ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.117
Committed: Tue Feb 6 04:13:43 2007 UTC (17 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.116: +212 -187 lines
Log Message:
More TPE/STPE review rework

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.9 import java.util.concurrent.locks.*;
9 dl 1.107 import java.util.concurrent.atomic.*;
10 dl 1.2 import java.util.*;
11 tim 1.1
12     /**
13 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
14 dl 1.28 * one of possibly several pooled threads, normally configured
15     * using {@link Executors} factory methods.
16 tim 1.1 *
17 dl 1.17 * <p>Thread pools address two different problems: they usually
18     * provide improved performance when executing large numbers of
19     * asynchronous tasks, due to reduced per-task invocation overhead,
20     * and they provide a means of bounding and managing the resources,
21     * including threads, consumed when executing a collection of tasks.
22 jsr166 1.116 * Each {@code ThreadPoolExecutor} also maintains some basic
23 dl 1.22 * statistics, such as the number of completed tasks.
24 dl 1.17 *
25 tim 1.1 * <p>To be useful across a wide range of contexts, this class
26 dl 1.24 * provides many adjustable parameters and extensibility
27     * hooks. However, programmers are urged to use the more convenient
28 dl 1.20 * {@link Executors} factory methods {@link
29     * Executors#newCachedThreadPool} (unbounded thread pool, with
30     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
31     * (fixed size thread pool) and {@link
32     * Executors#newSingleThreadExecutor} (single background thread), that
33 dl 1.22 * preconfigure settings for the most common usage
34     * scenarios. Otherwise, use the following guide when manually
35 dl 1.24 * configuring and tuning this class:
36 dl 1.17 *
37 tim 1.1 * <dl>
38 dl 1.2 *
39 dl 1.21 * <dt>Core and maximum pool sizes</dt>
40 dl 1.2 *
41 jsr166 1.116 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
42 jsr166 1.117 * pool size (see {@link #getPoolSize})
43     * according to the bounds set by
44     * corePoolSize (see {@link #getCorePoolSize}) and
45     * maximumPoolSize (see {@link #getMaximumPoolSize}).
46     *
47     * When a new task is submitted in method {@link #execute}, and fewer
48     * than corePoolSize threads are running, a new thread is created to
49     * handle the request, even if other worker threads are idle. If
50     * there are more than corePoolSize but less than maximumPoolSize
51     * threads running, a new thread will be created only if the queue is
52     * full. By setting corePoolSize and maximumPoolSize the same, you
53     * create a fixed-size thread pool. By setting maximumPoolSize to an
54     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
55     * allow the pool to accommodate an arbitrary number of concurrent
56     * tasks. Most typically, core and maximum pool sizes are set only
57     * upon construction, but they may also be changed dynamically using
58     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
59 dl 1.2 *
60 jsr166 1.93 * <dt>On-demand construction</dt>
61 dl 1.2 *
62 dl 1.21 * <dd> By default, even core threads are initially created and
63 dl 1.69 * started only when new tasks arrive, but this can be overridden
64 jsr166 1.117 * dynamically using method {@link #prestartCoreThread} or {@link
65     * #prestartAllCoreThreads}. You probably want to prestart threads if
66     * you construct the pool with a non-empty queue. </dd>
67 dl 1.2 *
68 tim 1.1 * <dt>Creating new threads</dt>
69 dl 1.2 *
70 jsr166 1.117 * <dd>New threads are created using a {@link ThreadFactory}. If not
71     * otherwise specified, a {@link Executors#defaultThreadFactory} is
72     * used, that creates threads to all be in the same {@link
73     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
74     * non-daemon status. By supplying a different ThreadFactory, you can
75     * alter the thread's name, thread group, priority, daemon status,
76     * etc. If a {@code ThreadFactory} fails to create a thread when asked
77     * by returning null from {@code newThread}, the executor will
78     * continue, but might not be able to execute any tasks. Threads
79     * should possess the "modifyThread" {@code RuntimePermission}. If
80     * worker threads or other threads using the pool do not possess this
81     * permission, service may be degraded: configuration changes may not
82     * take effect in a timely manner, and a shutdown pool may remain in a
83     * state in which termination is possible but not completed.</dd>
84 dl 1.2 *
85 dl 1.21 * <dt>Keep-alive times</dt>
86     *
87     * <dd>If the pool currently has more than corePoolSize threads,
88     * excess threads will be terminated if they have been idle for more
89 jsr166 1.117 * than the keepAliveTime (see {@link #getKeepAliveTime}). This
90     * provides a means of reducing resource consumption when the pool is
91     * not being actively used. If the pool becomes more active later, new
92     * threads will be constructed. This parameter can also be changed
93     * dynamically using method {@link #setKeepAliveTime}. Using a value
94 jsr166 1.116 * of {@code Long.MAX_VALUE} {@link TimeUnit#NANOSECONDS} effectively
95 dl 1.62 * disables idle threads from ever terminating prior to shut down. By
96     * default, the keep-alive policy applies only when there are more
97     * than corePoolSizeThreads. But method {@link
98 jsr166 1.117 * #allowCoreThreadTimeOut(boolean)} can be used to apply this
99     * time-out policy to core threads as well, so long as the
100     * keepAliveTime value is non-zero. </dd>
101 dl 1.21 *
102 dl 1.48 * <dt>Queuing</dt>
103 dl 1.21 *
104     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
105     * submitted tasks. The use of this queue interacts with pool sizing:
106 dl 1.2 *
107 dl 1.21 * <ul>
108     *
109 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
110     * always prefers adding a new thread
111 dl 1.48 * rather than queuing.</li>
112 dl 1.21 *
113 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
114     * always prefers queuing a request rather than adding a new
115     * thread.</li>
116 jsr166 1.66 *
117 dl 1.21 * <li> If a request cannot be queued, a new thread is created unless
118     * this would exceed maximumPoolSize, in which case, the task will be
119     * rejected.</li>
120     *
121     * </ul>
122     *
123     * There are three general strategies for queuing:
124     * <ol>
125     *
126     * <li> <em> Direct handoffs.</em> A good default choice for a work
127     * queue is a {@link SynchronousQueue} that hands off tasks to threads
128     * without otherwise holding them. Here, an attempt to queue a task
129     * will fail if no threads are immediately available to run it, so a
130     * new thread will be constructed. This policy avoids lockups when
131     * handling sets of requests that might have internal dependencies.
132     * Direct handoffs generally require unbounded maximumPoolSizes to
133 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
134 dl 1.21 * possibility of unbounded thread growth when commands continue to
135     * arrive on average faster than they can be processed. </li>
136     *
137     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
138     * example a {@link LinkedBlockingQueue} without a predefined
139 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
140 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
141     * threads will ever be created. (And the value of the maximumPoolSize
142     * therefore doesn't have any effect.) This may be appropriate when
143     * each task is completely independent of others, so tasks cannot
144     * affect each others execution; for example, in a web page server.
145     * While this style of queuing can be useful in smoothing out
146     * transient bursts of requests, it admits the possibility of
147     * unbounded work queue growth when commands continue to arrive on
148     * average faster than they can be processed. </li>
149 dl 1.21 *
150     * <li><em>Bounded queues.</em> A bounded queue (for example, an
151     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
152     * used with finite maximumPoolSizes, but can be more difficult to
153     * tune and control. Queue sizes and maximum pool sizes may be traded
154     * off for each other: Using large queues and small pools minimizes
155     * CPU usage, OS resources, and context-switching overhead, but can
156 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
157 dl 1.21 * example if they are I/O bound), a system may be able to schedule
158     * time for more threads than you otherwise allow. Use of small queues
159 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
160     * may encounter unacceptable scheduling overhead, which also
161     * decreases throughput. </li>
162 dl 1.21 *
163     * </ol>
164     *
165     * </dd>
166     *
167     * <dt>Rejected tasks</dt>
168     *
169 jsr166 1.117 * <dd> New tasks submitted in method {@link #execute} will be
170     * <em>rejected</em> when the Executor has been shut down, and also
171     * when the Executor uses finite bounds for both maximum threads and
172     * work queue capacity, and is saturated. In either case, the {@code
173     * execute} method invokes the {@link
174     * RejectedExecutionHandler#rejectedExecution} method of its {@link
175     * RejectedExecutionHandler}. Four predefined handler policies are
176     * provided:
177 dl 1.21 *
178     * <ol>
179     *
180 jsr166 1.117 * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
181     * handler throws a runtime {@link RejectedExecutionException} upon
182     * rejection. </li>
183     *
184     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
185     * that invokes {@code execute} itself runs the task. This provides a
186     * simple feedback control mechanism that will slow down the rate that
187     * new tasks are submitted. </li>
188     *
189     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
190     * cannot be executed is simply dropped. </li>
191     *
192     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
193     * executor is not shut down, the task at the head of the work queue
194     * is dropped, and then execution is retried (which can fail again,
195     * causing this to be repeated.) </li>
196 dl 1.21 *
197     * </ol>
198     *
199     * It is possible to define and use other kinds of {@link
200     * RejectedExecutionHandler} classes. Doing so requires some care
201     * especially when policies are designed to work only under particular
202 dl 1.48 * capacity or queuing policies. </dd>
203 dl 1.21 *
204     * <dt>Hook methods</dt>
205     *
206 jsr166 1.116 * <dd>This class provides {@code protected} overridable {@link
207 jsr166 1.117 * #beforeExecute} and {@link #afterExecute} methods that are called
208     * before and after execution of each task. These can be used to
209     * manipulate the execution environment; for example, reinitializing
210     * ThreadLocals, gathering statistics, or adding log
211     * entries. Additionally, method {@link #terminated} can be overridden
212     * to perform any special processing that needs to be done once the
213     * Executor has fully terminated.
