ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadLocalRandom.java
Revision: 1.48
Committed: Sun Nov 13 02:23:22 2016 UTC (7 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.47: +1 -1 lines
Log Message:
typo

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.security.AccessControlContext;
11 import java.util.Random;
12 import java.util.Spliterator;
13 import java.util.concurrent.atomic.AtomicInteger;
14 import java.util.concurrent.atomic.AtomicLong;
15 import java.util.function.DoubleConsumer;
16 import java.util.function.IntConsumer;
17 import java.util.function.LongConsumer;
18 import java.util.stream.DoubleStream;
19 import java.util.stream.IntStream;
20 import java.util.stream.LongStream;
21 import java.util.stream.StreamSupport;
22 import jdk.internal.misc.Unsafe;
23
24 /**
25 * A random number generator isolated to the current thread. Like the
26 * global {@link java.util.Random} generator used by the {@link
27 * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
28 * with an internally generated seed that may not otherwise be
29 * modified. When applicable, use of {@code ThreadLocalRandom} rather
30 * than shared {@code Random} objects in concurrent programs will
31 * typically encounter much less overhead and contention. Use of
32 * {@code ThreadLocalRandom} is particularly appropriate when multiple
33 * tasks (for example, each a {@link ForkJoinTask}) use random numbers
34 * in parallel in thread pools.
35 *
36 * <p>Usages of this class should typically be of the form:
37 * {@code ThreadLocalRandom.current().nextX(...)} (where
38 * {@code X} is {@code Int}, {@code Long}, etc).
39 * When all usages are of this form, it is never possible to
40 * accidently share a {@code ThreadLocalRandom} across multiple threads.
41 *
42 * <p>This class also provides additional commonly used bounded random
43 * generation methods.
44 *
45 * <p>Instances of {@code ThreadLocalRandom} are not cryptographically
46 * secure. Consider instead using {@link java.security.SecureRandom}
47 * in security-sensitive applications. Additionally,
48 * default-constructed instances do not use a cryptographically random
49 * seed unless the {@linkplain System#getProperty system property}
50 * {@code java.util.secureRandomSeed} is set to {@code true}.
51 *
52 * @since 1.7
53 * @author Doug Lea
54 */
55 public class ThreadLocalRandom extends Random {
56 /*
57 * This class implements the java.util.Random API (and subclasses
58 * Random) using a single static instance that accesses random
59 * number state held in class Thread (primarily, field
60 * threadLocalRandomSeed). In doing so, it also provides a home
61 * for managing package-private utilities that rely on exactly the
62 * same state as needed to maintain the ThreadLocalRandom
63 * instances. We leverage the need for an initialization flag
64 * field to also use it as a "probe" -- a self-adjusting thread
65 * hash used for contention avoidance, as well as a secondary
66 * simpler (xorShift) random seed that is conservatively used to
67 * avoid otherwise surprising users by hijacking the
68 * ThreadLocalRandom sequence. The dual use is a marriage of
69 * convenience, but is a simple and efficient way of reducing
70 * application-level overhead and footprint of most concurrent
71 * programs. Even more opportunistically, we also define here
72 * other package-private utilities that access Thread class
73 * fields.
74 *
75 * Even though this class subclasses java.util.Random, it uses the
76 * same basic algorithm as java.util.SplittableRandom. (See its
77 * internal documentation for explanations, which are not repeated
78 * here.) Because ThreadLocalRandoms are not splittable
79 * though, we use only a single 64bit gamma.
80 *
81 * Because this class is in a different package than class Thread,
82 * field access methods use Unsafe to bypass access control rules.
83 * To conform to the requirements of the Random superclass
84 * constructor, the common static ThreadLocalRandom maintains an
85 * "initialized" field for the sake of rejecting user calls to
86 * setSeed while still allowing a call from constructor. Note
87 * that serialization is completely unnecessary because there is
88 * only a static singleton. But we generate a serial form
89 * containing "rnd" and "initialized" fields to ensure
90 * compatibility across versions.
91 *
92 * Implementations of non-core methods are mostly the same as in
93 * SplittableRandom, that were in part derived from a previous
94 * version of this class.
95 *
96 * The nextLocalGaussian ThreadLocal supports the very rarely used
97 * nextGaussian method by providing a holder for the second of a
98 * pair of them. As is true for the base class version of this
99 * method, this time/space tradeoff is probably never worthwhile,
100 * but we provide identical statistical properties.
101 */
102
103 private static long mix64(long z) {
104 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
105 z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
106 return z ^ (z >>> 33);
107 }
108
109 private static int mix32(long z) {
110 z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
111 return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
112 }
113
114 /**
115 * Field used only during singleton initialization.
116 * True when constructor completes.
