ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadLocalRandom.java
Revision: 1.39
Committed: Sat Jan 2 02:27:03 2016 UTC (8 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.38: +5 -6 lines
Log Message:
stop using jdk internal API GetPropertyAction

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.util.Random;
11 import java.util.Spliterator;
12 import java.util.concurrent.atomic.AtomicInteger;
13 import java.util.concurrent.atomic.AtomicLong;
14 import java.util.function.DoubleConsumer;
15 import java.util.function.IntConsumer;
16 import java.util.function.LongConsumer;
17 import java.util.stream.DoubleStream;
18 import java.util.stream.IntStream;
19 import java.util.stream.LongStream;
20 import java.util.stream.StreamSupport;
21
22 /**
23 * A random number generator isolated to the current thread. Like the
24 * global {@link java.util.Random} generator used by the {@link
25 * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
26 * with an internally generated seed that may not otherwise be
27 * modified. When applicable, use of {@code ThreadLocalRandom} rather
28 * than shared {@code Random} objects in concurrent programs will
29 * typically encounter much less overhead and contention. Use of
30 * {@code ThreadLocalRandom} is particularly appropriate when multiple
31 * tasks (for example, each a {@link ForkJoinTask}) use random numbers
32 * in parallel in thread pools.
33 *
34 * <p>Usages of this class should typically be of the form:
35 * {@code ThreadLocalRandom.current().nextX(...)} (where
36 * {@code X} is {@code Int}, {@code Long}, etc).
37 * When all usages are of this form, it is never possible to
38 * accidently share a {@code ThreadLocalRandom} across multiple threads.
39 *
40 * <p>This class also provides additional commonly used bounded random
41 * generation methods.
42 *
43 * <p>Instances of {@code ThreadLocalRandom} are not cryptographically
44 * secure. Consider instead using {@link java.security.SecureRandom}
45 * in security-sensitive applications. Additionally,
46 * default-constructed instances do not use a cryptographically random
47 * seed unless the {@linkplain System#getProperty system property}
48 * {@code java.util.secureRandomSeed} is set to {@code true}.
49 *
50 * @since 1.7
51 * @author Doug Lea
52 */
53 public class ThreadLocalRandom extends Random {
54 /*
55 * This class implements the java.util.Random API (and subclasses
56 * Random) using a single static instance that accesses random
57 * number state held in class Thread (primarily, field
58 * threadLocalRandomSeed). In doing so, it also provides a home
59 * for managing package-private utilities that rely on exactly the
60 * same state as needed to maintain the ThreadLocalRandom
61 * instances. We leverage the need for an initialization flag
62 * field to also use it as a "probe" -- a self-adjusting thread
63 * hash used for contention avoidance, as well as a secondary
64 * simpler (xorShift) random seed that is conservatively used to
65 * avoid otherwise surprising users by hijacking the
66 * ThreadLocalRandom sequence. The dual use is a marriage of
67 * convenience, but is a simple and efficient way of reducing
68 * application-level overhead and footprint of most concurrent
69 * programs.
70 *
71 * Even though this class subclasses java.util.Random, it uses the
72 * same basic algorithm as java.util.SplittableRandom. (See its
73 * internal documentation for explanations, which are not repeated
74 * here.) Because ThreadLocalRandoms are not splittable
75 * though, we use only a single 64bit gamma.
76 *
77 * Because this class is in a different package than class Thread,
78 * field access methods use Unsafe to bypass access control rules.
79 * To conform to the requirements of the Random superclass
80 * constructor, the common static ThreadLocalRandom maintains an
81 * "initialized" field for the sake of rejecting user calls to
82 * setSeed while still allowing a call from constructor. Note
83 * that serialization is completely unnecessary because there is
84 * only a static singleton. But we generate a serial form
85 * containing "rnd" and "initialized" fields to ensure
86 * compatibility across versions.
87 *
88 * Implementations of non-core methods are mostly the same as in
89 * SplittableRandom, that were in part derived from a previous
90 * version of this class.
91 *
92 * The nextLocalGaussian ThreadLocal supports the very rarely used
93 * nextGaussian method by providing a holder for the second of a
94 * pair of them. As is true for the base class version of this
95 * method, this time/space tradeoff is probably never worthwhile,
96 * but we provide identical statistical properties.
97 */
98
99 /** Generates per-thread initialization/probe field */
100 private static final AtomicInteger probeGenerator = new AtomicInteger();
101
102 /**
103 * The next seed for default constructors.
