ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.125
Committed: Wed Sep 21 13:52:48 2011 UTC (12 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.124: +12 -0 lines
Log Message:
Ensure at least one thread even if core 0 in STPE

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4 jsr166 1.124 * http://creativecommons.org/publicdomain/zero/1.0/
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.9 import java.util.concurrent.locks.*;
9 dl 1.107 import java.util.concurrent.atomic.*;
10 dl 1.2 import java.util.*;
11 tim 1.1
12     /**
13 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
14 dl 1.28 * one of possibly several pooled threads, normally configured
15     * using {@link Executors} factory methods.
16 tim 1.1 *
17 dl 1.17 * <p>Thread pools address two different problems: they usually
18     * provide improved performance when executing large numbers of
19     * asynchronous tasks, due to reduced per-task invocation overhead,
20     * and they provide a means of bounding and managing the resources,
21     * including threads, consumed when executing a collection of tasks.
22 jsr166 1.116 * Each {@code ThreadPoolExecutor} also maintains some basic
23 dl 1.22 * statistics, such as the number of completed tasks.
24 dl 1.17 *
25 tim 1.1 * <p>To be useful across a wide range of contexts, this class
26 dl 1.24 * provides many adjustable parameters and extensibility
27     * hooks. However, programmers are urged to use the more convenient
28 dl 1.20 * {@link Executors} factory methods {@link
29     * Executors#newCachedThreadPool} (unbounded thread pool, with
30     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
31     * (fixed size thread pool) and {@link
32     * Executors#newSingleThreadExecutor} (single background thread), that
33 dl 1.22 * preconfigure settings for the most common usage
34     * scenarios. Otherwise, use the following guide when manually
35 dl 1.24 * configuring and tuning this class:
36 dl 1.17 *
37 tim 1.1 * <dl>
38 dl 1.2 *
39 dl 1.21 * <dt>Core and maximum pool sizes</dt>
40 dl 1.2 *
41 jsr166 1.116 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
42 jsr166 1.117 * pool size (see {@link #getPoolSize})
43     * according to the bounds set by
44     * corePoolSize (see {@link #getCorePoolSize}) and
45     * maximumPoolSize (see {@link #getMaximumPoolSize}).
46     *
47     * When a new task is submitted in method {@link #execute}, and fewer
48     * than corePoolSize threads are running, a new thread is created to
49     * handle the request, even if other worker threads are idle. If
50     * there are more than corePoolSize but less than maximumPoolSize
51     * threads running, a new thread will be created only if the queue is
52     * full. By setting corePoolSize and maximumPoolSize the same, you
53     * create a fixed-size thread pool. By setting maximumPoolSize to an
54     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
55     * allow the pool to accommodate an arbitrary number of concurrent
56     * tasks. Most typically, core and maximum pool sizes are set only
57     * upon construction, but they may also be changed dynamically using
58     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
59 dl 1.2 *
60 jsr166 1.93 * <dt>On-demand construction</dt>
61 dl 1.2 *
62 dl 1.21 * <dd> By default, even core threads are initially created and
63 dl 1.69 * started only when new tasks arrive, but this can be overridden
64 jsr166 1.117 * dynamically using method {@link #prestartCoreThread} or {@link
65     * #prestartAllCoreThreads}. You probably want to prestart threads if
66     * you construct the pool with a non-empty queue. </dd>
67 dl 1.2 *
68 tim 1.1 * <dt>Creating new threads</dt>
69 dl 1.2 *
70 jsr166 1.117 * <dd>New threads are created using a {@link ThreadFactory}. If not
71     * otherwise specified, a {@link Executors#defaultThreadFactory} is
72     * used, that creates threads to all be in the same {@link
73     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
74     * non-daemon status. By supplying a different ThreadFactory, you can
75     * alter the thread's name, thread group, priority, daemon status,
76     * etc. If a {@code ThreadFactory} fails to create a thread when asked
77     * by returning null from {@code newThread}, the executor will
78     * continue, but might not be able to execute any tasks. Threads
79     * should possess the "modifyThread" {@code RuntimePermission}. If
80     * worker threads or other threads using the pool do not possess this
81     * permission, service may be degraded: configuration changes may not
82     * take effect in a timely manner, and a shutdown pool may remain in a
83     * state in which termination is possible but not completed.</dd>
84 dl 1.2 *
85 dl 1.21 * <dt>Keep-alive times</dt>
86     *
87     * <dd>If the pool currently has more than corePoolSize threads,
88     * excess threads will be terminated if they have been idle for more
89 jsr166 1.117 * than the keepAliveTime (see {@link #getKeepAliveTime}). This
90     * provides a means of reducing resource consumption when the pool is
91     * not being actively used. If the pool becomes more active later, new
92     * threads will be constructed. This parameter can also be changed
93     * dynamically using method {@link #setKeepAliveTime}. Using a value
94 jsr166 1.116 * of {@code Long.MAX_VALUE} {@link TimeUnit#NANOSECONDS} effectively
95 dl 1.62 * disables idle threads from ever terminating prior to shut down. By
96     * default, the keep-alive policy applies only when there are more
97     * than corePoolSizeThreads. But method {@link
98 jsr166 1.117 * #allowCoreThreadTimeOut(boolean)} can be used to apply this
99     * time-out policy to core threads as well, so long as the