117 */
118 boolean initialized;
119
120 /** Constructor used only for static singleton */
121 private ThreadLocalRandom() {
122 initialized = true; // false during super() call
123 }
124
125 /**
126 * Initialize Thread fields for the current thread. Called only
127 * when Thread.threadLocalRandomProbe is zero, indicating that a
128 * thread local seed value needs to be generated. Note that even
129 * though the initialization is purely thread-local, we need to
130 * rely on (static) atomic generators to initialize the values.
131 */
132 static final void localInit() {
133 int p = probeGenerator.addAndGet(PROBE_INCREMENT);
134 int probe = (p == 0) ? 1 : p; // skip 0
135 long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
136 Thread t = Thread.currentThread();
137 U.putLong(t, SEED, seed);
138 U.putInt(t, PROBE, probe);
139 }
140
141 /**
142 * Returns the current thread's {@code ThreadLocalRandom}.
143 *
144 * @return the current thread's {@code ThreadLocalRandom}
145 */
146 public static ThreadLocalRandom current() {
147 if (U.getInt(Thread.currentThread(), PROBE) == 0)
148 localInit();
149 return instance;
150 }
151
152 /**
153 * Throws {@code UnsupportedOperationException}. Setting seeds in
154 * this generator is not supported.
155 *
156 * @throws UnsupportedOperationException always
157 */
158 public void setSeed(long seed) {
159 // only allow call from super() constructor
160 if (initialized)
161 throw new UnsupportedOperationException();
162 }
163
164 final long nextSeed() {
165 Thread t; long r; // read and update per-thread seed
166 U.putLong(t = Thread.currentThread(), SEED,
167 r = U.getLong(t, SEED) + GAMMA);
168 return r;
169 }
170
171 /**
172 * Generates a pseudorandom number with the indicated number of
173 * bits. Unlike in superclass {@link Random}, this method is never
174 * internally called or used by any other publicly accessible
175 * method.
176 *
177 * @param bits random bits
178 * @return the next pseudorandom value from this random number
179 * generator's sequence
180 */
181 protected int next(int bits) {
182 return (int)(mix64(nextSeed()) >>> (64 - bits));
183 }
184
185 /**
186 * The form of nextLong used by LongStream Spliterators. If
187 * origin is greater than bound, acts as unbounded form of
188 * nextLong, else as bounded form.
189 *
190 * @param origin the least value, unless greater than bound
191 * @param bound the upper bound (exclusive), must not equal origin
192 * @return a pseudorandom value
193 */
194 final long internalNextLong(long origin, long bound) {
195 long r = mix64(nextSeed());
196 if (origin < bound) {
197 long n = bound - origin, m = n - 1;
198 if ((n & m) == 0L) // power of two
199 r = (r & m) + origin;
200 else if (n > 0L) { // reject over-represented candidates
201 for (long u = r >>> 1; // ensure nonnegative
202 u + m - (r = u % n) < 0L; // rejection check
203 u = mix64(nextSeed()) >>> 1) // retry
204 ;
205 r += origin;
206 }
207 else { // range not representable as long
208 while (r < origin || r >= bound)
209 r = mix64(nextSeed());
210 }
211 }
212 return r;
213 }
214
215 /**
216 * The form of nextInt used by IntStream Spliterators.
217 * Exactly the same as long version, except for types.
218 *
219 * @param origin the least value, unless greater than bound
220 * @param bound the upper bound (exclusive), must not equal origin
221 * @return a pseudorandom value
222 */
223 final int internalNextInt(int origin, int bound) {
224 int r = mix32(nextSeed());
225 if (origin < bound) {
226 int n = bound - origin, m = n - 1;
227 if ((n & m) == 0)
228 r = (r & m) + origin;
229 else if (n > 0) {
230 for (int u = r >>> 1;
231 u + m - (r = u % n) < 0;
232 u = mix32(nextSeed()) >>> 1)
233 ;
234 r += origin;
235 }
236 else {
237 while (r < origin || r >= bound)
238 r = mix32(nextSeed());
239 }
240 }
241 return r;
242 }
243
244 /**
245 * The form of nextDouble used by DoubleStream Spliterators.
246 *
247 * @param origin the least value, unless greater than bound
248 * @param bound the upper bound (exclusive), must not equal origin
249 * @return a pseudorandom value
250 */
251 final double internalNextDouble(double origin, double bound) {
252 double r = (nextLong() >>> 11) * DOUBLE_UNIT;
253 if (origin < bound) {
254 r = r * (bound - origin) + origin;
255 if (r >= bound) // correct for rounding
256 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
257 }
258 return r;
259 }
260
261 /**
262 * Returns a pseudorandom {@code int} value.
263 *
264 * @return a pseudorandom {@code int} value
265 */
266 public int nextInt() {
267 return mix32(nextSeed());
268 }
269
270 /**
271 * Returns a pseudorandom {@code int} value between zero (inclusive)
272 * and the specified bound (exclusive).
273 *
274 * @param bound the upper bound (exclusive). Must be positive.