214     *
215     * <p>If hook or callback methods throw exceptions, internal worker
216     * threads may in turn fail and abruptly terminate.</dd>
217 dl 1.2 *
218 dl 1.21 * <dt>Queue maintenance</dt>
219 dl 1.2 *
220 jsr166 1.117 * <dd> Method {@link #getQueue} allows access to the work queue for
221     * purposes of monitoring and debugging. Use of this method for any
222     * other purpose is strongly discouraged. Two supplied methods,
223     * {@link #remove} and {@link #purge} are available to assist in
224     * storage reclamation when large numbers of queued tasks become
225 jsr166 1.80 * cancelled.</dd>
226 dl 1.79 *
227     * <dt>Finalization</dt>
228     *
229     * <dd> A pool that is no longer referenced in a program <em>AND</em>
230 jsr166 1.117 * has no remaining threads will be {@code shutdown} automatically. If
231     * you would like to ensure that unreferenced pools are reclaimed even
232     * if users forget to call {@link #shutdown}, then you must arrange
233     * that unused threads eventually die, by setting appropriate
234     * keep-alive times, using a lower bound of zero core threads and/or
235     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
236     *
237     * </dl>
238 tim 1.1 *
239 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
240     * override one or more of the protected hook methods. For example,
241     * here is a subclass that adds a simple pause/resume feature:
242     *
243 jsr166 1.116 * <pre> {@code
244 dl 1.43 * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
245     * private boolean isPaused;
246     * private ReentrantLock pauseLock = new ReentrantLock();
247     * private Condition unpaused = pauseLock.newCondition();
248     *
249     * public PausableThreadPoolExecutor(...) { super(...); }
250 jsr166 1.66 *
251 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
252     * super.beforeExecute(t, r);
253     * pauseLock.lock();
254     * try {
255     * while (isPaused) unpaused.await();
256 jsr166 1.66 * } catch (InterruptedException ie) {
257 dl 1.53 * t.interrupt();
258 dl 1.43 * } finally {
259 dl 1.53 * pauseLock.unlock();
260 dl 1.43 * }
261     * }
262 jsr166 1.66 *
263 dl 1.43 * public void pause() {
264     * pauseLock.lock();
265     * try {
266     * isPaused = true;
267     * } finally {
268 dl 1.53 * pauseLock.unlock();
269 dl 1.43 * }
270     * }
271 jsr166 1.66 *
272 dl 1.43 * public void resume() {
273     * pauseLock.lock();
274     * try {
275     * isPaused = false;
276     * unpaused.signalAll();
277     * } finally {
278 dl 1.53 * pauseLock.unlock();
279 dl 1.43 * }
280     * }
281 jsr166 1.116 * }}</pre>
282     *
283 tim 1.1 * @since 1.5
284 dl 1.8 * @author Doug Lea
285 tim 1.1 */
286 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
287 dl 1.86 /**
288 dl 1.107 * The main pool control state, ctl, is an atomic integer packing
289     * two conceptual fields
290     * workerCount, indicating the effective number of threads
291     * runState, indicating whether running, shutting down etc
292     *
293     * In order to pack them into one int, we limit workerCount to
294 jsr166 1.117 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
295 dl 1.107 * billion) otherwise representable. If this is ever an issue in
296     * the future, the variable can be changed to be an AtomicLong,
297     * and the shift/mask constants below adjusted. But until the need
298     * arises, this code is a bit faster and simpler using an int.
299     *
300     * The workerCount is the number of workers that have been
301     * permitted to start and not permitted to stop. The value may be
302 jsr166 1.110 * transiently different from the actual number of live threads,
303 dl 1.107 * for example when a ThreadFactory fails to create a thread when
304     * asked, and when exiting threads are still performing
305     * bookkeeping before terminating. The user-visible pool size is
306     * reported as the current size of the workers set.
307     *
308     * The runState provides the main lifecyle control, taking on values:
309 dl 1.86 *
310 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
311     * SHUTDOWN: Don't accept new tasks, but process queued tasks
312 jsr166 1.91 * STOP: Don't accept new tasks, don't process queued tasks,
313 dl 1.85 * and interrupt in-progress tasks
314 jsr166 1.117 * TIDYING: All tasks have terminated, workerCount is zero,
315     * the thread transitioning to state TIDYING
316     * will run the terminated() hook method
317     * TERMINATED: terminated() has completed
318 dl 1.86 *
319     * The numerical order among these values matters, to allow
320     * ordered comparisons. The runState monotonically increases over
321     * time, but need not hit each state. The transitions are:
322 jsr166 1.87 *
323     * RUNNING -> SHUTDOWN
324 jsr166 1.88 * On invocation of shutdown(), perhaps implicitly in finalize()
325 jsr166 1.87 * (RUNNING or SHUTDOWN) -> STOP
326 dl 1.86 * On invocation of shutdownNow()
327 jsr166 1.117 * SHUTDOWN -> TIDYING
328 dl 1.86 * When both queue and pool are empty
329 jsr166 1.117 * STOP -> TIDYING
330 dl 1.86 * When pool is empty
331 jsr166 1.117 * TIDYING -> TERMINATED
332     * When the terminated() hook method has completed
333     *
334     * Threads waiting in awaitTermination() will return when the
335     * state reaches TERMINATED.
336 dl 1.107 *
337 jsr166 1.117 * Detecting the transition from SHUTDOWN to TIDYING is less
338 dl 1.107 * straightforward than you'd like because the queue may become
339     * empty after non-empty and vice versa during SHUTDOWN state, but
340     * we can only terminate if, after seeing that it is empty, we see
341     * that workerCount is 0 (which sometimes entails a recheck -- see
342     * below).
343     */
344     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
345 jsr166 1.117 private static final int COUNT_BITS = Integer.SIZE - 3;
346 dl 1.107 private static final int CAPACITY = (1 << COUNT_BITS) - 1;
347    
348 jsr166 1.117 // runState is stored in the high-order bits
349     private static final int RUNNING = -1 << COUNT_BITS;
350     private static final int SHUTDOWN = 0 << COUNT_BITS;
351     private static final int STOP = 1 << COUNT_BITS;
352     private static final int TIDYING = 2 << COUNT_BITS;
353     private static final int TERMINATED = 3 << COUNT_BITS;
354 dl 1.107
355     // Packing and unpacking ctl
356 jsr166 1.117 private static int runStateOf(int c) { return c & ~CAPACITY; }
357     private static int workerCountOf(int c) { return c & CAPACITY; }
358     private static int ctlOf(int rs, int wc) { return rs | wc; }
359    
360     /*
361     * Bit field accessors that don't require unpacking ctl.
362     * These depend on the bit layout and on workerCount being never negative.
363     */
364    
365     private static boolean runStateLessThan(int c, int s) {
366     return c < s;
367     }
368    
369     private static boolean runStateAtLeast(int c, int s) {
370     return c >= s;
371     }
372    
373     private static boolean isRunning(int c) {
374     return c < SHUTDOWN;
375     }
376    
377     /**
378     * Attempt to CAS-increment the workerCount field of ctl.
379     */
380     private boolean compareAndIncrementWorkerCount(int expect) {
381     return ctl.compareAndSet(expect, expect + 1);
382     }
383    
384     /**
385     * Attempt to CAS-decrement the workerCount field of ctl.
386     */
387     private boolean compareAndDecrementWorkerCount(int expect) {
388     return ctl.compareAndSet(expect, expect - 1);
389     }
390    
391     /**
392     * Decrements the workerCount field of ctl. This is called only on
393     * abrupt termination of a thread (see processWorkerExit). Other
394     * decrements are performed within getTask.
395     */
396     private void decrementWorkerCount() {
397     do {} while (! compareAndDecrementWorkerCount(ctl.get()));
398     }
399 tim 1.41
400     /**
401 dl 1.86 * The queue used for holding tasks and handing off to worker
402 dl 1.107 * threads. We do not require that workQueue.poll() returning
403 jsr166 1.109 * null necessarily means that workQueue.isEmpty(), so rely
404 dl 1.107 * solely on isEmpty to see if the queue is empty (which we must
405     * do for example when deciding whether to transition from
406 jsr166 1.117 * SHUTDOWN to TIDYING). This accommodates special-purpose
407 dl 1.107 * queues such as DelayQueues for which poll() is allowed to
408     * return null even if it may later return non-null when delays
409     * expire.
410 tim 1.10 */
411 dl 1.2 private final BlockingQueue<Runnable> workQueue;
412    
413     /**
414 dl 1.107 * Lock held on access to workers set and related bookkeeping.
415     * While we could use a concurrent set of some sort, it turns out
416     * to be generally preferable to use a lock. Among the reasons is
417     * that this serializes interruptIdleWorkers, which avoids
418     * unnecessary interrupt storms, especially during shutdown.
419     * Otherwise exiting threads would concurrently interrupt those
420     * that have not yet interrupted. It also simplifies some of the
421     * associated statistics bookkeeping of largestPoolSize etc. We
422     * also hold mainLock on shutdown and shutdownNow, for the sake of
423     * ensuring workers set is stable while separately checking
424     * permission to interrupt and actually interrupting.
425 tim 1.10 */
426 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
427    
428     /**
429 dl 1.107 * Set containing all worker threads in pool. Accessed only when
430     * holding mainLock.