104 */
105 private static final AtomicLong seeder = new AtomicLong(initialSeed());
106
107 private static long initialSeed() {
108 java.security.PrivilegedAction<Boolean> action =
109 () -> Boolean.getBoolean("java.util.secureRandomSeed");
110 if (java.security.AccessController.doPrivileged(action)) {
111 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
112 long s = (long)seedBytes[0] & 0xffL;
113 for (int i = 1; i < 8; ++i)
114 s = (s << 8) | ((long)seedBytes[i] & 0xffL);
115 return s;
116 }
117 return (mix64(System.currentTimeMillis()) ^
118 mix64(System.nanoTime()));
119 }
120
121 /**
122 * The seed increment.
123 */
124 private static final long GAMMA = 0x9e3779b97f4a7c15L;
125
126 /**
127 * The increment for generating probe values.
128 */
129 private static final int PROBE_INCREMENT = 0x9e3779b9;
130
131 /**
132 * The increment of seeder per new instance.
133 */
134 private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
135
136 // Constants from SplittableRandom
137 private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
138 private static final float FLOAT_UNIT = 0x1.0p-24f; // 1.0f / (1 << 24)
139
140 /** Rarely-used holder for the second of a pair of Gaussians */
141 private static final ThreadLocal<Double> nextLocalGaussian =
142 new ThreadLocal<>();
143
144 private static long mix64(long z) {
145 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
146 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
147 return z ^ (z >>> 33);
148 }
149
150 private static int mix32(long z) {
151 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
152 return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
153 }
154
155 /**
156 * Field used only during singleton initialization.
157 * True when constructor completes.
158 */
159 boolean initialized;
160
161 /** Constructor used only for static singleton */
162 private ThreadLocalRandom() {
163 initialized = true; // false during super() call
164 }
165
166 /** The common ThreadLocalRandom */
167 static final ThreadLocalRandom instance = new ThreadLocalRandom();
168
169 /**
170 * Initialize Thread fields for the current thread. Called only
171 * when Thread.threadLocalRandomProbe is zero, indicating that a
172 * thread local seed value needs to be generated. Note that even
173 * though the initialization is purely thread-local, we need to
174 * rely on (static) atomic generators to initialize the values.
175 */
176 static final void localInit() {
177 int p = probeGenerator.addAndGet(PROBE_INCREMENT);
178 int probe = (p == 0) ? 1 : p; // skip 0
179 long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
180 Thread t = Thread.currentThread();
181 U.putLong(t, SEED, seed);
182 U.putInt(t, PROBE, probe);
183 }
184
185 /**
186 * Returns the current thread's {@code ThreadLocalRandom}.
187 *
188 * @return the current thread's {@code ThreadLocalRandom}
189 */
190 public static ThreadLocalRandom current() {
191 if (U.getInt(Thread.currentThread(), PROBE) == 0)
192 localInit();
193 return instance;
194 }
195
196 /**
197 * Throws {@code UnsupportedOperationException}. Setting seeds in
198 * this generator is not supported.
199 *
200 * @throws UnsupportedOperationException always
201 */
202 public void setSeed(long seed) {
203 // only allow call from super() constructor
204 if (initialized)
205 throw new UnsupportedOperationException();
206 }
207
208 final long nextSeed() {
209 Thread t; long r; // read and update per-thread seed
210 U.putLong(t = Thread.currentThread(), SEED,
211 r = U.getLong(t, SEED) + GAMMA);
212 return r;
213 }
214
215 // We must define this, but never use it.
216 protected int next(int bits) {
217 return (int)(mix64(nextSeed()) >>> (64 - bits));
218 }
219
220 // IllegalArgumentException messages
221 static final String BAD_BOUND = "bound must be positive";
222 static final String BAD_RANGE = "bound must be greater than origin";
223 static final String BAD_SIZE = "size must be non-negative";
224
225 /**
226 * The form of nextLong used by LongStream Spliterators. If
227 * origin is greater than bound, acts as unbounded form of
228 * nextLong, else as bounded form.
229 *
230 * @param origin the least value, unless greater than bound
231 * @param bound the upper bound (exclusive), must not equal origin
232 * @return a pseudorandom value
233 */
234 final long internalNextLong(long origin, long bound) {
235 long r = mix64(nextSeed());
236 if (origin < bound) {
237 long n = bound - origin, m = n - 1;
238 if ((n & m) == 0L) // power of two
239 r = (r & m) + origin;
240 else if (n > 0L) { // reject over-represented candidates
241 for (long u = r >>> 1; // ensure nonnegative
242 u + m - (r = u % n) < 0L; // rejection check
243 u = mix64(nextSeed()) >>> 1) // retry
244 ;
245 r += origin;
246 }
247 else { // range not representable as long
248 while (r < origin || r >= bound)
249 r = mix64(nextSeed());
250 }
251 }
252 return r;
253 }
254
255 /**
256 * The form of nextInt used by IntStream Spliterators.