100     * keepAliveTime value is non-zero. </dd>
101 dl 1.21 *
102 dl 1.48 * <dt>Queuing</dt>
103 dl 1.21 *
104     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
105     * submitted tasks. The use of this queue interacts with pool sizing:
106 dl 1.2 *
107 dl 1.21 * <ul>
108     *
109 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
110     * always prefers adding a new thread
111 dl 1.48 * rather than queuing.</li>
112 dl 1.21 *
113 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
114     * always prefers queuing a request rather than adding a new
115     * thread.</li>
116 jsr166 1.66 *
117 dl 1.21 * <li> If a request cannot be queued, a new thread is created unless
118     * this would exceed maximumPoolSize, in which case, the task will be
119     * rejected.</li>
120     *
121     * </ul>
122     *
123     * There are three general strategies for queuing:
124     * <ol>
125     *
126     * <li> <em> Direct handoffs.</em> A good default choice for a work
127     * queue is a {@link SynchronousQueue} that hands off tasks to threads
128     * without otherwise holding them. Here, an attempt to queue a task
129     * will fail if no threads are immediately available to run it, so a
130     * new thread will be constructed. This policy avoids lockups when
131     * handling sets of requests that might have internal dependencies.
132     * Direct handoffs generally require unbounded maximumPoolSizes to
133 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
134 dl 1.21 * possibility of unbounded thread growth when commands continue to
135     * arrive on average faster than they can be processed. </li>
136     *
137     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
138     * example a {@link LinkedBlockingQueue} without a predefined
139 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
140 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
141     * threads will ever be created. (And the value of the maximumPoolSize
142     * therefore doesn't have any effect.) This may be appropriate when
143     * each task is completely independent of others, so tasks cannot
144     * affect each others execution; for example, in a web page server.
145     * While this style of queuing can be useful in smoothing out
146     * transient bursts of requests, it admits the possibility of
147     * unbounded work queue growth when commands continue to arrive on
148     * average faster than they can be processed. </li>
149 dl 1.21 *
150     * <li><em>Bounded queues.</em> A bounded queue (for example, an
151     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
152     * used with finite maximumPoolSizes, but can be more difficult to
153     * tune and control. Queue sizes and maximum pool sizes may be traded
154     * off for each other: Using large queues and small pools minimizes
155     * CPU usage, OS resources, and context-switching overhead, but can
156 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
157 dl 1.21 * example if they are I/O bound), a system may be able to schedule
158     * time for more threads than you otherwise allow. Use of small queues
159 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
160     * may encounter unacceptable scheduling overhead, which also
161     * decreases throughput. </li>
162 dl 1.21 *
163     * </ol>
164     *
165     * </dd>
166     *
167     * <dt>Rejected tasks</dt>
168     *
169 jsr166 1.117 * <dd> New tasks submitted in method {@link #execute} will be
170     * <em>rejected</em> when the Executor has been shut down, and also
171     * when the Executor uses finite bounds for both maximum threads and
172     * work queue capacity, and is saturated. In either case, the {@code
173     * execute} method invokes the {@link
174     * RejectedExecutionHandler#rejectedExecution} method of its {@link
175     * RejectedExecutionHandler}. Four predefined handler policies are
176     * provided:
177 dl 1.21 *
178     * <ol>
179     *
180 jsr166 1.117 * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
181     * handler throws a runtime {@link RejectedExecutionException} upon
182     * rejection. </li>
183     *
184     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
185     * that invokes {@code execute} itself runs the task. This provides a
186     * simple feedback control mechanism that will slow down the rate that
187     * new tasks are submitted. </li>
188     *
189     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
190     * cannot be executed is simply dropped. </li>
191     *
192     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
193     * executor is not shut down, the task at the head of the work queue
194     * is dropped, and then execution is retried (which can fail again,
195     * causing this to be repeated.) </li>
196 dl 1.21 *
197     * </ol>
198     *
199     * It is possible to define and use other kinds of {@link
200     * RejectedExecutionHandler} classes. Doing so requires some care
201     * especially when policies are designed to work only under particular
202 dl 1.48 * capacity or queuing policies. </dd>
203 dl 1.21 *
204     * <dt>Hook methods</dt>
205     *
206 jsr166 1.116 * <dd>This class provides {@code protected} overridable {@link
207 jsr166 1.117 * #beforeExecute} and {@link #afterExecute} methods that are called
208     * before and after execution of each task. These can be used to
209     * manipulate the execution environment; for example, reinitializing
210     * ThreadLocals, gathering statistics, or adding log
211     * entries. Additionally, method {@link #terminated} can be overridden
212     * to perform any special processing that needs to be done once the
213     * Executor has fully terminated.