431     */
432     private final HashSet<Worker> workers = new HashSet<Worker>();
433    
434     /**
435 dl 1.2 * Wait condition to support awaitTermination
436 tim 1.10 */
437 dl 1.46 private final Condition termination = mainLock.newCondition();
438 dl 1.2
439     /**
440 dl 1.107 * Tracks largest attained pool size. Accessed only under
441     * mainLock.
442     */
443     private int largestPoolSize;
444    
445     /**
446     * Counter for completed tasks. Updated only on termination of
447     * worker threads. Accessed only under mainLock.
448     */
449     private long completedTaskCount;
450    
451     /*
452     * All user control parameters are declared as volatiles so that
453     * ongoing actions are based on freshest values, but without need
454     * for locking, since no internal invariants depend on them
455     * changing synchronously with respect to other actions.
456     */
457    
458     /**
459     * Factory for new threads. All threads are created using this
460     * factory (via method addWorker). All callers must be prepared
461     * for addWorker to fail, which may reflect a system or user's
462     * policy limiting the number of threads. Even though it is not
463     * treated as an error, failure to create threads may result in
464     * new tasks being rejected or existing ones remaining stuck in
465     * the queue. On the other hand, no special precautions exist to
466     * handle OutOfMemoryErrors that might be thrown while trying to
467     * create threads, since there is generally no recourse from
468     * within this class.
469     */
470     private volatile ThreadFactory threadFactory;
471    
472     /**
473     * Handler called when saturated or shutdown in execute.
474 tim 1.10 */
475 dl 1.107 private volatile RejectedExecutionHandler handler;
476 dl 1.2
477     /**
478 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
479 dl 1.86 * Threads use this timeout when there are more than corePoolSize
480     * present or if allowCoreThreadTimeOut. Otherwise they wait
481     * forever for new work.
482 tim 1.10 */
483 dl 1.107 private volatile long keepAliveTime;
484 dl 1.2
485     /**
486 jsr166 1.101 * If false (default), core threads stay alive even when idle.
487     * If true, core threads use keepAliveTime to time out waiting
488     * for work.
489 dl 1.62 */
490 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
491 dl 1.62
492     /**
493 dl 1.107 * Core pool size is the minimum number of workers to keep alive
494     * (and not allow to time out etc) unless allowCoreThreadTimeOut
495 jsr166 1.109 * is set, in which case the minimum is zero.
496 dl 1.107 */
497     private volatile int corePoolSize;
498    
499     /**
500     * Maximum pool size. Note that the actual maximum is internally
501     * bounded by CAPACITY.
502     */
503     private volatile int maximumPoolSize;
504    
505     /**
506     * The default rejected execution handler
507     */
508     private static final RejectedExecutionHandler defaultHandler =
509     new AbortPolicy();
510    
511     /**
512     * Permission required for callers of shutdown and shutdownNow.
513     * We additionally require (see checkShutdownAccess) that callers
514     * have permission to actually interrupt threads in the worker set
515     * (as governed by Thread.interrupt, which relies on
516     * ThreadGroup.checkAccess, which in turn relies on
517     * SecurityManager.checkAccess). Shutdowns are attempted only if
518     * these checks pass.
519     *
520     * All actual invocations of Thread.interrupt (see
521     * interruptIdleWorkers and interruptWorkers) ignore
522     * SecurityExceptions, meaning that the attempted interrupts
523     * silently fail. In the case of shutdown, they should not fail
524     * unless the SecurityManager has inconsistent policies, sometimes
525     * allowing access to a thread and sometimes not. In such cases,
526     * failure to actually interrupt threads may disable or delay full
527     * termination. Other uses of interruptIdleWorkers are advisory,
528     * and failure to actually interrupt will merely delay response to
529     * configuration changes so is not handled exceptionally.
530     */
531     private static final RuntimePermission shutdownPerm =
532     new RuntimePermission("modifyThread");
533    
534     /**
535 jsr166 1.108 * Class Worker mainly maintains interrupt control state for
536 dl 1.107 * threads running tasks, along with other minor bookkeeping. This
537     * class opportunistically extends ReentrantLock to simplify
538     * acquiring and releasing a lock surrounding each task execution.
539     * This protects against interrupts that are intended to wake up a
540     * worker thread waiting for a task from instead interrupting a
541     * task being run.
542     */
543     private final class Worker extends ReentrantLock implements Runnable {
544 jsr166 1.116 /**
545     * This class will never be serialized, but we provide a
546     * serialVersionUID to suppress a javac warning.
547     */
548     private static final long serialVersionUID = 6138294804551838833L;
549    
550 jsr166 1.108 /** Thread this worker is running in. Null if factory fails. */
551 dl 1.107 final Thread thread;
552 jsr166 1.108 /** Initial task to run. Possibly null. */
553 dl 1.107 Runnable firstTask;
554     /** Per-thread task counter */
555     volatile long completedTasks;
556    
557     /**
558 jsr166 1.108 * Creates with given first task and thread from ThreadFactory.
559     * @param firstTask the first task (null if none)
560 dl 1.107 */
561     Worker(Runnable firstTask) {
562     this.firstTask = firstTask;
563     this.thread = getThreadFactory().newThread(this);
564     }
565    
566     /** Delegates main run loop to outer runWorker */
567     public void run() {
568     runWorker(this);
569     }
570     }
571    
572     /*
573     * Methods for setting control state
574     */
575    
576     /**
577     * Transitions runState to given target, or leaves it alone if
578     * already at least the given target.
579 jsr166 1.116 *
580 jsr166 1.117 * @param targetState the desired state, either SHUTDOWN or STOP
581     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
582 dl 1.107 */
583     private void advanceRunState(int targetState) {
584     for (;;) {
585     int c = ctl.get();
586 jsr166 1.117 if (runStateAtLeast(c, targetState) ||
587 dl 1.107 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
588     break;
589     }
590     }
591    
592     /**
593     * Transitions to TERMINATED state if either (SHUTDOWN and pool
594     * and queue empty) or (STOP and pool empty). If otherwise
595     * eligible to terminate but workerCount is nonzero, interrupts an
596     * idle worker to ensure that shutdown signals propagate. This
597     * method must be called following any action that might make
598     * termination possible -- reducing worker count or removing tasks
599     * from the queue during shutdown. The method is non-private to
600 jsr166 1.110 * allow access from ScheduledThreadPoolExecutor.
601 dl 1.107 */
602     final void tryTerminate() {
603     for (;;) {
604     int c = ctl.get();
605 jsr166 1.117 if (isRunning(c)
606     || runStateAtLeast(c, TIDYING)
607     || (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
608 dl 1.107 return;
609     if (workerCountOf(c) != 0) { // Eligible to terminate
610 jsr166 1.113 interruptIdleWorkers(ONLY_ONE);
611 dl 1.107 return;
612     }
613 jsr166 1.117 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
614 dl 1.107 mainLock.lock();
615     try {
616 jsr166 1.117 try {
617     terminated();
618     } finally {
619     ctl.set(ctlOf(TERMINATED, 0));
620     termination.signalAll();
621     }
622 dl 1.107 } finally {
623     mainLock.unlock();
624     }
625     return;
626     }
627     // else retry on failed CAS
628     }
629     }
630    
631 jsr166 1.116 /*
632 dl 1.107 * Methods for controlling interrupts to worker threads.
633     */
634    
635     /**
636     * If there is a security manager, makes sure caller has
637     * permission to shut down threads in general (see shutdownPerm).
638     * If this passes, additionally makes sure the caller is allowed
639     * to interrupt each worker thread. This might not be true even if
640     * first check passed, if the SecurityManager treats some threads
641     * specially.
642     */
643     private void checkShutdownAccess() {
644     SecurityManager security = System.getSecurityManager();
645     if (security != null) {
646     security.checkPermission(shutdownPerm);
647     final ReentrantLock mainLock = this.mainLock;
648     mainLock.lock();
649     try {
650     for (Worker w : workers)
651     security.checkAccess(w.thread);
652     } finally {
653     mainLock.unlock();
654     }
655     }
656     }
657    
658     /**
659 jsr166 1.116 * Interrupts all threads, even if active. Ignores SecurityExceptions
660     * (in which case some threads may remain uninterrupted).
661 dl 1.107 */
662     private void interruptWorkers() {
663     final ReentrantLock mainLock = this.mainLock;
664     mainLock.lock();
665     try {
666 jsr166 1.116 for (Worker w : workers) {
667 dl 1.107 try {
668     w.thread.interrupt();
669     } catch (SecurityException ignore) {
670     }
671     }
672     } finally {
673     mainLock.unlock();
674     }
675     }
676    
677     /**
678     * Interrupts threads that might be waiting for tasks (as
679     * indicated by not being locked) so they can check for
680     * termination or configuration changes. Ignores
681     * SecurityExceptions (in which case some threads may remain
682     * uninterrupted).
683     *
684     * @param onlyOne If true, interrupt at most one worker. This is
685     * called only from tryTerminate when termination is otherwise
686     * enabled but there are still other workers. In this case, at
687     * most one waiting worker is interrupted to propagate shutdown
688 jsr166 1.113 * signals in case all threads are currently waiting.
689 dl 1.107 * Interrupting any arbitrary thread ensures that newly arriving
690     * workers since shutdown began will also eventually exit.
691 jsr166 1.113 * To guarantee eventual termination, it suffices to always
692     * interrupt only one idle worker, but shutdown() interrupts all
693     * idle workers so that redundant workers exit promptly, not
694     * waiting for a straggler task to finish.