257 * Exactly the same as long version, except for types.
258 *
259 * @param origin the least value, unless greater than bound
260 * @param bound the upper bound (exclusive), must not equal origin
261 * @return a pseudorandom value
262 */
263 final int internalNextInt(int origin, int bound) {
264 int r = mix32(nextSeed());
265 if (origin < bound) {
266 int n = bound - origin, m = n - 1;
267 if ((n & m) == 0)
268 r = (r & m) + origin;
269 else if (n > 0) {
270 for (int u = r >>> 1;
271 u + m - (r = u % n) < 0;
272 u = mix32(nextSeed()) >>> 1)
273 ;
274 r += origin;
275 }
276 else {
277 while (r < origin || r >= bound)
278 r = mix32(nextSeed());
279 }
280 }
281 return r;
282 }
283
284 /**
285 * The form of nextDouble used by DoubleStream Spliterators.
286 *
287 * @param origin the least value, unless greater than bound
288 * @param bound the upper bound (exclusive), must not equal origin
289 * @return a pseudorandom value
290 */
291 final double internalNextDouble(double origin, double bound) {
292 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
293 if (origin < bound) {
294 r = r * (bound - origin) + origin;
295 if (r >= bound) // correct for rounding
296 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
297 }
298 return r;
299 }
300
301 /**
302 * Returns a pseudorandom {@code int} value.
303 *
304 * @return a pseudorandom {@code int} value
305 */
306 public int nextInt() {
307 return mix32(nextSeed());
308 }
309
310 /**
311 * Returns a pseudorandom {@code int} value between zero (inclusive)
312 * and the specified bound (exclusive).
313 *
314 * @param bound the upper bound (exclusive). Must be positive.
315 * @return a pseudorandom {@code int} value between zero
316 * (inclusive) and the bound (exclusive)
317 * @throws IllegalArgumentException if {@code bound} is not positive
318 */
319 public int nextInt(int bound) {
320 if (bound <= 0)
321 throw new IllegalArgumentException(BAD_BOUND);
322 int r = mix32(nextSeed());
323 int m = bound - 1;
324 if ((bound & m) == 0) // power of two
325 r &= m;
326 else { // reject over-represented candidates
327 for (int u = r >>> 1;
328 u + m - (r = u % bound) < 0;
329 u = mix32(nextSeed()) >>> 1)
330 ;
331 }
332 return r;
333 }
334
335 /**
336 * Returns a pseudorandom {@code int} value between the specified
337 * origin (inclusive) and the specified bound (exclusive).
338 *
339 * @param origin the least value returned
340 * @param bound the upper bound (exclusive)
341 * @return a pseudorandom {@code int} value between the origin
342 * (inclusive) and the bound (exclusive)
343 * @throws IllegalArgumentException if {@code origin} is greater than
344 * or equal to {@code bound}
345 */
346 public int nextInt(int origin, int bound) {
347 if (origin >= bound)
348 throw new IllegalArgumentException(BAD_RANGE);
349 return internalNextInt(origin, bound);
350 }
351
352 /**
353 * Returns a pseudorandom {@code long} value.
354 *
355 * @return a pseudorandom {@code long} value
356 */
357 public long nextLong() {
358 return mix64(nextSeed());
359 }
360
361 /**
362 * Returns a pseudorandom {@code long} value between zero (inclusive)
363 * and the specified bound (exclusive).
364 *
365 * @param bound the upper bound (exclusive). Must be positive.
366 * @return a pseudorandom {@code long} value between zero
367 * (inclusive) and the bound (exclusive)
368 * @throws IllegalArgumentException if {@code bound} is not positive
369 */
370 public long nextLong(long bound) {
371 if (bound <= 0)
372 throw new IllegalArgumentException(BAD_BOUND);
373 long r = mix64(nextSeed());
374 long m = bound - 1;
375 if ((bound & m) == 0L) // power of two
376 r &= m;
377 else { // reject over-represented candidates
378 for (long u = r >>> 1;
379 u + m - (r = u % bound) < 0L;
380 u = mix64(nextSeed()) >>> 1)
381 ;
382 }
383 return r;
384 }
385
386 /**
387 * Returns a pseudorandom {@code long} value between the specified
388 * origin (inclusive) and the specified bound (exclusive).