214     *
215     * <p>If hook or callback methods throw exceptions, internal worker
216     * threads may in turn fail and abruptly terminate.</dd>
217 dl 1.2 *
218 dl 1.21 * <dt>Queue maintenance</dt>
219 dl 1.2 *
220 jsr166 1.117 * <dd> Method {@link #getQueue} allows access to the work queue for
221     * purposes of monitoring and debugging. Use of this method for any
222     * other purpose is strongly discouraged. Two supplied methods,
223     * {@link #remove} and {@link #purge} are available to assist in
224     * storage reclamation when large numbers of queued tasks become
225 jsr166 1.80 * cancelled.</dd>
226 dl 1.79 *
227     * <dt>Finalization</dt>
228     *
229     * <dd> A pool that is no longer referenced in a program <em>AND</em>
230 jsr166 1.117 * has no remaining threads will be {@code shutdown} automatically. If
231     * you would like to ensure that unreferenced pools are reclaimed even
232     * if users forget to call {@link #shutdown}, then you must arrange
233     * that unused threads eventually die, by setting appropriate
234     * keep-alive times, using a lower bound of zero core threads and/or
235     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
236     *
237     * </dl>
238 tim 1.1 *
239 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
240     * override one or more of the protected hook methods. For example,
241     * here is a subclass that adds a simple pause/resume feature:
242     *
243 jsr166 1.116 * <pre> {@code
244 dl 1.43 * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
245     * private boolean isPaused;
246     * private ReentrantLock pauseLock = new ReentrantLock();
247     * private Condition unpaused = pauseLock.newCondition();
248     *
249     * public PausableThreadPoolExecutor(...) { super(...); }
250 jsr166 1.66 *
251 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
252     * super.beforeExecute(t, r);
253     * pauseLock.lock();
254     * try {
255     * while (isPaused) unpaused.await();
256 jsr166 1.66 * } catch (InterruptedException ie) {
257 dl 1.53 * t.interrupt();
258 dl 1.43 * } finally {
259 dl 1.53 * pauseLock.unlock();
260 dl 1.43 * }
261     * }
262 jsr166 1.66 *
263 dl 1.43 * public void pause() {
264     * pauseLock.lock();
265     * try {
266     * isPaused = true;
267     * } finally {
268 dl 1.53 * pauseLock.unlock();
269 dl 1.43 * }
270     * }
271 jsr166 1.66 *
272 dl 1.43 * public void resume() {
273     * pauseLock.lock();
274     * try {
275     * isPaused = false;
276     * unpaused.signalAll();
277     * } finally {
278 dl 1.53 * pauseLock.unlock();
279 dl 1.43 * }
280     * }
281 jsr166 1.116 * }}</pre>
282     *
283 tim 1.1 * @since 1.5
284 dl 1.8 * @author Doug Lea
285 tim 1.1 */
286 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
287 dl 1.86 /**
288 dl 1.107 * The main pool control state, ctl, is an atomic integer packing
289     * two conceptual fields
290     * workerCount, indicating the effective number of threads
291     * runState, indicating whether running, shutting down etc
292     *
293     * In order to pack them into one int, we limit workerCount to
294 jsr166 1.117 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
295 dl 1.107 * billion) otherwise representable. If this is ever an issue in
296     * the future, the variable can be changed to be an AtomicLong,
297     * and the shift/mask constants below adjusted. But until the need
298     * arises, this code is a bit faster and simpler using an int.
299     *
300     * The workerCount is the number of workers that have been
301     * permitted to start and not permitted to stop. The value may be
302 jsr166 1.110 * transiently different from the actual number of live threads,
303 dl 1.107 * for example when a ThreadFactory fails to create a thread when
304     * asked, and when exiting threads are still performing
305     * bookkeeping before terminating. The user-visible pool size is
306     * reported as the current size of the workers set.
307     *
308     * The runState provides the main lifecyle control, taking on values:
309 dl 1.86 *
310 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
311     * SHUTDOWN: Don't accept new tasks, but process queued tasks
312 jsr166 1.91 * STOP: Don't accept new tasks, don't process queued tasks,
313 dl 1.85 * and interrupt in-progress tasks
314 jsr166 1.117 * TIDYING: All tasks have terminated, workerCount is zero,
315     * the thread transitioning to state TIDYING
316     * will run the terminated() hook method
317     * TERMINATED: terminated() has completed
318 dl 1.86 *
319     * The numerical order among these values matters, to allow
320     * ordered comparisons. The runState monotonically increases over
321     * time, but need not hit each state. The transitions are:
322 jsr166 1.87 *
323     * RUNNING -> SHUTDOWN
324 jsr166 1.88 * On invocation of shutdown(), perhaps implicitly in finalize()
325 jsr166 1.87 * (RUNNING or SHUTDOWN) -> STOP
326 dl 1.86 * On invocation of shutdownNow()
327 jsr166 1.117 * SHUTDOWN -> TIDYING
328 dl 1.86 * When both queue and pool are empty
329 jsr166 1.117 * STOP -> TIDYING
330 dl 1.86 * When pool is empty
331 jsr166 1.117 * TIDYING -> TERMINATED
332     * When the terminated() hook method has completed
333     *
334     * Threads waiting in awaitTermination() will return when the
335     * state reaches TERMINATED.