695 tim 1.10 */
696 dl 1.107 private void interruptIdleWorkers(boolean onlyOne) {
697     final ReentrantLock mainLock = this.mainLock;
698     mainLock.lock();
699     try {
700 jsr166 1.116 for (Worker w : workers) {
701 dl 1.107 Thread t = w.thread;
702     if (!t.isInterrupted() && w.tryLock()) {
703     try {
704     t.interrupt();
705     } catch (SecurityException ignore) {
706     } finally {
707     w.unlock();
708     }
709     }
710     if (onlyOne)
711     break;
712     }
713     } finally {
714     mainLock.unlock();
715     }
716     }
717    
718 jsr166 1.113 private void interruptIdleWorkers() { interruptIdleWorkers(false); }
719     private static final boolean ONLY_ONE = true;
720    
721 dl 1.107 /**
722     * Ensures that unless the pool is stopping, the current thread
723     * does not have its interrupt set. This requires a double-check
724     * of state in case the interrupt was cleared concurrently with a
725     * shutdownNow -- if so, the interrupt is re-enabled.
726     */
727     private void clearInterruptsForTaskRun() {
728 jsr166 1.117 if (runStateLessThan(ctl.get(), STOP) &&
729 dl 1.107 Thread.interrupted() &&
730 jsr166 1.117 runStateAtLeast(ctl.get(), STOP))
731 dl 1.107 Thread.currentThread().interrupt();
732     }
733    
734     /*
735     * Misc utilities, most of which are also exported to
736     * ScheduledThreadPoolExecutor
737     */
738    
739     /**
740     * Invokes the rejected execution handler for the given command.
741     * Package-protected for use by ScheduledThreadPoolExecutor.
742     */
743     final void reject(Runnable command) {
744     handler.rejectedExecution(command, this);
745     }
746 dl 1.2
747     /**
748 dl 1.107 * Performs any further cleanup following run state transition on
749     * invocation of shutdown. A no-op here, but used by
750     * ScheduledThreadPoolExecutor to cancel delayed tasks.
751 tim 1.10 */
752 dl 1.107 void onShutdown() {
753     }
754 dl 1.2
755     /**
756 dl 1.107 * State check needed by ScheduledThreadPoolExecutor to
757 jsr166 1.117 * enable running tasks during shutdown.
758     *
759 dl 1.107 * @param shutdownOK true if should return true if SHUTDOWN
760 tim 1.10 */
761 dl 1.107 final boolean isRunningOrShutdown(boolean shutdownOK) {
762     int rs = runStateOf(ctl.get());
763     return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
764     }
765 dl 1.2
766     /**
767 dl 1.107 * Drains the task queue into a new list, normally using
768     * drainTo. But if the queue is a DelayQueue or any other kind of
769     * queue for which poll or drainTo may fail to remove some
770     * elements, it deletes them one by one.
771     */
772     private List<Runnable> drainQueue() {
773     BlockingQueue<Runnable> q = workQueue;
774     List<Runnable> taskList = new ArrayList<Runnable>();
775     q.drainTo(taskList);
776     if (!q.isEmpty()) {
777     for (Runnable r : q.toArray(new Runnable[0])) {
778     if (q.remove(r))
779     taskList.add(r);
780     }
781     }
782     return taskList;
783     }
784    
785     /*
786     * Methods for creating, running and cleaning up after workers
787 tim 1.10 */
788 dl 1.2
789     /**
790 dl 1.107 * Checks if a new worker can be added with respect to current
791 jsr166 1.116 * pool state and the given bound (either core or maximum). If so,
792 dl 1.107 * the worker count is adjusted accordingly, and, if possible, a
793     * new worker is created and started running firstTask as its
794 jsr166 1.117 * first task. This method returns false if the pool is stopped or
795 dl 1.107 * eligible to shut down. It also returns false if the thread
796     * factory fails to create a thread when asked, which requires a
797     * backout of workerCount, and a recheck for termination, in case
798     * the existence of this worker was holding up termination.
799     *
800     * @param firstTask the task the new thread should run first (or
801     * null if none). Workers are created with an initial first task
802     * (in method execute()) to bypass queuing when there are fewer
803     * than corePoolSize threads (in which case we always start one),
804 jsr166 1.110 * or when the queue is full (in which case we must bypass queue).
805 dl 1.107 * Initially idle threads are usually created via
806     * prestartCoreThread or to replace other dying workers.
807     *
808     * @param core if true use corePoolSize as bound, else
809 jsr166 1.110 * maximumPoolSize. (A boolean indicator is used here rather than a
810 dl 1.107 * value to ensure reads of fresh values after checking other pool
811     * state).
812     * @return true if successful
813 tim 1.10 */
814 dl 1.107 private boolean addWorker(Runnable firstTask, boolean core) {
815     for (;;) {
816     int c = ctl.get();
817 jsr166 1.117 // Check if queue empty only if necessary.
818     if (runStateAtLeast(c, SHUTDOWN)
819     && ! (runStateOf(c) == SHUTDOWN
820     && firstTask == null
821     && ! workQueue.isEmpty()))
822     return false;
823 dl 1.107 int wc = workerCountOf(c);
824 jsr166 1.117 if (wc >= CAPACITY ||
825 jsr166 1.110 wc >= (core ? corePoolSize : maximumPoolSize))
826 dl 1.107 return false;
827 jsr166 1.116 if (compareAndIncrementWorkerCount(c))
828 dl 1.107 break;
829     }
830    
831     Worker w = new Worker(firstTask);
832     Thread t = w.thread;
833    
834     final ReentrantLock mainLock = this.mainLock;
835     mainLock.lock();
836     try {
837 jsr166 1.117 // Back out on ThreadFactory failure or if
838     // shut down before lock acquired.
839     int c = ctl.get();
840     if (t == null
841     || (runStateAtLeast(c, SHUTDOWN)
842     && (! (runStateOf(c) == SHUTDOWN
843     && firstTask == null)))) {
844     decrementWorkerCount();
845     tryTerminate();
846     return false;
847     }
848 dl 1.107 workers.add(w);
849     int s = workers.size();
850     if (s > largestPoolSize)
851     largestPoolSize = s;
852     } finally {
853     mainLock.unlock();
854     }
855    
856     t.start();
857     return true;
858     }
859 dl 1.2
860     /**
861 dl 1.107 * Performs cleanup and bookkeeping for a dying worker. Called
862     * only from worker threads. Unless completedAbruptly is set,
863     * assumes that workerCount has already been adjusted to account
864     * for exit. This method removes thread from worker set, and
865     * possibly terminates the pool or replaces the worker if either
866     * it exited due to user task exception or if fewer than
867     * corePoolSize workers are running or queue is non-empty but
868     * there are no workers.
869     *
870     * @param w the worker
871     * @param completedAbruptly if the worker died due to user exception
872 tim 1.10 */
873 dl 1.107 private void processWorkerExit(Worker w, boolean completedAbruptly) {
874     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
875     decrementWorkerCount();
876    
877     final ReentrantLock mainLock = this.mainLock;
878     mainLock.lock();
879     try {
880     completedTaskCount += w.completedTasks;
881     workers.remove(w);
882     } finally {
883     mainLock.unlock();
884     }
885    
886     tryTerminate();
887    
888 jsr166 1.117 int c = ctl.get();
889     if (runStateLessThan(c, STOP)) {
890     if (!completedAbruptly) {
891     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
892     if (min == 0 && ! workQueue.isEmpty())
893     min = 1;
894     if (workerCountOf(c) >= min)
895     return; // replacement not needed
896     }
897     addWorker(null, false);
898     }
899 dl 1.107 }
900 dl 1.2
901     /**
902 dl 1.107 * Performs blocking or timed wait for a task, depending on
903     * current configuration settings, or returns null if this worker
904     * must exit because of any of:
905     * 1. There are more than maximumPoolSize workers (due to
906     * a call to setMaximumPoolSize).
907 jsr166 1.110 * 2. The pool is stopped.
908 dl 1.107 * 3. The queue is empty, and either the pool is shutdown,
909     * or the thread has already timed out at least once
910     * waiting for a task, and would otherwise enter another
911     * timed wait.
912     *
913     * @return task, or null if the worker must exit, in which case
914 jsr166 1.116 * workerCount is decremented
915 tim 1.10 */
916 dl 1.107 private Runnable getTask() {
917     /*
918     * Variable "empty" tracks whether the queue appears to be
919     * empty in case we need to know to check exit. This is set
920     * true on time-out from timed poll as an indicator of likely
921     * emptiness, in which case it is rechecked explicitly via
922     * isEmpty when deciding whether to exit. Emptiness must also
923     * be checked in state SHUTDOWN. The variable is initialized
924     * false to indicate lack of prior timeout, and left false
925     * until otherwise required to check.
926     */
927     boolean empty = false;
928     for (;;) {
929     int c = ctl.get();
930     int rs = runStateOf(c);
931     if (rs == SHUTDOWN || empty) {
932     empty = workQueue.isEmpty();
933     if (runStateOf(c = ctl.get()) != rs)
934     continue; // retry if state changed
935     }
936    
937     int wc = workerCountOf(c);
938     boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
939    
940     // Try to exit if too many threads, shutting down, and/or timed out
941     if (wc > maximumPoolSize || rs > SHUTDOWN ||
942     (empty && (timed || rs == SHUTDOWN))) {
943 jsr166 1.116 if (compareAndDecrementWorkerCount(c))
944 dl 1.107 return null;
945     else
946     continue; // retry on CAS failure
947     }
948    
949     try {
950 jsr166 1.110 Runnable r = timed ?