389 *
390 * @param origin the least value returned
391 * @param bound the upper bound (exclusive)
392 * @return a pseudorandom {@code long} value between the origin
393 * (inclusive) and the bound (exclusive)
394 * @throws IllegalArgumentException if {@code origin} is greater than
395 * or equal to {@code bound}
396 */
397 public long nextLong(long origin, long bound) {
398 if (origin >= bound)
399 throw new IllegalArgumentException(BAD_RANGE);
400 return internalNextLong(origin, bound);
401 }
402
403 /**
404 * Returns a pseudorandom {@code double} value between zero
405 * (inclusive) and one (exclusive).
406 *
407 * @return a pseudorandom {@code double} value between zero
408 * (inclusive) and one (exclusive)
409 */
410 public double nextDouble() {
411 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
412 }
413
414 /**
415 * Returns a pseudorandom {@code double} value between 0.0
416 * (inclusive) and the specified bound (exclusive).
417 *
418 * @param bound the upper bound (exclusive). Must be positive.
419 * @return a pseudorandom {@code double} value between zero
420 * (inclusive) and the bound (exclusive)
421 * @throws IllegalArgumentException if {@code bound} is not positive
422 */
423 public double nextDouble(double bound) {
424 if (!(bound > 0.0))
425 throw new IllegalArgumentException(BAD_BOUND);
426 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
427 return (result < bound) ? result : // correct for rounding
428 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
429 }
430
431 /**
432 * Returns a pseudorandom {@code double} value between the specified
433 * origin (inclusive) and bound (exclusive).
434 *
435 * @param origin the least value returned
436 * @param bound the upper bound (exclusive)
437 * @return a pseudorandom {@code double} value between the origin
438 * (inclusive) and the bound (exclusive)
439 * @throws IllegalArgumentException if {@code origin} is greater than
440 * or equal to {@code bound}
441 */
442 public double nextDouble(double origin, double bound) {
443 if (!(origin < bound))
444 throw new IllegalArgumentException(BAD_RANGE);
445 return internalNextDouble(origin, bound);
446 }
447
448 /**
449 * Returns a pseudorandom {@code boolean} value.
450 *
451 * @return a pseudorandom {@code boolean} value
452 */
453 public boolean nextBoolean() {
454 return mix32(nextSeed()) < 0;
455 }
456
457 /**
458 * Returns a pseudorandom {@code float} value between zero
459 * (inclusive) and one (exclusive).
460 *
461 * @return a pseudorandom {@code float} value between zero
462 * (inclusive) and one (exclusive)
463 */
464 public float nextFloat() {
465 return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
466 }
467
468 public double nextGaussian() {
469 // Use nextLocalGaussian instead of nextGaussian field
470 Double d = nextLocalGaussian.get();
471 if (d != null) {
472 nextLocalGaussian.set(null);
473 return d.doubleValue();
474 }
475 double v1, v2, s;
476 do {
477 v1 = 2 * nextDouble() - 1; // between -1 and 1
478 v2 = 2 * nextDouble() - 1; // between -1 and 1
479 s = v1 * v1 + v2 * v2;
480 } while (s >= 1 || s == 0);
481 double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
482 nextLocalGaussian.set(new Double(v2 * multiplier));
483 return v1 * multiplier;
484 }
485
486 // stream methods, coded in a way intended to better isolate for
487 // maintenance purposes the small differences across forms.
488
489 /**
490 * Returns a stream producing the given {@code streamSize} number of
491 * pseudorandom {@code int} values.
492 *
493 * @param streamSize the number of values to generate
494 * @return a stream of pseudorandom {@code int} values
495 * @throws IllegalArgumentException if {@code streamSize} is
496 * less than zero
497 * @since 1.8
498 */
499 public IntStream ints(long streamSize) {
500 if (streamSize < 0L)
501 throw new IllegalArgumentException(BAD_SIZE);
502 return StreamSupport.intStream
503 (new RandomIntsSpliterator
504 (0L, streamSize, Integer.MAX_VALUE, 0),
505 false);
506 }
507
508 /**
509 * Returns an effectively unlimited stream of pseudorandom {@code int}
510 * values.
511 *
512 * @implNote This method is implemented to be equivalent to {@code
513 * ints(Long.MAX_VALUE)}.
