the methods below can be found in
933 * the classes that use them. Briefly, a thread's "probe" value is
934 * a non-zero hash code that (probably) does not collide with
935 * other existing threads with respect to any power of two
936 * collision space. When it does collide, it is pseudo-randomly
937 * adjusted (using a Marsaglia XorShift). The nextSecondarySeed
938 * method is used in the same contexts as ThreadLocalRandom, but
939 * only for transient usages such as random adaptive spin/block
940 * sequences for which a cheap RNG suffices and for which it could
941 * in principle disrupt user-visible statistical properties of the
942 * main ThreadLocalRandom if we were to use it.
943 *
944 * Note: Because of package-protection issues, versions of some
945 * these methods also appear in some subpackage classes.
946 */
947
948 /**
949 * Returns the probe value for the current thread without forcing
950 * initialization. Note that invoking ThreadLocalRandom.current()
951 * can be used to force initialization on zero return.
952 */
953 static final int getProbe() {
954 return U.getInt(Thread.currentThread(), PROBE);
955 }
956
957 /**
958 * Pseudo-randomly advances and records the given probe value for the
959 * given thread.
960 */
961 static final int advanceProbe(int probe) {
962 probe ^= probe << 13; // xorshift
963 probe ^= probe >>> 17;
964 probe ^= probe << 5;
965 U.putInt(Thread.currentThread(), PROBE, probe);
966 return probe;
967 }
968
969 /**
970 * Returns the pseudo-randomly initialized or updated secondary seed.
971 */
972 static final int nextSecondarySeed() {
973 int r;
974 Thread t = Thread.currentThread();
975 if ((r = U.getInt(t, SECONDARY)) != 0) {
976 r ^= r << 13; // xorshift
977 r ^= r >>> 17;
978 r ^= r << 5;
979 }
980 else if ((r = mix32(seeder.getAndAdd(SEEDER_INCREMENT))) == 0)
981 r = 1; // avoid zero
982 U.putInt(t, SECONDARY, r);
983 return r;
984 }
985
986 // Serialization support
987
988 private static final long serialVersionUID = -5851777807851030925L;
989
990 /**
991 * @serialField rnd long
992 * seed for random computations
993 * @serialField initialized boolean
994 * always true
995 */
996 private static final ObjectStreamField[] serialPersistentFields = {
997 new ObjectStreamField("rnd", long.class),
998 new ObjectStreamField("initialized", boolean.class),
999 };
1000
1001 /**
1002 * Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
1003 * @param s the stream
1004 * @throws java.io.IOException if an I/O error occurs
1005 */
1006 private void writeObject(java.io.ObjectOutputStream s)
1007 throws java.io.IOException {
1008
1009 java.io.ObjectOutputStream.PutField fields = s.putFields();
1010 fields.put("rnd", U.getLong(Thread.currentThread(), SEED));
1011 fields.put("initialized", true);
1012 s.writeFields();
1013 }
1014
1015 /**
1016 * Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
1017 * @return the {@link #current() current} thread's {@code ThreadLocalRandom}
1018 */
1019 private Object readResolve() {
1020 return current();
1021 }
1022
1023 // Unsafe mechanics
1024 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1025 private static final long SEED;
1026 private static final long PROBE;
1027 private static final long SECONDARY;
1028 static {
1029 try {
1030 SEED = U.objectFieldOffset
1031 (Thread.class.getDeclaredField("threadLocalRandomSeed"));
1032 PROBE = U.objectFieldOffset
1033 (Thread.class.getDeclaredField("threadLocalRandomProbe"));
1034 SECONDARY = U.objectFieldOffset
1035 (Thread.class.getDeclaredField("threadLocalRandomSecondarySeed"));
1036 } catch (ReflectiveOperationException e) {
1037 throw new Error(e);
1038 }
1039 }
1040 }