336 dl 1.107 *
337 jsr166 1.117 * Detecting the transition from SHUTDOWN to TIDYING is less
338 dl 1.107 * straightforward than you'd like because the queue may become
339     * empty after non-empty and vice versa during SHUTDOWN state, but
340     * we can only terminate if, after seeing that it is empty, we see
341     * that workerCount is 0 (which sometimes entails a recheck -- see
342     * below).
343     */
344     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
345 jsr166 1.117 private static final int COUNT_BITS = Integer.SIZE - 3;
346 dl 1.107 private static final int CAPACITY = (1 << COUNT_BITS) - 1;
347    
348 jsr166 1.117 // runState is stored in the high-order bits
349     private static final int RUNNING = -1 << COUNT_BITS;
350     private static final int SHUTDOWN = 0 << COUNT_BITS;
351     private static final int STOP = 1 << COUNT_BITS;
352     private static final int TIDYING = 2 << COUNT_BITS;
353     private static final int TERMINATED = 3 << COUNT_BITS;
354 dl 1.107
355     // Packing and unpacking ctl
356 jsr166 1.117 private static int runStateOf(int c) { return c & ~CAPACITY; }
357     private static int workerCountOf(int c) { return c & CAPACITY; }
358     private static int ctlOf(int rs, int wc) { return rs | wc; }
359    
360     /*
361     * Bit field accessors that don't require unpacking ctl.
362     * These depend on the bit layout and on workerCount being never negative.
363     */
364    
365     private static boolean runStateLessThan(int c, int s) {
366 jsr166 1.121 return c < s;
367 jsr166 1.117 }
368    
369     private static boolean runStateAtLeast(int c, int s) {
370 jsr166 1.121 return c >= s;
371 jsr166 1.117 }
372    
373     private static boolean isRunning(int c) {
374 jsr166 1.121 return c < SHUTDOWN;
375 jsr166 1.117 }
376    
377     /**
378     * Attempt to CAS-increment the workerCount field of ctl.
379     */
380     private boolean compareAndIncrementWorkerCount(int expect) {
381 jsr166 1.121 return ctl.compareAndSet(expect, expect + 1);
382 jsr166 1.117 }
383    
384     /**
385     * Attempt to CAS-decrement the workerCount field of ctl.
386     */
387     private boolean compareAndDecrementWorkerCount(int expect) {
388 jsr166 1.121 return ctl.compareAndSet(expect, expect - 1);
389 jsr166 1.117 }
390    
391     /**
392     * Decrements the workerCount field of ctl. This is called only on
393     * abrupt termination of a thread (see processWorkerExit). Other
394     * decrements are performed within getTask.
395     */
396     private void decrementWorkerCount() {
397 jsr166 1.121 do {} while (! compareAndDecrementWorkerCount(ctl.get()));
398 jsr166 1.117 }
399 tim 1.41
400     /**
401 dl 1.86 * The queue used for holding tasks and handing off to worker
402 dl 1.107 * threads. We do not require that workQueue.poll() returning
403 jsr166 1.109 * null necessarily means that workQueue.isEmpty(), so rely
404 dl 1.107 * solely on isEmpty to see if the queue is empty (which we must
405     * do for example when deciding whether to transition from
406 jsr166 1.117 * SHUTDOWN to TIDYING). This accommodates special-purpose
407 dl 1.107 * queues such as DelayQueues for which poll() is allowed to
408     * return null even if it may later return non-null when delays
409     * expire.
410 tim 1.10 */
411 dl 1.2 private final BlockingQueue<Runnable> workQueue;
412    
413     /**
414 dl 1.107 * Lock held on access to workers set and related bookkeeping.
415     * While we could use a concurrent set of some sort, it turns out
416     * to be generally preferable to use a lock. Among the reasons is
417     * that this serializes interruptIdleWorkers, which avoids
418     * unnecessary interrupt storms, especially during shutdown.
419     * Otherwise exiting threads would concurrently interrupt those
420     * that have not yet interrupted. It also simplifies some of the
421     * associated statistics bookkeeping of largestPoolSize etc. We
422     * also hold mainLock on shutdown and shutdownNow, for the sake of
423     * ensuring workers set is stable while separately checking
424     * permission to interrupt and actually interrupting.
425 tim 1.10 */
426 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
427    
428     /**
429 dl 1.107 * Set containing all worker threads in pool. Accessed only when
430     * holding mainLock.
431     */
432     private final HashSet<Worker> workers = new HashSet<Worker>();
433    
434     /**
435 dl 1.2 * Wait condition to support awaitTermination
436 tim 1.10 */
437 dl 1.46 private final Condition termination = mainLock.newCondition();
438 dl 1.2
439     /**
440 dl 1.107 * Tracks largest attained pool size. Accessed only under
441     * mainLock.