514 *
515 * @return a stream of pseudorandom {@code int} values
516 * @since 1.8
517 */
518 public IntStream ints() {
519 return StreamSupport.intStream
520 (new RandomIntsSpliterator
521 (0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
522 false);
523 }
524
525 /**
526 * Returns a stream producing the given {@code streamSize} number
527 * of pseudorandom {@code int} values, each conforming to the given
528 * origin (inclusive) and bound (exclusive).
529 *
530 * @param streamSize the number of values to generate
531 * @param randomNumberOrigin the origin (inclusive) of each random value
532 * @param randomNumberBound the bound (exclusive) of each random value
533 * @return a stream of pseudorandom {@code int} values,
534 * each with the given origin (inclusive) and bound (exclusive)
535 * @throws IllegalArgumentException if {@code streamSize} is
536 * less than zero, or {@code randomNumberOrigin}
537 * is greater than or equal to {@code randomNumberBound}
538 * @since 1.8
539 */
540 public IntStream ints(long streamSize, int randomNumberOrigin,
541 int randomNumberBound) {
542 if (streamSize < 0L)
543 throw new IllegalArgumentException(BAD_SIZE);
544 if (randomNumberOrigin >= randomNumberBound)
545 throw new IllegalArgumentException(BAD_RANGE);
546 return StreamSupport.intStream
547 (new RandomIntsSpliterator
548 (0L, streamSize, randomNumberOrigin, randomNumberBound),
549 false);
550 }
551
552 /**
553 * Returns an effectively unlimited stream of pseudorandom {@code
554 * int} values, each conforming to the given origin (inclusive) and bound
555 * (exclusive).
556 *
557 * @implNote This method is implemented to be equivalent to {@code
558 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
559 *
560 * @param randomNumberOrigin the origin (inclusive) of each random value
561 * @param randomNumberBound the bound (exclusive) of each random value
562 * @return a stream of pseudorandom {@code int} values,
563 * each with the given origin (inclusive) and bound (exclusive)
564 * @throws IllegalArgumentException if {@code randomNumberOrigin}
565 * is greater than or equal to {@code randomNumberBound}
566 * @since 1.8
567 */
568 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
569 if (randomNumberOrigin >= randomNumberBound)
570 throw new IllegalArgumentException(BAD_RANGE);
571 return StreamSupport.intStream
572 (new RandomIntsSpliterator
573 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
574 false);
575 }
576
577 /**
578 * Returns a stream producing the given {@code streamSize} number of
579 * pseudorandom {@code long} values.
580 *
581 * @param streamSize the number of values to generate
582 * @return a stream of pseudorandom {@code long} values
583 * @throws IllegalArgumentException if {@code streamSize} is
584 * less than zero
585 * @since 1.8
586 */
587 public LongStream longs(long streamSize) {
588 if (streamSize < 0L)
589 throw new IllegalArgumentException(BAD_SIZE);
590 return StreamSupport.longStream
591 (new RandomLongsSpliterator
592 (0L, streamSize, Long.MAX_VALUE, 0L),
593 false);
594 }
595
596 /**
597 * Returns an effectively unlimited stream of pseudorandom {@code long}
598 * values.
599 *
600 * @implNote This method is implemented to be equivalent to {@code
601 * longs(Long.MAX_VALUE)}.
602 *
603 * @return a stream of pseudorandom {@code long} values
604 * @since 1.8
605 */
606 public LongStream longs() {
607 return StreamSupport.longStream
608 (new RandomLongsSpliterator
609 (0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
610 false);
611 }
612
613 /**
614 * Returns a stream producing the given {@code streamSize} number of
615 * pseudorandom {@code long}, each conforming to the given origin
616 * (inclusive) and bound (exclusive).
617 *
618 * @param streamSize the number of values to generate
619 * @param randomNumberOrigin the origin (inclusive) of each random value
620 * @param randomNumberBound the bound (exclusive) of each random value
621 * @return a stream of pseudorandom {@code long} values,
622 * each with the given origin (inclusive) and bound (exclusive)
623 * @throws IllegalArgumentException if {@code streamSize} is
624 * less than zero, or {@code randomNumberOrigin}
625 * is greater than or equal to {@code randomNumberBound}
626 * @since 1.8
627 */
628 public LongStream longs(long streamSize, long randomNumberOrigin,
629 long randomNumberBound) {
630 if (streamSize < 0L)
631 throw new IllegalArgumentException(BAD_SIZE);
632 if (randomNumberOrigin >= randomNumberBound)
633 throw new IllegalArgumentException(BAD_RANGE);
634 return StreamSupport.longStream
635 (new RandomLongsSpliterator
636 (0L, streamSize, randomNumberOrigin, randomNumberBound),
637 false);
638 }
639
640 /**
641 * Returns an effectively unlimited stream of pseudorandom {@code
642 * long} values, each conforming to the given origin (inclusive) and bound
643 * (exclusive).