275 * @return a pseudorandom {@code int} value between zero
276 * (inclusive) and the bound (exclusive)
277 * @throws IllegalArgumentException if {@code bound} is not positive
278 */
279 public int nextInt(int bound) {
280 if (bound <= 0)
281 throw new IllegalArgumentException(BAD_BOUND);
282 int r = mix32(nextSeed());
283 int m = bound - 1;
284 if ((bound & m) == 0) // power of two
285 r &= m;
286 else { // reject over-represented candidates
287 for (int u = r >>> 1;
288 u + m - (r = u % bound) < 0;
289 u = mix32(nextSeed()) >>> 1)
290 ;
291 }
292 return r;
293 }
294
295 /**
296 * Returns a pseudorandom {@code int} value between the specified
297 * origin (inclusive) and the specified bound (exclusive).
298 *
299 * @param origin the least value returned
300 * @param bound the upper bound (exclusive)
301 * @return a pseudorandom {@code int} value between the origin
302 * (inclusive) and the bound (exclusive)
303 * @throws IllegalArgumentException if {@code origin} is greater than
304 * or equal to {@code bound}
305 */
306 public int nextInt(int origin, int bound) {
307 if (origin >= bound)
308 throw new IllegalArgumentException(BAD_RANGE);
309 return internalNextInt(origin, bound);
310 }
311
312 /**
313 * Returns a pseudorandom {@code long} value.
314 *
315 * @return a pseudorandom {@code long} value
316 */
317 public long nextLong() {
318 return mix64(nextSeed());
319 }
320
321 /**
322 * Returns a pseudorandom {@code long} value between zero (inclusive)
323 * and the specified bound (exclusive).
324 *
325 * @param bound the upper bound (exclusive). Must be positive.
326 * @return a pseudorandom {@code long} value between zero
327 * (inclusive) and the bound (exclusive)
328 * @throws IllegalArgumentException if {@code bound} is not positive
329 */
330 public long nextLong(long bound) {
331 if (bound <= 0)
332 throw new IllegalArgumentException(BAD_BOUND);
333 long r = mix64(nextSeed());
334 long m = bound - 1;
335 if ((bound & m) == 0L) // power of two
336 r &= m;
337 else { // reject over-represented candidates
338 for (long u = r >>> 1;
339 u + m - (r = u % bound) < 0L;
340 u = mix64(nextSeed()) >>> 1)
341 ;
342 }
343 return r;
344 }
345
346 /**
347 * Returns a pseudorandom {@code long} value between the specified
348 * origin (inclusive) and the specified bound (exclusive).
349 *
350 * @param origin the least value returned
351 * @param bound the upper bound (exclusive)
352 * @return a pseudorandom {@code long} value between the origin
353 * (inclusive) and the bound (exclusive)
354 * @throws IllegalArgumentException if {@code origin} is greater than
355 * or equal to {@code bound}
356 */
357 public long nextLong(long origin, long bound) {
358 if (origin >= bound)
359 throw new IllegalArgumentException(BAD_RANGE);
360 return internalNextLong(origin, bound);
361 }
362
363 /**
364 * Returns a pseudorandom {@code double} value between zero
365 * (inclusive) and one (exclusive).
366 *
367 * @return a pseudorandom {@code double} value between zero
368 * (inclusive) and one (exclusive)
369 */
370 public double nextDouble() {
371 return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
372 }
373
374 /**
375 * Returns a pseudorandom {@code double} value between 0.0
376 * (inclusive) and the specified bound (exclusive).
377 *
378 * @param bound the upper bound (exclusive). Must be positive.
379 * @return a pseudorandom {@code double} value between zero
380 * (inclusive) and the bound (exclusive)
381 * @throws IllegalArgumentException if {@code bound} is not positive
382 */
383 public double nextDouble(double bound) {
384 if (!(bound > 0.0))
385 throw new IllegalArgumentException(BAD_BOUND);
386 double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
387 return (result < bound) ? result : // correct for rounding
388 Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
389 }
390
391 /**
392 * Returns a pseudorandom {@code double} value between the specified
393 * origin (inclusive) and bound (exclusive).
394 *
395 * @param origin the least value returned
396 * @param bound the upper bound (exclusive)
397 * @return a pseudorandom {@code double} value between the origin
398 * (inclusive) and the bound (exclusive)
399 * @throws IllegalArgumentException if {@code origin} is greater than
400 * or equal to {@code bound}
401 */
402 public double nextDouble(double origin, double bound) {
403 if (!(origin < bound))
404 throw new IllegalArgumentException(BAD_RANGE);
405 return internalNextDouble(origin, bound);
406 }
407
408 /**
409 * Returns a pseudorandom {@code boolean} value.
410 *
411 * @return a pseudorandom {@code boolean} value
412 */
413 public boolean nextBoolean() {
414 return mix32(nextSeed()) < 0;
415 }
416
417 /**
418 * Returns a pseudorandom {@code float} value between zero
419 * (inclusive) and one (exclusive).