442     */
443     private int largestPoolSize;
444    
445     /**
446     * Counter for completed tasks. Updated only on termination of
447     * worker threads. Accessed only under mainLock.
448     */
449     private long completedTaskCount;
450    
451     /*
452     * All user control parameters are declared as volatiles so that
453     * ongoing actions are based on freshest values, but without need
454     * for locking, since no internal invariants depend on them
455     * changing synchronously with respect to other actions.
456     */
457    
458     /**
459     * Factory for new threads. All threads are created using this
460     * factory (via method addWorker). All callers must be prepared
461     * for addWorker to fail, which may reflect a system or user's
462     * policy limiting the number of threads. Even though it is not
463     * treated as an error, failure to create threads may result in
464     * new tasks being rejected or existing ones remaining stuck in
465     * the queue. On the other hand, no special precautions exist to
466     * handle OutOfMemoryErrors that might be thrown while trying to
467     * create threads, since there is generally no recourse from
468     * within this class.
469     */
470     private volatile ThreadFactory threadFactory;
471    
472     /**
473     * Handler called when saturated or shutdown in execute.
474 tim 1.10 */
475 dl 1.107 private volatile RejectedExecutionHandler handler;
476 dl 1.2
477     /**
478 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
479 dl 1.86 * Threads use this timeout when there are more than corePoolSize
480     * present or if allowCoreThreadTimeOut. Otherwise they wait
481     * forever for new work.
482 tim 1.10 */
483 dl 1.107 private volatile long keepAliveTime;
484 dl 1.2
485     /**
486 jsr166 1.101 * If false (default), core threads stay alive even when idle.
487     * If true, core threads use keepAliveTime to time out waiting
488     * for work.
489 dl 1.62 */
490 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
491 dl 1.62
492     /**
493 dl 1.107 * Core pool size is the minimum number of workers to keep alive
494     * (and not allow to time out etc) unless allowCoreThreadTimeOut
495 jsr166 1.109 * is set, in which case the minimum is zero.
496 dl 1.107 */
497     private volatile int corePoolSize;
498    
499     /**
500     * Maximum pool size. Note that the actual maximum is internally
501     * bounded by CAPACITY.
502     */
503     private volatile int maximumPoolSize;
504    
505     /**
506     * The default rejected execution handler
507     */
508     private static final RejectedExecutionHandler defaultHandler =
509     new AbortPolicy();
510    
511     /**
512     * Permission required for callers of shutdown and shutdownNow.
513     * We additionally require (see checkShutdownAccess) that callers
514     * have permission to actually interrupt threads in the worker set
515     * (as governed by Thread.interrupt, which relies on
516     * ThreadGroup.checkAccess, which in turn relies on
517     * SecurityManager.checkAccess). Shutdowns are attempted only if
518     * these checks pass.
519     *
520     * All actual invocations of Thread.interrupt (see
521     * interruptIdleWorkers and interruptWorkers) ignore
522     * SecurityExceptions, meaning that the attempted interrupts
523     * silently fail. In the case of shutdown, they should not fail
524     * unless the SecurityManager has inconsistent policies, sometimes
525     * allowing access to a thread and sometimes not. In such cases,
526     * failure to actually interrupt threads may disable or delay full
527     * termination. Other uses of interruptIdleWorkers are advisory,
528     * and failure to actually interrupt will merely delay response to
529     * configuration changes so is not handled exceptionally.
530     */
531     private static final RuntimePermission shutdownPerm =
532     new RuntimePermission("modifyThread");
533    
534     /**
535 jsr166 1.108 * Class Worker mainly maintains interrupt control state for
536 jsr166 1.120 * threads running tasks, along with other minor bookkeeping.
537     * This class opportunistically extends AbstractQueuedSynchronizer
538     * to simplify acquiring and releasing a lock surrounding each
539     * task execution. This protects against interrupts that are
540     * intended to wake up a worker thread waiting for a task from
541     * instead interrupting a task being run. We implement a simple
542     * non-reentrant mutual exclusion lock rather than use ReentrantLock
543     * because we do not want worker tasks to be able to reacquire the
544     * lock when they invoke pool control methods like setCorePoolSize.
545     */
546     private final class Worker
547 jsr166 1.121 extends AbstractQueuedSynchronizer
548     implements Runnable
549 jsr166 1.120 {
550 jsr166 1.121 /**
551     * This class will never be serialized, but we provide a
552     * serialVersionUID to suppress a javac warning.
553     */
554     private static final long serialVersionUID = 6138294804551838833L;
555 jsr166 1.116
556 jsr166 1.108 /** Thread this worker is running in. Null if factory fails. */
557 dl 1.107 final Thread thread;
558 jsr166 1.108 /** Initial task to run. Possibly null. */
559 dl 1.107 Runnable firstTask;
560     /** Per-thread task counter */
561     volatile long completedTasks;
562    
563     /**
564 jsr166 1.108 * Creates with given first task and thread from ThreadFactory.