644 *
645 * @implNote This method is implemented to be equivalent to {@code
646 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
647 *
648 * @param randomNumberOrigin the origin (inclusive) of each random value
649 * @param randomNumberBound the bound (exclusive) of each random value
650 * @return a stream of pseudorandom {@code long} values,
651 * each with the given origin (inclusive) and bound (exclusive)
652 * @throws IllegalArgumentException if {@code randomNumberOrigin}
653 * is greater than or equal to {@code randomNumberBound}
654 * @since 1.8
655 */
656 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
657 if (randomNumberOrigin >= randomNumberBound)
658 throw new IllegalArgumentException(BAD_RANGE);
659 return StreamSupport.longStream
660 (new RandomLongsSpliterator
661 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
662 false);
663 }
664
665 /**
666 * Returns a stream producing the given {@code streamSize} number of
667 * pseudorandom {@code double} values, each between zero
668 * (inclusive) and one (exclusive).
669 *
670 * @param streamSize the number of values to generate
671 * @return a stream of {@code double} values
672 * @throws IllegalArgumentException if {@code streamSize} is
673 * less than zero
674 * @since 1.8
675 */
676 public DoubleStream doubles(long streamSize) {
677 if (streamSize < 0L)
678 throw new IllegalArgumentException(BAD_SIZE);
679 return StreamSupport.doubleStream
680 (new RandomDoublesSpliterator
681 (0L, streamSize, Double.MAX_VALUE, 0.0),
682 false);
683 }
684
685 /**
686 * Returns an effectively unlimited stream of pseudorandom {@code
687 * double} values, each between zero (inclusive) and one
688 * (exclusive).
689 *
690 * @implNote This method is implemented to be equivalent to {@code
691 * doubles(Long.MAX_VALUE)}.
692 *
693 * @return a stream of pseudorandom {@code double} values
694 * @since 1.8
695 */
696 public DoubleStream doubles() {
697 return StreamSupport.doubleStream
698 (new RandomDoublesSpliterator
699 (0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
700 false);
701 }
702
703 /**
704 * Returns a stream producing the given {@code streamSize} number of
705 * pseudorandom {@code double} values, each conforming to the given origin
706 * (inclusive) and bound (exclusive).
707 *
708 * @param streamSize the number of values to generate
709 * @param randomNumberOrigin the origin (inclusive) of each random value
710 * @param randomNumberBound the bound (exclusive) of each random value
711 * @return a stream of pseudorandom {@code double} values,
712 * each with the given origin (inclusive) and bound (exclusive)
713 * @throws IllegalArgumentException if {@code streamSize} is
714 * less than zero
715 * @throws IllegalArgumentException if {@code randomNumberOrigin}
716 * is greater than or equal to {@code randomNumberBound}
717 * @since 1.8
718 */
719 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
720 double randomNumberBound) {
721 if (streamSize < 0L)
722 throw new IllegalArgumentException(BAD_SIZE);
723 if (!(randomNumberOrigin < randomNumberBound))
724 throw new IllegalArgumentException(BAD_RANGE);
725 return StreamSupport.doubleStream
726 (new RandomDoublesSpliterator
727 (0L, streamSize, randomNumberOrigin, randomNumberBound),
728 false);
729 }
730
731 /**
732 * Returns an effectively unlimited stream of pseudorandom {@code
733 * double} values, each conforming to the given origin (inclusive) and bound
734 * (exclusive).
735 *
736 * @implNote This method is implemented to be equivalent to {@code
737 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
738 *
739 * @param randomNumberOrigin the origin (inclusive) of each random value
740 * @param randomNumberBound the bound (exclusive) of each random value
741 * @return a stream of pseudorandom {@code double} values,
742 * each with the given origin (inclusive) and bound (exclusive)
743 * @throws IllegalArgumentException if {@code randomNumberOrigin}
744 * is greater than or equal to {@code randomNumberBound}
745 * @since 1.8
746 */
747 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
748 if (!(randomNumberOrigin < randomNumberBound))
749 throw new IllegalArgumentException(BAD_RANGE);
750 return StreamSupport.doubleStream
751 (new RandomDoublesSpliterator
752 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
753 false);
754 }
755
756 /**
757 * Spliterator for int streams. We multiplex the four int
758 * versions into one class by treating a bound less than origin as
759 * unbounded, and also by treating "infinite" as equivalent to
760 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
761 * approach. The long and double versions of this class are
762 * identical except for types.