420 *
421 * @return a pseudorandom {@code float} value between zero
422 * (inclusive) and one (exclusive)
423 */
424 public float nextFloat() {
425 return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
426 }
427
428 public double nextGaussian() {
429 // Use nextLocalGaussian instead of nextGaussian field
430 Double d = nextLocalGaussian.get();
431 if (d != null) {
432 nextLocalGaussian.set(null);
433 return d.doubleValue();
434 }
435 double v1, v2, s;
436 do {
437 v1 = 2 * nextDouble() - 1; // between -1 and 1
438 v2 = 2 * nextDouble() - 1; // between -1 and 1
439 s = v1 * v1 + v2 * v2;
440 } while (s >= 1 || s == 0);
441 double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
442 nextLocalGaussian.set(Double.valueOf(v2 * multiplier));
443 return v1 * multiplier;
444 }
445
446 // stream methods, coded in a way intended to better isolate for
447 // maintenance purposes the small differences across forms.
448
449 /**
450 * Returns a stream producing the given {@code streamSize} number of
451 * pseudorandom {@code int} values.
452 *
453 * @param streamSize the number of values to generate
454 * @return a stream of pseudorandom {@code int} values
455 * @throws IllegalArgumentException if {@code streamSize} is
456 * less than zero
457 * @since 1.8
458 */
459 public IntStream ints(long streamSize) {
460 if (streamSize < 0L)
461 throw new IllegalArgumentException(BAD_SIZE);
462 return StreamSupport.intStream
463 (new RandomIntsSpliterator
464 (0L, streamSize, Integer.MAX_VALUE, 0),
465 false);
466 }
467
468 /**
469 * Returns an effectively unlimited stream of pseudorandom {@code int}
470 * values.
471 *
472 * @implNote This method is implemented to be equivalent to {@code
473 * ints(Long.MAX_VALUE)}.
474 *
475 * @return a stream of pseudorandom {@code int} values
476 * @since 1.8
477 */
478 public IntStream ints() {
479 return StreamSupport.intStream
480 (new RandomIntsSpliterator
481 (0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
482 false);
483 }
484
485 /**
486 * Returns a stream producing the given {@code streamSize} number
487 * of pseudorandom {@code int} values, each conforming to the given
488 * origin (inclusive) and bound (exclusive).
489 *
490 * @param streamSize the number of values to generate
491 * @param randomNumberOrigin the origin (inclusive) of each random value
492 * @param randomNumberBound the bound (exclusive) of each random value
493 * @return a stream of pseudorandom {@code int} values,
494 * each with the given origin (inclusive) and bound (exclusive)
495 * @throws IllegalArgumentException if {@code streamSize} is
496 * less than zero, or {@code randomNumberOrigin}
497 * is greater than or equal to {@code randomNumberBound}
498 * @since 1.8
499 */
500 public IntStream ints(long streamSize, int randomNumberOrigin,
501 int randomNumberBound) {
502 if (streamSize < 0L)
503 throw new IllegalArgumentException(BAD_SIZE);
504 if (randomNumberOrigin >= randomNumberBound)
505 throw new IllegalArgumentException(BAD_RANGE);
506 return StreamSupport.intStream
507 (new RandomIntsSpliterator
508 (0L, streamSize, randomNumberOrigin, randomNumberBound),
509 false);
510 }
511
512 /**
513 * Returns an effectively unlimited stream of pseudorandom {@code
514 * int} values, each conforming to the given origin (inclusive) and bound
515 * (exclusive).
516 *
517 * @implNote This method is implemented to be equivalent to {@code
518 * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
519 *
520 * @param randomNumberOrigin the origin (inclusive) of each random value
521 * @param randomNumberBound the bound (exclusive) of each random value
522 * @return a stream of pseudorandom {@code int} values,
523 * each with the given origin (inclusive) and bound (exclusive)
524 * @throws IllegalArgumentException if {@code randomNumberOrigin}
525 * is greater than or equal to {@code randomNumberBound}
526 * @since 1.8
527 */
528 public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
529 if (randomNumberOrigin >= randomNumberBound)
530 throw new IllegalArgumentException(BAD_RANGE);
531 return StreamSupport.intStream
532 (new RandomIntsSpliterator
533 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
534 false);
535 }
536
537 /**
538 * Returns a stream producing the given {@code streamSize} number of
539 * pseudorandom {@code long} values.
540 *
541 * @param streamSize the number of values to generate
542 * @return a stream of pseudorandom {@code long} values
543 * @throws IllegalArgumentException if {@code streamSize} is
544 * less than zero
545 * @since 1.8
546 */
547 public LongStream longs(long streamSize) {
548 if (streamSize < 0L)
549 throw new IllegalArgumentException(BAD_SIZE);
550 return StreamSupport.longStream
551 (new RandomLongsSpliterator
552 (0L, streamSize, Long.MAX_VALUE, 0L),
553 false);
554 }
555
556 /**
557 * Returns an effectively unlimited stream of pseudorandom {@code long}
558 * values.