951 dl 1.107 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
952     workQueue.take();
953     if (r != null)
954     return r;
955     empty = true; // queue probably empty; recheck above
956 jsr166 1.108 } catch (InterruptedException retry) {
957 dl 1.107 }
958     }
959     }
960 jsr166 1.66
961 dl 1.8 /**
962 dl 1.107 * Main worker run loop. Repeatedly gets tasks from queue and
963     * executes them, while coping with a number of issues:
964     *
965     * 1. We may start out with an initial task, in which case we
966     * don't need to get the first one. Otherwise, as long as pool is
967     * running, we get tasks from getTask. If it returns null then the
968     * worker exits due to changed pool state or configuration
969     * parameters. Other exits result from exception throws in
970     * external code, in which case completedAbruptly holds, which
971     * usually leads processWorkerExit to replace this thread.
972     *
973     * 2. Before running any task, the lock is acquired to prevent
974 jsr166 1.108 * other pool interrupts while the task is executing, and
975 dl 1.107 * clearInterruptsForTaskRun called to ensure that unless pool is
976     * stopping, this thread does not have its interrupt set.
977     *
978     * 3. Each task run is preceded by a call to beforeExecute, which
979     * might throw an exception, in which case we cause thread to die
980     * (breaking loop with completedAbruptly true) without processing
981     * the task.
982     *
983     * 4. Assuming beforeExecute completes normally, we run the task,
984     * gathering any of its thrown exceptions to send to
985     * afterExecute. We separately handle RuntimeException, Error
986     * (both of which the specs guarantee that we trap) and arbitrary
987     * Throwables. Because we cannot rethrow Throwables within
988     * Runnable.run, we wrap them within Errors on the way out (to the
989     * thread's UncaughtExceptionHandler). Any thrown exception also
990     * conservatively causes thread to die.
991     *
992     * 5. After task.run completes, we call afterExecute, which may
993     * also throw an exception, which will also cause thread to
994     * die. According to JLS Sec 14.20, this exception is the one that
995     * will be in effect even if task.run throws.
996     *
997     * The net effect of the exception mechanics is that afterExecute
998     * and the thread's UncaughtExceptionHandler have as accurate
999     * information as we can provide about any problems encountered by
1000     * user code.
1001     *
1002     * @param w the worker
1003 dl 1.8 */
1004 dl 1.107 final void runWorker(Worker w) {
1005     Runnable task = w.firstTask;
1006     w.firstTask = null;
1007     boolean completedAbruptly = true;
1008     try {
1009     while (task != null || (task = getTask()) != null) {
1010     w.lock();
1011     clearInterruptsForTaskRun();
1012     try {
1013     beforeExecute(w.thread, task);
1014     Throwable thrown = null;
1015     try {
1016     task.run();
1017     } catch (RuntimeException x) {
1018     thrown = x; throw x;
1019     } catch (Error x) {
1020     thrown = x; throw x;
1021     } catch (Throwable x) {
1022     thrown = x; throw new Error(x);
1023     } finally {
1024     afterExecute(task, thrown);
1025     }
1026     } finally {
1027     task = null;
1028     w.completedTasks++;
1029     w.unlock();
1030     }
1031     }
1032     completedAbruptly = false;
1033     } finally {
1034     processWorkerExit(w, completedAbruptly);
1035     }
1036     }
1037 dl 1.2
1038 dl 1.107 // Public constructors and methods
1039 dl 1.86
1040 dl 1.2 /**
1041 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1042 dl 1.86 * parameters and default thread factory and rejected execution handler.
1043     * It may be more convenient to use one of the {@link Executors} factory
1044     * methods instead of this general purpose constructor.
1045     *
1046 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1047     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1048 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1049 jsr166 1.116 * pool
1050 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1051 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1052     * will wait for new tasks before terminating.
1053     * @param unit the time unit for the {@code keepAliveTime} argument
1054     * @param workQueue the queue to use for holding tasks before they are
1055     * executed. This queue will hold only the {@code Runnable}
1056     * tasks submitted by the {@code execute} method.
1057     * @throws IllegalArgumentException if one of the following holds:<br>
1058     * {@code corePoolSize < 0}<br>
1059     * {@code keepAliveTime < 0}<br>
1060     * {@code maximumPoolSize <= 0}<br>
1061     * {@code maximumPoolSize < corePoolSize}
1062     * @throws NullPointerException if {@code workQueue} is null
1063 dl 1.86 */
1064     public ThreadPoolExecutor(int corePoolSize,
1065     int maximumPoolSize,
1066     long keepAliveTime,
1067     TimeUnit unit,
1068     BlockingQueue<Runnable> workQueue) {
1069     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1070     Executors.defaultThreadFactory(), defaultHandler);
1071     }
1072    
1073     /**
1074 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1075 dl 1.86 * parameters and default rejected execution handler.
1076     *
1077 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1078     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1079 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1080 jsr166 1.116 * pool
1081 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1082 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1083     * will wait for new tasks before terminating.
1084     * @param unit the time unit for the {@code keepAliveTime} argument
1085     * @param workQueue the queue to use for holding tasks before they are
1086     * executed. This queue will hold only the {@code Runnable}
1087     * tasks submitted by the {@code execute} method.
1088 dl 1.86 * @param threadFactory the factory to use when the executor
1089 jsr166 1.116 * creates a new thread
1090     * @throws IllegalArgumentException if one of the following holds:<br>
1091     * {@code corePoolSize < 0}<br>
1092     * {@code keepAliveTime < 0}<br>
1093     * {@code maximumPoolSize <= 0}<br>
1094     * {@code maximumPoolSize < corePoolSize}
1095     * @throws NullPointerException if {@code workQueue}
1096     * or {@code threadFactory} is null
1097 dl 1.86 */
1098     public ThreadPoolExecutor(int corePoolSize,
1099     int maximumPoolSize,
1100     long keepAliveTime,
1101     TimeUnit unit,
1102     BlockingQueue<Runnable> workQueue,
1103     ThreadFactory threadFactory) {
1104     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1105     threadFactory, defaultHandler);
1106     }
1107    
1108     /**
1109 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1110 dl 1.86 * parameters and default thread factory.
1111     *
1112 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1113     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1114 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1115 jsr166 1.116 * pool
1116 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1117 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1118     * will wait for new tasks before terminating.
1119     * @param unit the time unit for the {@code keepAliveTime} argument
1120     * @param workQueue the queue to use for holding tasks before they are
1121     * executed. This queue will hold only the {@code Runnable}
1122     * tasks submitted by the {@code execute} method.
1123 dl 1.86 * @param handler the handler to use when execution is blocked
1124 jsr166 1.116 * because the thread bounds and queue capacities are reached
1125     * @throws IllegalArgumentException if one of the following holds:<br>
1126     * {@code corePoolSize < 0}<br>
1127     * {@code keepAliveTime < 0}<br>
1128     * {@code maximumPoolSize <= 0}<br>
1129     * {@code maximumPoolSize < corePoolSize}
1130     * @throws NullPointerException if {@code workQueue}
1131     * or {@code handler} is null
1132 dl 1.86 */
1133     public ThreadPoolExecutor(int corePoolSize,
1134     int maximumPoolSize,
1135     long keepAliveTime,
1136     TimeUnit unit,
1137     BlockingQueue<Runnable> workQueue,
1138     RejectedExecutionHandler handler) {
1139     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1140     Executors.defaultThreadFactory(), handler);
1141     }
1142    
1143     /**
1144 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1145 dl 1.86 * parameters.
1146     *
1147 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1148     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1149 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1150 jsr166 1.116 * pool
1151 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1152 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1153     * will wait for new tasks before terminating.
1154     * @param unit the time unit for the {@code keepAliveTime} argument
1155     * @param workQueue the queue to use for holding tasks before they are
1156     * executed. This queue will hold only the {@code Runnable}
1157     * tasks submitted by the {@code execute} method.
1158 dl 1.86 * @param threadFactory the factory to use when the executor
1159 jsr166 1.116 * creates a new thread
1160 dl 1.86 * @param handler the handler to use when execution is blocked
1161 jsr166 1.116 * because the thread bounds and queue capacities are reached
1162     * @throws IllegalArgumentException if one of the following holds:<br>
1163     * {@code corePoolSize < 0}<br>
1164     * {@code keepAliveTime < 0}<br>
1165     * {@code maximumPoolSize <= 0}<br>
1166     * {@code maximumPoolSize < corePoolSize}
1167     * @throws NullPointerException if {@code workQueue}
1168     * or {@code threadFactory} or {@code handler} is null
1169 dl 1.86 */
1170     public ThreadPoolExecutor(int corePoolSize,
1171     int maximumPoolSize,
1172     long keepAliveTime,
1173     TimeUnit unit,
1174     BlockingQueue<Runnable> workQueue,
1175     ThreadFactory threadFactory,
1176     RejectedExecutionHandler handler) {
1177     if (corePoolSize < 0 ||
1178     maximumPoolSize <= 0 ||
1179     maximumPoolSize < corePoolSize ||
1180     keepAliveTime < 0)
1181     throw new IllegalArgumentException();
1182     if (workQueue == null || threadFactory == null || handler == null)
1183     throw new NullPointerException();
1184     this.corePoolSize = corePoolSize;
1185     this.maximumPoolSize = maximumPoolSize;
1186     this.workQueue = workQueue;
1187     this.keepAliveTime = unit.toNanos(keepAliveTime);
1188     this.threadFactory = threadFactory;
1189     this.handler = handler;
1190     }
1191    
1192     /**
1193     * Executes the given task sometime in the future. The task
1194     * may execute in a new thread or in an existing pooled thread.