763 */
764 private static final class RandomIntsSpliterator
765 implements Spliterator.OfInt {
766 long index;
767 final long fence;
768 final int origin;
769 final int bound;
770 RandomIntsSpliterator(long index, long fence,
771 int origin, int bound) {
772 this.index = index; this.fence = fence;
773 this.origin = origin; this.bound = bound;
774 }
775
776 public RandomIntsSpliterator trySplit() {
777 long i = index, m = (i + fence) >>> 1;
778 return (m <= i) ? null :
779 new RandomIntsSpliterator(i, index = m, origin, bound);
780 }
781
782 public long estimateSize() {
783 return fence - index;
784 }
785
786 public int characteristics() {
787 return (Spliterator.SIZED | Spliterator.SUBSIZED |
788 Spliterator.NONNULL | Spliterator.IMMUTABLE);
789 }
790
791 public boolean tryAdvance(IntConsumer consumer) {
792 if (consumer == null) throw new NullPointerException();
793 long i = index, f = fence;
794 if (i < f) {
795 consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
796 index = i + 1;
797 return true;
798 }
799 return false;
800 }
801
802 public void forEachRemaining(IntConsumer consumer) {
803 if (consumer == null) throw new NullPointerException();
804 long i = index, f = fence;
805 if (i < f) {
806 index = f;
807 int o = origin, b = bound;
808 ThreadLocalRandom rng = ThreadLocalRandom.current();
809 do {
810 consumer.accept(rng.internalNextInt(o, b));
811 } while (++i < f);
812 }
813 }
814 }
815
816 /**
817 * Spliterator for long streams.
818 */
819 private static final class RandomLongsSpliterator
820 implements Spliterator.OfLong {
821 long index;
822 final long fence;
823 final long origin;
824 final long bound;
825 RandomLongsSpliterator(long index, long fence,
826 long origin, long bound) {
827 this.index = index; this.fence = fence;
828 this.origin = origin; this.bound = bound;
829 }
830
831 public RandomLongsSpliterator trySplit() {
832 long i = index, m = (i + fence) >>> 1;
833 return (m <= i) ? null :
834 new RandomLongsSpliterator(i, index = m, origin, bound);
835 }
836
837 public long estimateSize() {
838 return fence - index;
839 }
840
841 public int characteristics() {
842 return (Spliterator.SIZED | Spliterator.SUBSIZED |
843 Spliterator.NONNULL | Spliterator.IMMUTABLE);
844 }
845
846 public boolean tryAdvance(LongConsumer consumer) {
847 if (consumer == null) throw new NullPointerException();
848 long i = index, f = fence;
849 if (i < f) {
850 consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
851 index = i + 1;
852 return true;
853 }
854 return false;
855 }
856
857 public void forEachRemaining(LongConsumer consumer) {
858 if (consumer == null) throw new NullPointerException();
859 long i = index, f = fence;
860 if (i < f) {
861 index = f;
862 long o = origin, b = bound;
863 ThreadLocalRandom rng = ThreadLocalRandom.current();
864 do {
865 consumer.accept(rng.internalNextLong(o, b));
866 } while (++i < f);
867 }
868 }
869
870 }
871
872 /**
873 * Spliterator for double streams.