559 *
560 * @implNote This method is implemented to be equivalent to {@code
561 * longs(Long.MAX_VALUE)}.
562 *
563 * @return a stream of pseudorandom {@code long} values
564 * @since 1.8
565 */
566 public LongStream longs() {
567 return StreamSupport.longStream
568 (new RandomLongsSpliterator
569 (0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
570 false);
571 }
572
573 /**
574 * Returns a stream producing the given {@code streamSize} number of
575 * pseudorandom {@code long}, each conforming to the given origin
576 * (inclusive) and bound (exclusive).
577 *
578 * @param streamSize the number of values to generate
579 * @param randomNumberOrigin the origin (inclusive) of each random value
580 * @param randomNumberBound the bound (exclusive) of each random value
581 * @return a stream of pseudorandom {@code long} values,
582 * each with the given origin (inclusive) and bound (exclusive)
583 * @throws IllegalArgumentException if {@code streamSize} is
584 * less than zero, or {@code randomNumberOrigin}
585 * is greater than or equal to {@code randomNumberBound}
586 * @since 1.8
587 */
588 public LongStream longs(long streamSize, long randomNumberOrigin,
589 long randomNumberBound) {
590 if (streamSize < 0L)
591 throw new IllegalArgumentException(BAD_SIZE);
592 if (randomNumberOrigin >= randomNumberBound)
593 throw new IllegalArgumentException(BAD_RANGE);
594 return StreamSupport.longStream
595 (new RandomLongsSpliterator
596 (0L, streamSize, randomNumberOrigin, randomNumberBound),
597 false);
598 }
599
600 /**
601 * Returns an effectively unlimited stream of pseudorandom {@code
602 * long} values, each conforming to the given origin (inclusive) and bound
603 * (exclusive).
604 *
605 * @implNote This method is implemented to be equivalent to {@code
606 * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
607 *
608 * @param randomNumberOrigin the origin (inclusive) of each random value
609 * @param randomNumberBound the bound (exclusive) of each random value
610 * @return a stream of pseudorandom {@code long} values,
611 * each with the given origin (inclusive) and bound (exclusive)
612 * @throws IllegalArgumentException if {@code randomNumberOrigin}
613 * is greater than or equal to {@code randomNumberBound}
614 * @since 1.8
615 */
616 public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
617 if (randomNumberOrigin >= randomNumberBound)
618 throw new IllegalArgumentException(BAD_RANGE);
619 return StreamSupport.longStream
620 (new RandomLongsSpliterator
621 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
622 false);
623 }
624
625 /**
626 * Returns a stream producing the given {@code streamSize} number of
627 * pseudorandom {@code double} values, each between zero
628 * (inclusive) and one (exclusive).
629 *
630 * @param streamSize the number of values to generate
631 * @return a stream of {@code double} values
632 * @throws IllegalArgumentException if {@code streamSize} is
633 * less than zero
634 * @since 1.8
635 */
636 public DoubleStream doubles(long streamSize) {
637 if (streamSize < 0L)
638 throw new IllegalArgumentException(BAD_SIZE);
639 return StreamSupport.doubleStream
640 (new RandomDoublesSpliterator
641 (0L, streamSize, Double.MAX_VALUE, 0.0),
642 false);
643 }
644
645 /**
646 * Returns an effectively unlimited stream of pseudorandom {@code
647 * double} values, each between zero (inclusive) and one
648 * (exclusive).
649 *
650 * @implNote This method is implemented to be equivalent to {@code
651 * doubles(Long.MAX_VALUE)}.
652 *
653 * @return a stream of pseudorandom {@code double} values
654 * @since 1.8
655 */
656 public DoubleStream doubles() {
657 return StreamSupport.doubleStream
658 (new RandomDoublesSpliterator
659 (0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
660 false);
661 }
662
663 /**
664 * Returns a stream producing the given {@code streamSize} number of
665 * pseudorandom {@code double} values, each conforming to the given origin
666 * (inclusive) and bound (exclusive).
667 *
668 * @param streamSize the number of values to generate
669 * @param randomNumberOrigin the origin (inclusive) of each random value
670 * @param randomNumberBound the bound (exclusive) of each random value
671 * @return a stream of pseudorandom {@code double} values,
672 * each with the given origin (inclusive) and bound (exclusive)
673 * @throws IllegalArgumentException if {@code streamSize} is
674 * less than zero
675 * @throws IllegalArgumentException if {@code randomNumberOrigin}
676 * is greater than or equal to {@code randomNumberBound}
677 * @since 1.8
678 */
679 public DoubleStream doubles(long streamSize, double randomNumberOrigin,
680 double randomNumberBound) {
681 if (streamSize < 0L)
682 throw new IllegalArgumentException(BAD_SIZE);
683 if (!(randomNumberOrigin < randomNumberBound))
684 throw new IllegalArgumentException(BAD_RANGE);
685 return StreamSupport.doubleStream
686 (new RandomDoublesSpliterator
687 (0L, streamSize, randomNumberOrigin, randomNumberBound),
688 false);
689 }
690
691 /**
692 * Returns an effectively unlimited stream of pseudorandom {@code
693 * double} values, each conforming to the given origin (inclusive) and bound
694 * (exclusive).