1195     *
1196     * If the task cannot be submitted for execution, either because this
1197     * executor has been shutdown or because its capacity has been reached,
1198 jsr166 1.116 * the task is handled by the current {@code RejectedExecutionHandler}.
1199 dl 1.86 *
1200     * @param command the task to execute
1201     * @throws RejectedExecutionException at discretion of
1202 jsr166 1.116 * {@code RejectedExecutionHandler}, if the task
1203     * cannot be accepted for execution
1204     * @throws NullPointerException if {@code command} is null
1205 dl 1.13 */
1206 dl 1.86 public void execute(Runnable command) {
1207     if (command == null)
1208     throw new NullPointerException();
1209 dl 1.107 /*
1210     * Proceed in 3 steps:
1211     *
1212     * 1. If fewer than corePoolSize threads are running, try to
1213     * start a new thread with the given command as its first
1214     * task. The call to addWorker atomically checks runState and
1215     * workerCount, and so prevents false alarms that would add
1216     * threads when it shouldn't, by returning false.
1217     *
1218     * 2. If a task can be successfully queued, then we still need
1219     * to double-check whether we should have added a thread
1220     * (because existing ones died since last checking) or that
1221     * the pool shut down since entry into this method. So we
1222     * recheck state and if necessary roll back the enqueuing if
1223     * stopped, or start a new thread if there are none.
1224     *
1225     * 3. If we cannot queue task, then we try to add a new
1226     * thread. If it fails, we know we are shut down or saturated
1227     * and so reject the task.
1228     */
1229     int c = ctl.get();
1230     if (workerCountOf(c) < corePoolSize) {
1231     if (addWorker(command, true))
1232     return;
1233     c = ctl.get();
1234     }
1235 jsr166 1.117 if (isRunning(c) && workQueue.offer(command)) {
1236 dl 1.107 int recheck = ctl.get();
1237 jsr166 1.117 if (! isRunning(recheck) && remove(command))
1238 dl 1.107 reject(command);
1239     else if (workerCountOf(recheck) == 0)
1240     addWorker(null, false);
1241 dl 1.86 }
1242 dl 1.107 else if (!addWorker(command, false))
1243 dl 1.85 reject(command);
1244 tim 1.1 }
1245 dl 1.4
1246 dl 1.53 /**
1247     * Initiates an orderly shutdown in which previously submitted
1248 jsr166 1.116 * tasks are executed, but no new tasks will be accepted.
1249     * Invocation has no additional effect if already shut down.
1250     *
1251     * @throws SecurityException {@inheritDoc}
1252 dl 1.53 */
1253 dl 1.2 public void shutdown() {
1254 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1255 dl 1.2 mainLock.lock();
1256     try {
1257 dl 1.107 checkShutdownAccess();
1258     advanceRunState(SHUTDOWN);
1259 jsr166 1.113 interruptIdleWorkers();
1260 dl 1.107 onShutdown(); // hook for ScheduledThreadPoolExecutor
1261 tim 1.14 } finally {
1262 dl 1.2 mainLock.unlock();
1263     }
1264 dl 1.107 tryTerminate();
1265 tim 1.1 }
1266    
1267 dl 1.53 /**
1268     * Attempts to stop all actively executing tasks, halts the
1269 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1270 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1271     * from the task queue upon return from this method.
1272 jsr166 1.66 *
1273 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1274     * processing actively executing tasks. This implementation
1275     * cancels tasks via {@link Thread#interrupt}, so any task that
1276     * fails to respond to interrupts may never terminate.
1277 dl 1.53 *
1278 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1279 dl 1.53 */
1280 tim 1.39 public List<Runnable> shutdownNow() {
1281 dl 1.107 List<Runnable> tasks;
1282 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1283 dl 1.2 mainLock.lock();
1284     try {
1285 dl 1.107 checkShutdownAccess();
1286     advanceRunState(STOP);
1287     interruptWorkers();
1288     tasks = drainQueue();
1289 tim 1.14 } finally {
1290 dl 1.2 mainLock.unlock();
1291     }
1292 dl 1.107 tryTerminate();
1293     return tasks;
1294 dl 1.86 }
1295    
1296 dl 1.2 public boolean isShutdown() {
1297 jsr166 1.117 return ! isRunning(ctl.get());
1298 dl 1.16 }
1299    
1300 jsr166 1.66 /**
1301 dl 1.55 * Returns true if this executor is in the process of terminating
1302 jsr166 1.117 * after {@link #shutdown} or {@link #shutdownNow} but has not
1303 dl 1.16 * completely terminated. This method may be useful for
1304 jsr166 1.116 * debugging. A return of {@code true} reported a sufficient
1305 dl 1.16 * period after shutdown may indicate that submitted tasks have
1306     * ignored or suppressed interruption, causing this executor not
1307     * to properly terminate.
1308 jsr166 1.116 *
1309 jsr166 1.93 * @return true if terminating but not yet terminated
1310 dl 1.16 */
1311     public boolean isTerminating() {
1312 jsr166 1.117 int c = ctl.get();
1313     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1314 tim 1.1 }
1315    
1316 dl 1.2 public boolean isTerminated() {
1317 jsr166 1.117 return runStateAtLeast(ctl.get(), TERMINATED);
1318 dl 1.2 }
1319 tim 1.1
1320 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1321     throws InterruptedException {
1322 dl 1.50 long nanos = unit.toNanos(timeout);
1323 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1324 dl 1.2 mainLock.lock();
1325     try {
1326 dl 1.25 for (;;) {
1327 jsr166 1.117 if (runStateAtLeast(ctl.get(), TERMINATED))
1328 dl 1.25 return true;
1329     if (nanos <= 0)
1330     return false;
1331     nanos = termination.awaitNanos(nanos);
1332     }
1333 tim 1.14 } finally {
1334 dl 1.2 mainLock.unlock();
1335     }
1336 dl 1.15 }
1337    
1338     /**
1339 jsr166 1.116 * Invokes {@code shutdown} when this executor is no longer
1340     * referenced and it has no threads.
1341 jsr166 1.66 */
1342 dl 1.107 protected void finalize() {
1343 dl 1.15 shutdown();
1344 dl 1.2 }
1345 tim 1.10
1346 dl 1.2 /**
1347     * Sets the thread factory used to create new threads.
1348     *
1349     * @param threadFactory the new thread factory
1350 dl 1.30 * @throws NullPointerException if threadFactory is null
1351 tim 1.11 * @see #getThreadFactory
1352 dl 1.2 */
1353     public void setThreadFactory(ThreadFactory threadFactory) {
1354 dl 1.30 if (threadFactory == null)
1355     throw new NullPointerException();
1356 dl 1.2 this.threadFactory = threadFactory;
1357 tim 1.1 }
1358    
1359 dl 1.2 /**
1360     * Returns the thread factory used to create new threads.
1361     *
1362     * @return the current thread factory
1363 tim 1.11 * @see #setThreadFactory
1364 dl 1.2 */
1365     public ThreadFactory getThreadFactory() {
1366     return threadFactory;
1367 tim 1.1 }
1368    
1369 dl 1.2 /**
1370     * Sets a new handler for unexecutable tasks.
1371     *
1372     * @param handler the new handler
1373 dl 1.31 * @throws NullPointerException if handler is null
1374 tim 1.11 * @see #getRejectedExecutionHandler
1375 dl 1.2 */
1376     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1377 dl 1.31 if (handler == null)
1378     throw new NullPointerException();
1379 dl 1.2 this.handler = handler;
1380     }
1381 tim 1.1
1382 dl 1.2 /**
1383     * Returns the current handler for unexecutable tasks.
1384     *
1385     * @return the current handler
1386 tim 1.11 * @see #setRejectedExecutionHandler
1387 dl 1.2 */
1388     public RejectedExecutionHandler getRejectedExecutionHandler() {
1389     return handler;
1390 tim 1.1 }
1391    
1392 dl 1.2 /**
1393     * Sets the core number of threads. This overrides any value set
1394     * in the constructor. If the new value is smaller than the
1395     * current value, excess existing threads will be terminated when
1396 jsr166 1.116 * they next become idle. If larger, new threads will, if needed,
1397 dl 1.34 * be started to execute any queued tasks.
1398 tim 1.1 *
1399 dl 1.2 * @param corePoolSize the new core size
1400 jsr166 1.116 * @throws IllegalArgumentException if {@code corePoolSize < 0}
1401 tim 1.11 * @see #getCorePoolSize
1402 tim 1.1 */
1403 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1404     if (corePoolSize < 0)
1405     throw new IllegalArgumentException();
1406 dl 1.107 int delta = corePoolSize - this.corePoolSize;
1407     this.corePoolSize = corePoolSize;
1408     if (workerCountOf(ctl.get()) > corePoolSize)
1409 jsr166 1.113 interruptIdleWorkers();
1410 dl 1.107 else if (delta > 0) {
1411     // We don't really know how many new threads are "needed".
1412     // As a heuristic, prestart enough new workers (up to new
1413     // core size) to handle the current number of tasks in
1414     // queue, but stop if queue becomes empty while doing so.
1415     int k = Math.min(delta, workQueue.size());
1416     while (k-- > 0 && addWorker(null, true)) {
1417     if (workQueue.isEmpty())
1418     break;
1419 tim 1.38 }
1420 dl 1.2 }
1421     }
1422 tim 1.1
1423     /**
1424 dl 1.2 * Returns the core number of threads.