565     * @param firstTask the first task (null if none)
566 dl 1.107 */
567     Worker(Runnable firstTask) {
568     this.firstTask = firstTask;
569 jsr166 1.121 this.thread = getThreadFactory().newThread(this);
570 dl 1.107 }
571    
572     /** Delegates main run loop to outer runWorker */
573     public void run() {
574     runWorker(this);
575     }
576 jsr166 1.120
577 jsr166 1.121 // Lock methods
578     //
579     // The value 0 represents the unlocked state.
580     // The value 1 represents the locked state.
581    
582     protected boolean isHeldExclusively() {
583     return getState() == 1;
584     }
585    
586     protected boolean tryAcquire(int unused) {
587     if (compareAndSetState(0, 1)) {
588     setExclusiveOwnerThread(Thread.currentThread());
589     return true;
590     }
591     return false;
592     }
593    
594     protected boolean tryRelease(int unused) {
595     setExclusiveOwnerThread(null);
596     setState(0);
597     return true;
598     }
599    
600     public void lock() { acquire(1); }
601     public boolean tryLock() { return tryAcquire(1); }
602     public void unlock() { release(1); }
603     public boolean isLocked() { return isHeldExclusively(); }
604 dl 1.107 }
605    
606     /*
607     * Methods for setting control state
608     */
609    
610     /**
611     * Transitions runState to given target, or leaves it alone if
612     * already at least the given target.
613 jsr166 1.116 *
614 jsr166 1.117 * @param targetState the desired state, either SHUTDOWN or STOP
615     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
616 dl 1.107 */
617     private void advanceRunState(int targetState) {
618     for (;;) {
619     int c = ctl.get();
620 jsr166 1.117 if (runStateAtLeast(c, targetState) ||
621 dl 1.107 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
622     break;
623     }
624     }
625    
626     /**
627     * Transitions to TERMINATED state if either (SHUTDOWN and pool
628     * and queue empty) or (STOP and pool empty). If otherwise
629     * eligible to terminate but workerCount is nonzero, interrupts an
630     * idle worker to ensure that shutdown signals propagate. This
631     * method must be called following any action that might make
632     * termination possible -- reducing worker count or removing tasks
633     * from the queue during shutdown. The method is non-private to
634 jsr166 1.110 * allow access from ScheduledThreadPoolExecutor.
635 dl 1.107 */
636     final void tryTerminate() {
637     for (;;) {
638     int c = ctl.get();
639 jsr166 1.121 if (isRunning(c) ||
640     runStateAtLeast(c, TIDYING) ||
641     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
642     return;
643 dl 1.107 if (workerCountOf(c) != 0) { // Eligible to terminate
644 jsr166 1.113 interruptIdleWorkers(ONLY_ONE);
645 dl 1.107 return;
646     }
647 jsr166 1.119
648 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
649     mainLock.lock();
650     try {
651     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
652     try {
653     terminated();
654     } finally {
655     ctl.set(ctlOf(TERMINATED, 0));
656     termination.signalAll();
657     }
658     return;
659     }
660     } finally {
661     mainLock.unlock();
662     }
663 dl 1.107 // else retry on failed CAS
664     }
665     }
666    
667 jsr166 1.116 /*
668 dl 1.107 * Methods for controlling interrupts to worker threads.
669     */
670    
671     /**
672     * If there is a security manager, makes sure caller has
673     * permission to shut down threads in general (see shutdownPerm).
674     * If this passes, additionally makes sure the caller is allowed
675     * to interrupt each worker thread. This might not be true even if
676     * first check passed, if the SecurityManager treats some threads
677     * specially.
678     */
679     private void checkShutdownAccess() {
680     SecurityManager security = System.getSecurityManager();
681     if (security != null) {
682     security.checkPermission(shutdownPerm);
683     final ReentrantLock mainLock = this.mainLock;
684     mainLock.lock();
685     try {
686     for (Worker w : workers)
687     security.checkAccess(w.thread);
688     } finally {
689     mainLock.unlock();
690     }
691     }
692     }
693    
694     /**
695 jsr166 1.116 * Interrupts all threads, even if active. Ignores SecurityExceptions
696     * (in which case some threads may remain uninterrupted).
697 dl 1.107 */
698     private void interruptWorkers() {
699     final ReentrantLock mainLock = this.mainLock;
700     mainLock.lock();
701     try {
702 jsr166 1.116 for (Worker w : workers) {
703 dl 1.107 try {
704     w.thread.interrupt();
705     } catch (SecurityException ignore) {
706     }
707     }
708     } finally {
709     mainLock.unlock();
710     }
711     }
712    
713     /**
714     * Interrupts threads that might be waiting for tasks (as
715     * indicated by not being locked) so they can check for
716     * termination or configuration changes. Ignores
717     * SecurityExceptions (in which case some threads may remain
718     * uninterrupted).