695 *
696 * @implNote This method is implemented to be equivalent to {@code
697 * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
698 *
699 * @param randomNumberOrigin the origin (inclusive) of each random value
700 * @param randomNumberBound the bound (exclusive) of each random value
701 * @return a stream of pseudorandom {@code double} values,
702 * each with the given origin (inclusive) and bound (exclusive)
703 * @throws IllegalArgumentException if {@code randomNumberOrigin}
704 * is greater than or equal to {@code randomNumberBound}
705 * @since 1.8
706 */
707 public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
708 if (!(randomNumberOrigin < randomNumberBound))
709 throw new IllegalArgumentException(BAD_RANGE);
710 return StreamSupport.doubleStream
711 (new RandomDoublesSpliterator
712 (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
713 false);
714 }
715
716 /**
717 * Spliterator for int streams. We multiplex the four int
718 * versions into one class by treating a bound less than origin as
719 * unbounded, and also by treating "infinite" as equivalent to
720 * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
721 * approach. The long and double versions of this class are
722 * identical except for types.
723 */
724 private static final class RandomIntsSpliterator
725 implements Spliterator.OfInt {
726 long index;
727 final long fence;
728 final int origin;
729 final int bound;
730 RandomIntsSpliterator(long index, long fence,
731 int origin, int bound) {
732 this.index = index; this.fence = fence;
733 this.origin = origin; this.bound = bound;
734 }
735
736 public RandomIntsSpliterator trySplit() {
737 long i = index, m = (i + fence) >>> 1;
738 return (m <= i) ? null :
739 new RandomIntsSpliterator(i, index = m, origin, bound);
740 }
741
742 public long estimateSize() {
743 return fence - index;
744 }
745
746 public int characteristics() {
747 return (Spliterator.SIZED | Spliterator.SUBSIZED |
748 Spliterator.NONNULL | Spliterator.IMMUTABLE);
749 }
750
751 public boolean tryAdvance(IntConsumer consumer) {
752 if (consumer == null) throw new NullPointerException();
753 long i = index, f = fence;
754 if (i < f) {
755 consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
756 index = i + 1;
757 return true;
758 }
759 return false;
760 }
761
762 public void forEachRemaining(IntConsumer consumer) {
763 if (consumer == null) throw new NullPointerException();
764 long i = index, f = fence;
765 if (i < f) {
766 index = f;
767 int o = origin, b = bound;
768 ThreadLocalRandom rng = ThreadLocalRandom.current();
769 do {
770 consumer.accept(rng.internalNextInt(o, b));
771 } while (++i < f);
772 }
773 }
774 }
775
776 /**
777 * Spliterator for long streams.
778 */
779 private static final class RandomLongsSpliterator
780 implements Spliterator.OfLong {
781 long index;
782 final long fence;
783 final long origin;
784 final long bound;
785 RandomLongsSpliterator(long index, long fence,
786 long origin, long bound) {
787 this.index = index; this.fence = fence;
788 this.origin = origin; this.bound = bound;
789 }
790
791 public RandomLongsSpliterator trySplit() {
792 long i = index, m = (i + fence) >>> 1;
793 return (m <= i) ? null :
794 new RandomLongsSpliterator(i, index = m, origin, bound);
795 }
796
797 public long estimateSize() {
798 return fence - index;
799 }
800
801 public int characteristics() {
802 return (Spliterator.SIZED | Spliterator.SUBSIZED |
803 Spliterator.NONNULL | Spliterator.IMMUTABLE);
804 }
805
806 public boolean tryAdvance(LongConsumer consumer) {
807 if (consumer == null) throw new NullPointerException();
808 long i = index, f = fence;
809 if (i < f) {
810 consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
811 index = i + 1;
812 return true;
813 }
814 return false;
815 }
816
817 public void forEachRemaining(LongConsumer consumer) {
818 if (consumer == null) throw new NullPointerException();
819 long i = index, f = fence;
820 if (i < f) {
821 index = f;
822 long o = origin, b = bound;
823 ThreadLocalRandom rng = ThreadLocalRandom.current();
824 do {
825 consumer.accept(rng.internalNextLong(o, b));
826 } while (++i < f);
827 }
828 }
829
830 }
831
832 /**
833 * Spliterator for double streams.