1425 tim 1.1 *
1426 dl 1.2 * @return the core number of threads
1427 tim 1.11 * @see #setCorePoolSize
1428 tim 1.1 */
1429 tim 1.10 public int getCorePoolSize() {
1430 dl 1.2 return corePoolSize;
1431 dl 1.16 }
1432    
1433     /**
1434 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1435 dl 1.16 * overrides the default policy of starting core threads only when
1436 jsr166 1.116 * new tasks are executed. This method will return {@code false}
1437 dl 1.16 * if all core threads have already been started.
1438 jsr166 1.116 *
1439     * @return {@code true} if a thread was started
1440 jsr166 1.66 */
1441 dl 1.16 public boolean prestartCoreThread() {
1442 dl 1.107 return workerCountOf(ctl.get()) < corePoolSize &&
1443     addWorker(null, true);
1444 dl 1.16 }
1445    
1446     /**
1447 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1448 dl 1.16 * overrides the default policy of starting core threads only when
1449 jsr166 1.66 * new tasks are executed.
1450 jsr166 1.116 *
1451 jsr166 1.88 * @return the number of threads started
1452 jsr166 1.66 */
1453 dl 1.16 public int prestartAllCoreThreads() {
1454     int n = 0;
1455 dl 1.107 while (addWorker(null, true))
1456 dl 1.16 ++n;
1457     return n;
1458 dl 1.2 }
1459 tim 1.1
1460     /**
1461 dl 1.62 * Returns true if this pool allows core threads to time out and
1462     * terminate if no tasks arrive within the keepAlive time, being
1463     * replaced if needed when new tasks arrive. When true, the same
1464     * keep-alive policy applying to non-core threads applies also to
1465     * core threads. When false (the default), core threads are never
1466     * terminated due to lack of incoming tasks.
1467 jsr166 1.116 *
1468     * @return {@code true} if core threads are allowed to time out,
1469     * else {@code false}
1470 jsr166 1.72 *
1471     * @since 1.6
1472 dl 1.62 */
1473     public boolean allowsCoreThreadTimeOut() {
1474     return allowCoreThreadTimeOut;
1475     }
1476    
1477     /**
1478     * Sets the policy governing whether core threads may time out and
1479     * terminate if no tasks arrive within the keep-alive time, being
1480     * replaced if needed when new tasks arrive. When false, core
1481     * threads are never terminated due to lack of incoming
1482     * tasks. When true, the same keep-alive policy applying to
1483     * non-core threads applies also to core threads. To avoid
1484     * continual thread replacement, the keep-alive time must be
1485 jsr166 1.116 * greater than zero when setting {@code true}. This method
1486 dl 1.64 * should in general be called before the pool is actively used.
1487 jsr166 1.116 *
1488     * @param value {@code true} if should time out, else {@code false}
1489     * @throws IllegalArgumentException if value is {@code true}
1490     * and the current keep-alive time is not greater than zero
1491 jsr166 1.72 *
1492     * @since 1.6
1493 dl 1.62 */
1494     public void allowCoreThreadTimeOut(boolean value) {
1495 dl 1.64 if (value && keepAliveTime <= 0)
1496     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1497 dl 1.107 if (value != allowCoreThreadTimeOut) {
1498     allowCoreThreadTimeOut = value;
1499     if (value)
1500 jsr166 1.113 interruptIdleWorkers();
1501 dl 1.107 }
1502 dl 1.62 }
1503    
1504     /**
1505 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1506 dl 1.2 * value set in the constructor. If the new value is smaller than
1507     * the current value, excess existing threads will be
1508     * terminated when they next become idle.
1509 tim 1.1 *
1510 dl 1.2 * @param maximumPoolSize the new maximum
1511 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1512     * less than or equal to zero, or
1513     * less than the {@linkplain #getCorePoolSize core pool size}
1514 tim 1.11 * @see #getMaximumPoolSize
1515 dl 1.2 */
1516     public void setMaximumPoolSize(int maximumPoolSize) {
1517     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1518     throw new IllegalArgumentException();
1519 dl 1.107 this.maximumPoolSize = maximumPoolSize;
1520     if (workerCountOf(ctl.get()) > maximumPoolSize)
1521 jsr166 1.113 interruptIdleWorkers();
1522 dl 1.2 }
1523 tim 1.1
1524     /**
1525     * Returns the maximum allowed number of threads.
1526     *
1527 dl 1.2 * @return the maximum allowed number of threads
1528 tim 1.11 * @see #setMaximumPoolSize
1529 tim 1.1 */
1530 tim 1.10 public int getMaximumPoolSize() {
1531 dl 1.2 return maximumPoolSize;
1532     }
1533 tim 1.1
1534     /**
1535     * Sets the time limit for which threads may remain idle before
1536 dl 1.2 * being terminated. If there are more than the core number of
1537 tim 1.1 * threads currently in the pool, after waiting this amount of
1538     * time without processing a task, excess threads will be
1539     * terminated. This overrides any value set in the constructor.
1540 jsr166 1.116 *
1541 tim 1.1 * @param time the time to wait. A time value of zero will cause
1542 jsr166 1.116 * excess threads to terminate immediately after executing tasks.
1543     * @param unit the time unit of the {@code time} argument
1544     * @throws IllegalArgumentException if {@code time} less than zero or
1545     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1546 tim 1.11 * @see #getKeepAliveTime
1547 tim 1.1 */
1548 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1549     if (time < 0)
1550     throw new IllegalArgumentException();
1551 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1552     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1553 dl 1.107 long keepAliveTime = unit.toNanos(time);
1554     long delta = keepAliveTime - this.keepAliveTime;
1555     this.keepAliveTime = keepAliveTime;
1556     if (delta < 0)
1557 jsr166 1.113 interruptIdleWorkers();
1558 dl 1.2 }
1559 tim 1.1
1560     /**
1561     * Returns the thread keep-alive time, which is the amount of time
1562 jsr166 1.93 * that threads in excess of the core pool size may remain
1563 tim 1.10 * idle before being terminated.
1564 tim 1.1 *
1565 dl 1.2 * @param unit the desired time unit of the result
1566 tim 1.1 * @return the time limit
1567 tim 1.11 * @see #setKeepAliveTime
1568 tim 1.1 */
1569 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1570 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1571     }
1572 tim 1.1
1573 dl 1.86 /* User-level queue utilities */
1574    
1575     /**
1576     * Returns the task queue used by this executor. Access to the
1577     * task queue is intended primarily for debugging and monitoring.
1578     * This queue may be in active use. Retrieving the task queue
1579     * does not prevent queued tasks from executing.
1580     *
1581     * @return the task queue
1582     */
1583     public BlockingQueue<Runnable> getQueue() {
1584     return workQueue;
1585     }
1586    
1587     /**
1588     * Removes this task from the executor's internal queue if it is
1589     * present, thus causing it not to be run if it has not already
1590     * started.
1591     *
1592     * <p> This method may be useful as one part of a cancellation
1593     * scheme. It may fail to remove tasks that have been converted
1594     * into other forms before being placed on the internal queue. For
1595 jsr166 1.116 * example, a task entered using {@code submit} might be
1596     * converted into a form that maintains {@code Future} status.
1597 jsr166 1.117 * However, in such cases, method {@link #purge} may be used to
1598     * remove those Futures that have been cancelled.
1599 dl 1.86 *
1600     * @param task the task to remove
1601     * @return true if the task was removed
1602     */
1603     public boolean remove(Runnable task) {
1604 jsr166 1.116 boolean removed = workQueue.remove(task);
1605     tryTerminate(); // In case SHUTDOWN and now empty
1606 dl 1.107 return removed;
1607 dl 1.86 }
1608    
1609     /**
1610     * Tries to remove from the work queue all {@link Future}
1611     * tasks that have been cancelled. This method can be useful as a
1612     * storage reclamation operation, that has no other impact on
1613     * functionality. Cancelled tasks are never executed, but may
1614     * accumulate in work queues until worker threads can actively
1615     * remove them. Invoking this method instead tries to remove them now.
1616     * However, this method may fail to remove tasks in
1617     * the presence of interference by other threads.
1618     */
1619     public void purge() {
1620 jsr166 1.111 final BlockingQueue<Runnable> q = workQueue;
1621 dl 1.86 try {
1622 dl 1.107 Iterator<Runnable> it = q.iterator();
1623 dl 1.86 while (it.hasNext()) {
1624     Runnable r = it.next();
1625 jsr166 1.111 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1626     it.remove();
1627 dl 1.107 }
1628 jsr166 1.111 } catch (ConcurrentModificationException fallThrough) {
1629     // Take slow path if we encounter interference during traversal.
1630     // Make copy for traversal and call remove for cancelled entries.
1631     // The slow path is more likely to be O(N*N).
1632     for (Object r : q.toArray())
1633     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1634     q.remove(r);
1635 dl 1.86 }
1636 dl 1.107
1637     tryTerminate(); // In case SHUTDOWN and now empty
1638 dl 1.86 }
1639    
1640 tim 1.1 /* Statistics */
1641    
1642     /**
1643     * Returns the current number of threads in the pool.
1644     *
1645     * @return the number of threads
1646     */
1647 tim 1.10 public int getPoolSize() {
1648 dl 1.107 final ReentrantLock mainLock = this.mainLock;
1649     mainLock.lock();
1650     try {
1651 jsr166 1.116 // Remove rare and surprising possibility of
1652     // isTerminated() && getPoolSize() > 0
1653 jsr166 1.117 return runStateAtLeast(ctl.get(), TIDYING) ? 0
1654     : workers.size();
1655 dl 1.107 } finally {
1656     mainLock.unlock();
1657     }
1658 dl 1.2 }
1659 tim 1.1
1660     /**
1661 dl 1.2 * Returns the approximate number of threads that are actively
1662 tim 1.1 * executing tasks.