719     *
720     * @param onlyOne If true, interrupt at most one worker. This is
721     * called only from tryTerminate when termination is otherwise
722     * enabled but there are still other workers. In this case, at
723     * most one waiting worker is interrupted to propagate shutdown
724 jsr166 1.113 * signals in case all threads are currently waiting.
725 dl 1.107 * Interrupting any arbitrary thread ensures that newly arriving
726     * workers since shutdown began will also eventually exit.
727 jsr166 1.113 * To guarantee eventual termination, it suffices to always
728     * interrupt only one idle worker, but shutdown() interrupts all
729     * idle workers so that redundant workers exit promptly, not
730     * waiting for a straggler task to finish.
731 tim 1.10 */
732 dl 1.107 private void interruptIdleWorkers(boolean onlyOne) {
733 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
734 dl 1.107 mainLock.lock();
735     try {
736 jsr166 1.121 for (Worker w : workers) {
737 dl 1.107 Thread t = w.thread;
738 jsr166 1.121 if (!t.isInterrupted() && w.tryLock()) {
739 dl 1.107 try {
740     t.interrupt();
741     } catch (SecurityException ignore) {
742     } finally {
743     w.unlock();
744     }
745     }
746     if (onlyOne)
747     break;
748     }
749     } finally {
750     mainLock.unlock();
751     }
752     }
753    
754 dl 1.118 /**
755     * Common form of interruptIdleWorkers, to avoid having to
756     * remember what the boolean argument means.
757     */
758 jsr166 1.119 private void interruptIdleWorkers() {
759     interruptIdleWorkers(false);
760 dl 1.118 }
761    
762 jsr166 1.113 private static final boolean ONLY_ONE = true;
763    
764 dl 1.107 /**
765     * Ensures that unless the pool is stopping, the current thread
766     * does not have its interrupt set. This requires a double-check
767     * of state in case the interrupt was cleared concurrently with a
768     * shutdownNow -- if so, the interrupt is re-enabled.
769     */
770     private void clearInterruptsForTaskRun() {
771 jsr166 1.117 if (runStateLessThan(ctl.get(), STOP) &&
772 dl 1.107 Thread.interrupted() &&
773 jsr166 1.117 runStateAtLeast(ctl.get(), STOP))
774 dl 1.107 Thread.currentThread().interrupt();
775     }
776    
777     /*
778     * Misc utilities, most of which are also exported to
779     * ScheduledThreadPoolExecutor
780     */
781    
782     /**
783     * Invokes the rejected execution handler for the given command.
784     * Package-protected for use by ScheduledThreadPoolExecutor.
785     */
786     final void reject(Runnable command) {
787     handler.rejectedExecution(command, this);
788     }
789 dl 1.2
790     /**
791 dl 1.107 * Performs any further cleanup following run state transition on
792     * invocation of shutdown. A no-op here, but used by
793     * ScheduledThreadPoolExecutor to cancel delayed tasks.
794 tim 1.10 */
795 dl 1.107 void onShutdown() {
796     }
797 dl 1.2
798     /**
799 dl 1.107 * State check needed by ScheduledThreadPoolExecutor to
800 jsr166 1.117 * enable running tasks during shutdown.
801     *
802 dl 1.107 * @param shutdownOK true if should return true if SHUTDOWN
803 tim 1.10 */
804 dl 1.107 final boolean isRunningOrShutdown(boolean shutdownOK) {
805     int rs = runStateOf(ctl.get());
806     return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
807     }
808 dl 1.2
809     /**
810 dl 1.107 * Drains the task queue into a new list, normally using
811     * drainTo. But if the queue is a DelayQueue or any other kind of
812     * queue for which poll or drainTo may fail to remove some
813     * elements, it deletes them one by one.
814     */
815     private List<Runnable> drainQueue() {
816     BlockingQueue<Runnable> q = workQueue;
817     List<Runnable> taskList = new ArrayList<Runnable>();
818     q.drainTo(taskList);
819     if (!q.isEmpty()) {
820     for (Runnable r : q.toArray(new Runnable[0])) {
821     if (q.remove(r))
822     taskList.add(r);
823     }
824     }
825     return taskList;
826     }
827    
828     /*
829     * Methods for creating, running and cleaning up after workers
830 tim 1.10 */
831 dl 1.2
832     /**
833 dl 1.107 * Checks if a new worker can be added with respect to current
834 jsr166 1.116 * pool state and the given bound (either core or maximum). If so,
835 dl 1.107 * the worker count is adjusted accordingly, and, if possible, a
836     * new worker is created and started running firstTask as its
837 jsr166 1.117 * first task. This method returns false if the pool is stopped or
838 dl 1.107 * eligible to shut down. It also returns false if the thread
839     * factory fails to create a thread when asked, which requires a
840     * backout of workerCount, and a recheck for termination, in case
841     * the existence of this worker was holding up termination.