834 */
835 private static final class RandomDoublesSpliterator
836 implements Spliterator.OfDouble {
837 long index;
838 final long fence;
839 final double origin;
840 final double bound;
841 RandomDoublesSpliterator(long index, long fence,
842 double origin, double bound) {
843 this.index = index; this.fence = fence;
844 this.origin = origin; this.bound = bound;
845 }
846
847 public RandomDoublesSpliterator trySplit() {
848 long i = index, m = (i + fence) >>> 1;
849 return (m <= i) ? null :
850 new RandomDoublesSpliterator(i, index = m, origin, bound);
851 }
852
853 public long estimateSize() {
854 return fence - index;
855 }
856
857 public int characteristics() {
858 return (Spliterator.SIZED | Spliterator.SUBSIZED |
859 Spliterator.NONNULL | Spliterator.IMMUTABLE);
860 }
861
862 public boolean tryAdvance(DoubleConsumer consumer) {
863 if (consumer == null) throw new NullPointerException();
864 long i = index, f = fence;
865 if (i < f) {
866 consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
867 index = i + 1;
868 return true;
869 }
870 return false;
871 }
872
873 public void forEachRemaining(DoubleConsumer consumer) {
874 if (consumer == null) throw new NullPointerException();
875 long i = index, f = fence;
876 if (i < f) {
877 index = f;
878 double o = origin, b = bound;
879 ThreadLocalRandom rng = ThreadLocalRandom.current();
880 do {
881 consumer.accept(rng.internalNextDouble(o, b));
882 } while (++i < f);
883 }
884 }
885 }
886
887
888 // Within-package utilities
889
890 /*
891 * Descriptions of the usages of the methods below can be found in
892 * the classes that use them. Briefly, a thread's "probe" value is
893 * a non-zero hash code that (probably) does not collide with
894 * other existing threads with respect to any power of two
895 * collision space. When it does collide, it is pseudo-randomly
896 * adjusted (using a Marsaglia XorShift). The nextSecondarySeed
897 * method is used in the same contexts as ThreadLocalRandom, but
898 * only for transient usages such as random adaptive spin/block
899 * sequences for which a cheap RNG suffices and for which it could
900 * in principle disrupt user-visible statistical properties of the
901 * main ThreadLocalRandom if we were to use it.
902 *
903 * Note: Because of package-protection issues, versions of some
904 * these methods also appear in some subpackage classes.
905 */
906
907 /**
908 * Returns the probe value for the current thread without forcing
909 * initialization. Note that invoking ThreadLocalRandom.current()
910 * can be used to force initialization on zero return.
911 */
912 static final int getProbe() {
913 return U.getInt(Thread.currentThread(), PROBE);
914 }
915
916 /**
917 * Pseudo-randomly advances and records the given probe value for the
918 * given thread.
919 */
920 static final int advanceProbe(int probe) {
921 probe ^= probe << 13; // xorshift
922 probe ^= probe >>> 17;
923 probe ^= probe << 5;
924 U.putInt(Thread.currentThread(), PROBE, probe);
925 return probe;
926 }
927
928 /**
929 * Returns the pseudo-randomly initialized or updated secondary seed.
930 */
931 static final int nextSecondarySeed() {
932 int r;
933 Thread t = Thread.currentThread();
934 if ((r = U.getInt(t, SECONDARY)) != 0) {
935 r ^= r << 13; // xorshift
936 r ^= r >>> 17;
937 r ^= r << 5;
938 }
939 else if ((r = mix32(seeder.getAndAdd(SEEDER_INCREMENT))) == 0)
940 r = 1; // avoid zero
941 U.putInt(t, SECONDARY, r);
942 return r;
943 }
944
945 // Support for other package-private ThreadLocal access
946
947 /**
948 * Erases ThreadLocals by nulling out Thread maps.
949 */
950 static final void eraseThreadLocals(Thread thread) {
951 U.putObject(thread, THREADLOCALS, null);
952 U.putObject(thread, INHERITABLETHREADLOCALS, null);
953 }
954
955 static final void setInheritedAccessControlContext(Thread thread,
956 AccessControlContext acc) {
957 U.putObjectRelease(thread, INHERITEDACCESSCONTROLCONTEXT, acc);
958 }
959
960 /**
961 * Returns a new group with the system ThreadGroup (the
962 * topmost, parent-less group) as parent. Uses Unsafe to
963 * traverse Thread.group and ThreadGroup.parent fields.