874 */
875 private static final class RandomDoublesSpliterator
876 implements Spliterator.OfDouble {
877 long index;
878 final long fence;
879 final double origin;
880 final double bound;
881 RandomDoublesSpliterator(long index, long fence,
882 double origin, double bound) {
883 this.index = index; this.fence = fence;
884 this.origin = origin; this.bound = bound;
885 }
886
887 public RandomDoublesSpliterator trySplit() {
888 long i = index, m = (i + fence) >>> 1;
889 return (m <= i) ? null :
890 new RandomDoublesSpliterator(i, index = m, origin, bound);
891 }
892
893 public long estimateSize() {
894 return fence - index;
895 }
896
897 public int characteristics() {
898 return (Spliterator.SIZED | Spliterator.SUBSIZED |
899 Spliterator.NONNULL | Spliterator.IMMUTABLE);
900 }
901
902 public boolean tryAdvance(DoubleConsumer consumer) {
903 if (consumer == null) throw new NullPointerException();
904 long i = index, f = fence;
905 if (i < f) {
906 consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
907 index = i + 1;
908 return true;
909 }
910 return false;
911 }
912
913 public void forEachRemaining(DoubleConsumer consumer) {
914 if (consumer == null) throw new NullPointerException();
915 long i = index, f = fence;
916 if (i < f) {
917 index = f;
918 double o = origin, b = bound;
919 ThreadLocalRandom rng = ThreadLocalRandom.current();
920 do {
921 consumer.accept(rng.internalNextDouble(o, b));
922 } while (++i < f);
923 }
924 }
925 }
926
927
928 // Within-package utilities
929
930 /*
931 * Descriptions of the usages of the methods below can be found in
932 * the classes that use them. Briefly, a thread's "probe" value is
933 * a non-zero hash code that (probably) does not collide with
934 * other existing threads with respect to any power of two
935 * collision space. When it does collide, it is pseudo-randomly
936 * adjusted (using a Marsaglia XorShift). The nextSecondarySeed
937 * method is used in the same contexts as ThreadLocalRandom, but
938 * only for transient usages such as random adaptive spin/block
939 * sequences for which a cheap RNG suffices and for which it could
940 * in principle disrupt user-visible statistical properties of the
941 * main ThreadLocalRandom if we were to use it.
942 *
943 * Note: Because of package-protection issues, versions of some
944 * these methods also appear in some subpackage classes.
945 */
946
947 /**
948 * Returns the probe value for the current thread without forcing
949 * initialization. Note that invoking ThreadLocalRandom.current()
950 * can be used to force initialization on zero return.
951 */
952 static final int getProbe() {
953 return U.getInt(Thread.currentThread(), PROBE);
954 }
955
956 /**
957 * Pseudo-randomly advances and records the given probe value for the
958 * given thread.
959 */
960 static final int advanceProbe(int probe) {
961 probe ^= probe << 13; // xorshift
962 probe ^= probe >>> 17;
963 probe ^= probe << 5;
964 U.putInt(Thread.currentThread(), PROBE, probe);
965 return probe;
966 }
967
968 /**
969 * Returns the pseudo-randomly initialized or updated secondary seed.
970 */
971 static final int nextSecondarySeed() {
972 int r;
973 Thread t = Thread.currentThread();
974 if ((r = U.getInt(t, SECONDARY)) != 0) {
975 r ^= r << 13; // xorshift
976 r ^= r >>> 17;
977 r ^= r << 5;
978 }
979 else if ((r = mix32(seeder.getAndAdd(SEEDER_INCREMENT))) == 0)
980 r = 1; // avoid zero
981 U.putInt(t, SECONDARY, r);
982 return r;
983 }
984
985 // Serialization support
986
987 private static final long serialVersionUID = -5851777807851030925L;
988
989 /**
990 * @serialField rnd long
991 * seed for random computations
992 * @serialField initialized boolean
993 * always true
994 */
995 private static final ObjectStreamField[] serialPersistentFields = {
996 new ObjectStreamField("rnd", long.class),
997 new ObjectStreamField("initialized", boolean.class),
998 };
999
1000 /**
1001 * Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
1002 * @param s the stream
1003 * @throws java.io.IOException if an I/O error occurs
1004 */
1005 private void writeObject(java.io.ObjectOutputStream s)
1006 throws java.io.IOException {
1007
1008 java.io.ObjectOutputStream.PutField fields = s.putFields();
1009 fields.put("rnd", U.getLong(Thread.currentThread(), SEED));
1010 fields.put("initialized", true);
1011 s.writeFields();
1012 }
1013
1014 /**
1015 * Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
1016 * @return the {@link #current() current} thread's {@code ThreadLocalRandom}
1017 */
1018 private Object readResolve() {
1019 return current();
1020 }
1021
1022 // Unsafe mechanics
1023 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1024 private static final long SEED;
1025 private static final long PROBE;
1026 private static final long SECONDARY;
1027 static {
1028 try {
1029 SEED = U.objectFieldOffset
1030 (Thread.class.getDeclaredField("threadLocalRandomSeed"));
1031 PROBE = U.objectFieldOffset
1032 (Thread.class.getDeclaredField("threadLocalRandomProbe"));
1033 SECONDARY = U.objectFieldOffset
1034 (Thread.class.getDeclaredField("threadLocalRandomSecondarySeed"));
1035 } catch (ReflectiveOperationException e) {
1036 throw new Error(e);
1037 }
1038 }
1039 }