1663     *
1664     * @return the number of threads
1665     */
1666 tim 1.10 public int getActiveCount() {
1667 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1668 dl 1.2 mainLock.lock();
1669     try {
1670     int n = 0;
1671 jsr166 1.116 for (Worker w : workers)
1672 dl 1.107 if (w.isLocked())
1673 dl 1.2 ++n;
1674     return n;
1675 tim 1.14 } finally {
1676 dl 1.2 mainLock.unlock();
1677     }
1678     }
1679 tim 1.1
1680     /**
1681 dl 1.2 * Returns the largest number of threads that have ever
1682     * simultaneously been in the pool.
1683 tim 1.1 *
1684     * @return the number of threads
1685     */
1686 tim 1.10 public int getLargestPoolSize() {
1687 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1688 dl 1.2 mainLock.lock();
1689     try {
1690     return largestPoolSize;
1691 tim 1.14 } finally {
1692 dl 1.2 mainLock.unlock();
1693     }
1694     }
1695 tim 1.1
1696     /**
1697 dl 1.85 * Returns the approximate total number of tasks that have ever been
1698 dl 1.2 * scheduled for execution. Because the states of tasks and
1699     * threads may change dynamically during computation, the returned
1700 dl 1.97 * value is only an approximation.
1701 tim 1.1 *
1702     * @return the number of tasks
1703     */
1704 tim 1.10 public long getTaskCount() {
1705 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1706 dl 1.2 mainLock.lock();
1707     try {
1708     long n = completedTaskCount;
1709 tim 1.39 for (Worker w : workers) {
1710 dl 1.2 n += w.completedTasks;
1711 dl 1.107 if (w.isLocked())
1712 dl 1.2 ++n;
1713     }
1714     return n + workQueue.size();
1715 tim 1.14 } finally {
1716 dl 1.2 mainLock.unlock();
1717     }
1718     }
1719 tim 1.1
1720     /**
1721 dl 1.2 * Returns the approximate total number of tasks that have
1722     * completed execution. Because the states of tasks and threads
1723     * may change dynamically during computation, the returned value
1724 dl 1.17 * is only an approximation, but one that does not ever decrease
1725     * across successive calls.
1726 tim 1.1 *
1727     * @return the number of tasks
1728     */
1729 tim 1.10 public long getCompletedTaskCount() {
1730 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1731 dl 1.2 mainLock.lock();
1732     try {
1733     long n = completedTaskCount;
1734 tim 1.39 for (Worker w : workers)
1735     n += w.completedTasks;
1736 dl 1.2 return n;
1737 tim 1.14 } finally {
1738 dl 1.2 mainLock.unlock();
1739     }
1740     }
1741 tim 1.1
1742 dl 1.86 /* Extension hooks */
1743    
1744 tim 1.1 /**
1745 dl 1.17 * Method invoked prior to executing the given Runnable in the
1746 jsr166 1.116 * given thread. This method is invoked by thread {@code t} that
1747     * will execute task {@code r}, and may be used to re-initialize
1748 jsr166 1.73 * ThreadLocals, or to perform logging.
1749     *
1750     * <p>This implementation does nothing, but may be customized in
1751     * subclasses. Note: To properly nest multiple overridings, subclasses
1752 jsr166 1.116 * should generally invoke {@code super.beforeExecute} at the end of
1753 jsr166 1.73 * this method.
1754 tim 1.1 *
1755 jsr166 1.116 * @param t the thread that will run task {@code r}
1756     * @param r the task that will be executed
1757 tim 1.1 */
1758 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1759 tim 1.1
1760     /**
1761 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1762     * This method is invoked by the thread that executed the task. If
1763 jsr166 1.116 * non-null, the Throwable is the uncaught {@code RuntimeException}
1764     * or {@code Error} that caused execution to terminate abruptly.
1765 dl 1.69 *
1766 dl 1.107 * <p>This implementation does nothing, but may be customized in
1767     * subclasses. Note: To properly nest multiple overridings, subclasses
1768 jsr166 1.116 * should generally invoke {@code super.afterExecute} at the
1769 dl 1.107 * beginning of this method.
1770     *
1771 dl 1.69 * <p><b>Note:</b> When actions are enclosed in tasks (such as
1772     * {@link FutureTask}) either explicitly or via methods such as
1773 jsr166 1.116 * {@code submit}, these task objects catch and maintain
1774 dl 1.69 * computational exceptions, and so they do not cause abrupt
1775 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1776 dl 1.107 * passed to this method. If you would like to trap both kinds of
1777     * failures in this method, you can further probe for such cases,
1778     * as in this sample subclass that prints either the direct cause
1779     * or the underlying exception if a task has been aborted:
1780     *
1781 jsr166 1.116 * <pre> {@code
1782 dl 1.107 * class ExtendedExecutor extends ThreadPoolExecutor {
1783     * // ...
1784     * protected void afterExecute(Runnable r, Throwable t) {
1785     * super.afterExecute(r, t);
1786 jsr166 1.116 * if (t == null && r instanceof Future<?>) {
1787 dl 1.107 * try {
1788 jsr166 1.116 * Object result = ((Future<?>) r).get();
1789 dl 1.107 * } catch (CancellationException ce) {
1790     * t = ce;
1791     * } catch (ExecutionException ee) {
1792     * t = ee.getCause();
1793     * } catch (InterruptedException ie) {
1794     * Thread.currentThread().interrupt(); // ignore/reset
1795     * }
1796     * }
1797     * if (t != null)
1798     * System.out.println(t);
1799     * }
1800 jsr166 1.116 * }}</pre>
1801 tim 1.1 *
1802 jsr166 1.116 * @param r the runnable that has completed
1803 dl 1.24 * @param t the exception that caused termination, or null if
1804 jsr166 1.116 * execution completed normally
1805 tim 1.1 */
1806 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1807 tim 1.1
1808 dl 1.2 /**
1809     * Method invoked when the Executor has terminated. Default
1810 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1811     * overridings, subclasses should generally invoke
1812 jsr166 1.116 * {@code super.terminated} within this method.
1813 dl 1.2 */
1814     protected void terminated() { }
1815 tim 1.1
1816 dl 1.86 /* Predefined RejectedExecutionHandlers */
1817    
1818 tim 1.1 /**
1819 dl 1.21 * A handler for rejected tasks that runs the rejected task
1820 jsr166 1.116 * directly in the calling thread of the {@code execute} method,
1821 dl 1.21 * unless the executor has been shut down, in which case the task
1822     * is discarded.
1823 tim 1.1 */
1824 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1825 tim 1.1 /**
1826 jsr166 1.116 * Creates a {@code CallerRunsPolicy}.
1827 tim 1.1 */
1828     public CallerRunsPolicy() { }
1829    
1830 dl 1.24 /**
1831     * Executes task r in the caller's thread, unless the executor
1832     * has been shut down, in which case the task is discarded.
1833 jsr166 1.116 *
1834 dl 1.24 * @param r the runnable task requested to be executed
1835     * @param e the executor attempting to execute this task
1836     */
1837 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1838     if (!e.isShutdown()) {
1839 tim 1.1 r.run();
1840     }
1841     }
1842     }
1843    
1844     /**
1845 dl 1.21 * A handler for rejected tasks that throws a
1846 jsr166 1.116 * {@code RejectedExecutionException}.
1847 tim 1.1 */
1848 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
1849 tim 1.1 /**
1850 jsr166 1.116 * Creates an {@code AbortPolicy}.
1851 tim 1.1 */
1852     public AbortPolicy() { }
1853    
1854 dl 1.24 /**
1855 dl 1.54 * Always throws RejectedExecutionException.
1856 jsr166 1.116 *
1857 dl 1.24 * @param r the runnable task requested to be executed
1858     * @param e the executor attempting to execute this task
1859     * @throws RejectedExecutionException always.
1860     */
1861 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1862     throw new RejectedExecutionException();
1863 tim 1.1 }
1864     }
1865    
1866     /**
1867 dl 1.21 * A handler for rejected tasks that silently discards the
1868     * rejected task.
1869 tim 1.1 */
1870 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
1871 tim 1.1 /**
1872 jsr166 1.116 * Creates a {@code DiscardPolicy}.
1873 tim 1.1 */
1874     public DiscardPolicy() { }
1875    
1876 dl 1.24 /**
1877     * Does nothing, which has the effect of discarding task r.
1878 jsr166 1.116 *
1879 dl 1.24 * @param r the runnable task requested to be executed
1880     * @param e the executor attempting to execute this task
1881     */
1882 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1883 tim 1.1 }
1884     }
1885    
1886     /**
1887 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
1888 jsr166 1.116 * request and then retries {@code execute}, unless the executor
1889 dl 1.21 * is shut down, in which case the task is discarded.
1890 tim 1.1 */
1891 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
1892 tim 1.1 /**
1893 jsr166 1.116 * Creates a {@code DiscardOldestPolicy} for the given executor.
1894 tim 1.1 */
1895     public DiscardOldestPolicy() { }
1896    
1897 dl 1.24 /**
1898     * Obtains and ignores the next task that the executor
1899     * would otherwise execute, if one is immediately available,
1900     * and then retries execution of task r, unless the executor
1901     * is shut down, in which case task r is instead discarded.
1902 jsr166 1.116 *
1903 dl 1.24 * @param r the runnable task requested to be executed
1904     * @param e the executor attempting to execute this task
1905     */
1906 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1907     if (!e.isShutdown()) {
1908     e.getQueue().poll();
1909     e.execute(r);
1910 tim 1.1 }
1911     }
1912     }
1913     }