964 */
965 static final ThreadGroup createThreadGroup(String name) {
966 if (name == null)
967 throw new NullPointerException();
968 try {
969 long tg = U.objectFieldOffset
970 (Thread.class.getDeclaredField("group"));
971 long gp = U.objectFieldOffset
972 (ThreadGroup.class.getDeclaredField("parent"));
973 ThreadGroup group = (ThreadGroup)
974 U.getObject(Thread.currentThread(), tg);
975 while (group != null) {
976 ThreadGroup parent = (ThreadGroup)U.getObject(group, gp);
977 if (parent == null)
978 return new ThreadGroup(group, name);
979 group = parent;
980 }
981 } catch (ReflectiveOperationException e) {
982 throw new Error(e);
983 }
984 // fall through if null as cannot-happen safeguard
985 throw new Error("Cannot create ThreadGroup");
986 }
987
988 // Serialization support
989
990 private static final long serialVersionUID = -5851777807851030925L;
991
992 /**
993 * @serialField rnd long
994 * seed for random computations
995 * @serialField initialized boolean
996 * always true
997 */
998 private static final ObjectStreamField[] serialPersistentFields = {
999 new ObjectStreamField("rnd", long.class),
1000 new ObjectStreamField("initialized", boolean.class),
1001 };
1002
1003 /**
1004 * Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
1005 * @param s the stream
1006 * @throws java.io.IOException if an I/O error occurs
1007 */
1008 private void writeObject(java.io.ObjectOutputStream s)
1009 throws java.io.IOException {
1010
1011 java.io.ObjectOutputStream.PutField fields = s.putFields();
1012 fields.put("rnd", U.getLong(Thread.currentThread(), SEED));
1013 fields.put("initialized", true);
1014 s.writeFields();
1015 }
1016
1017 /**
1018 * Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
1019 * @return the {@link #current() current} thread's {@code ThreadLocalRandom}
1020 */
1021 private Object readResolve() {
1022 return current();
1023 }
1024
1025 // Static initialization
1026
1027 /**
1028 * The seed increment.
1029 */
1030 private static final long GAMMA = 0x9e3779b97f4a7c15L;
1031
1032 /**
1033 * The increment for generating probe values.
1034 */
1035 private static final int PROBE_INCREMENT = 0x9e3779b9;
1036
1037 /**
1038 * The increment of seeder per new instance.
1039 */
1040 private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
1041
1042 // Constants from SplittableRandom
1043 private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
1044 private static final float FLOAT_UNIT = 0x1.0p-24f; // 1.0f / (1 << 24)
1045
1046 // IllegalArgumentException messages
1047 static final String BAD_BOUND = "bound must be positive";
1048 static final String BAD_RANGE = "bound must be greater than origin";
1049 static final String BAD_SIZE = "size must be non-negative";
1050
1051 // Unsafe mechanics
1052 private static final Unsafe U = Unsafe.getUnsafe();
1053 private static final long SEED;
1054 private static final long PROBE;
1055 private static final long SECONDARY;
1056 private static final long THREADLOCALS;
1057 private static final long INHERITABLETHREADLOCALS;
1058 private static final long INHERITEDACCESSCONTROLCONTEXT;
1059 static {
1060 try {
1061 SEED = U.objectFieldOffset
1062 (Thread.class.getDeclaredField("threadLocalRandomSeed"));
1063 PROBE = U.objectFieldOffset
1064 (Thread.class.getDeclaredField("threadLocalRandomProbe"));
1065 SECONDARY = U.objectFieldOffset
1066 (Thread.class.getDeclaredField("threadLocalRandomSecondarySeed"));
1067 THREADLOCALS = U.objectFieldOffset
1068 (Thread.class.getDeclaredField("threadLocals"));
1069 INHERITABLETHREADLOCALS = U.objectFieldOffset
1070 (Thread.class.getDeclaredField("inheritableThreadLocals"));
1071 INHERITEDACCESSCONTROLCONTEXT = U.objectFieldOffset
1072 (Thread.class.getDeclaredField("inheritedAccessControlContext"));
1073 } catch (ReflectiveOperationException e) {
1074 throw new Error(e);
1075 }
1076 }
1077
1078 /** Rarely-used holder for the second of a pair of Gaussians */
1079 private static final ThreadLocal<Double> nextLocalGaussian =
1080 new ThreadLocal<>();
1081
1082 /** Generates per-thread initialization/probe field */
1083 private static final AtomicInteger probeGenerator = new AtomicInteger();
1084
1085 /** The common ThreadLocalRandom */
1086 static final ThreadLocalRandom instance = new ThreadLocalRandom();
1087
1088 /**
1089 * The next seed for default constructors.
1090 */
1091 private static final AtomicLong seeder
1092 = new AtomicLong(mix64(System.currentTimeMillis()) ^
1093 mix64(System.nanoTime()));
1094
1095 // at end of <clinit> to survive static initialization circularity
1096 static {
1097 if (java.security.AccessController.doPrivileged(
1098 new java.security.PrivilegedAction<Boolean>() {
1099 public Boolean run() {
1100 return Boolean.getBoolean("java.util.secureRandomSeed");
1101 }})) {
1102 byte[] seedBytes = java.security.SecureRandom.getSeed(8);
1103 long s = (long)seedBytes[0] & 0xffL;
1104 for (int i = 1; i < 8; ++i)
1105 s = (s << 8) | ((long)seedBytes[i] & 0xffL);
1106 seeder.set(s);
1107 }
1108 }
1109 }