842     *
843     * @param firstTask the task the new thread should run first (or
844     * null if none). Workers are created with an initial first task
845     * (in method execute()) to bypass queuing when there are fewer
846     * than corePoolSize threads (in which case we always start one),
847 jsr166 1.110 * or when the queue is full (in which case we must bypass queue).
848 dl 1.107 * Initially idle threads are usually created via
849     * prestartCoreThread or to replace other dying workers.
850     *
851     * @param core if true use corePoolSize as bound, else
852 jsr166 1.110 * maximumPoolSize. (A boolean indicator is used here rather than a
853 dl 1.107 * value to ensure reads of fresh values after checking other pool
854     * state).
855     * @return true if successful
856 tim 1.10 */
857 dl 1.107 private boolean addWorker(Runnable firstTask, boolean core) {
858 jsr166 1.121 retry:
859 dl 1.107 for (;;) {
860 jsr166 1.121 int c = ctl.get();
861     int rs = runStateOf(c);
862 jsr166 1.119
863 jsr166 1.121 // Check if queue empty only if necessary.
864 jsr166 1.119 if (rs >= SHUTDOWN &&
865 jsr166 1.121 ! (rs == SHUTDOWN &&
866     firstTask == null &&
867     ! workQueue.isEmpty()))
868     return false;
869    
870     for (;;) {
871     int wc = workerCountOf(c);
872     if (wc >= CAPACITY ||
873     wc >= (core ? corePoolSize : maximumPoolSize))
874     return false;
875     if (compareAndIncrementWorkerCount(c))
876     break retry;
877     c = ctl.get(); // Re-read ctl
878     if (runStateOf(c) != rs)
879     continue retry;
880     // else CAS failed due to workerCount change; retry inner loop
881     }
882 dl 1.107 }
883    
884     Worker w = new Worker(firstTask);
885     Thread t = w.thread;
886    
887     final ReentrantLock mainLock = this.mainLock;
888     mainLock.lock();
889     try {
890 jsr166 1.121 // Recheck while holding lock.
891     // Back out on ThreadFactory failure or if
892     // shut down before lock acquired.
893 jsr166 1.117 int c = ctl.get();
894 jsr166 1.121 int rs = runStateOf(c);
895 jsr166 1.119
896 jsr166 1.121 if (t == null ||
897     (rs >= SHUTDOWN &&
898     ! (rs == SHUTDOWN &&
899     firstTask == null))) {
900     decrementWorkerCount();
901     tryTerminate();
902     return false;
903     }
904 jsr166 1.119
905 jsr166 1.121 workers.add(w);
906 jsr166 1.119
907 jsr166 1.121 int s = workers.size();
908 dl 1.107 if (s > largestPoolSize)
909     largestPoolSize = s;
910     } finally {
911     mainLock.unlock();
912     }
913    
914     t.start();
915 jsr166 1.121 // It is possible (but unlikely) for a thread to have been
916     // added to workers, but not yet started, during transition to
917     // STOP, which could result in a rare missed interrupt,
918     // because Thread.interrupt is not guaranteed to have any effect
919     // on a non-yet-started Thread (see Thread#interrupt).
920     if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted())
921     t.interrupt();
922 jsr166 1.119
923 jsr166 1.121 return true;
924 dl 1.107 }
925 dl 1.2
926     /**
927 dl 1.107 * Performs cleanup and bookkeeping for a dying worker. Called
928     * only from worker threads. Unless completedAbruptly is set,
929     * assumes that workerCount has already been adjusted to account
930     * for exit. This method removes thread from worker set, and
931     * possibly terminates the pool or replaces the worker if either
932     * it exited due to user task exception or if fewer than
933     * corePoolSize workers are running or queue is non-empty but
934     * there are no workers.
935     *
936     * @param w the worker
937     * @param completedAbruptly if the worker died due to user exception
938 tim 1.10 */
939 dl 1.107 private void processWorkerExit(Worker w, boolean completedAbruptly) {
940     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
941     decrementWorkerCount();
942    
943     final ReentrantLock mainLock = this.mainLock;
944     mainLock.lock();
945     try {
946     completedTaskCount += w.completedTasks;
947     workers.remove(w);
948     } finally {
949     mainLock.unlock();
950     }
951    
952     tryTerminate();
953    
954 jsr166 1.121 int c = ctl.get();
955     if (runStateLessThan(c, STOP)) {
956     if (!completedAbruptly) {
957     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
958     if (min == 0 && ! workQueue.isEmpty())
959     min = 1;
960     if (workerCountOf(c) >= min)
961     return; // replacement not needed
962     }
963     addWorker(null, false);
964     }
965 dl 1.107 }
966 dl 1.2
967     /**
968 dl 1.107 * Performs blocking or timed wait for a task, depending on
969     * current configuration settings, or returns null if this worker
970     * must exit because of any of:
971     * 1. There are more than maximumPoolSize workers (due to
972     * a call to setMaximumPoolSize).
973 jsr166 1.110 * 2. The pool is stopped.
974 jsr166 1.119 * 3. The pool is shutdown and the queue is empty.
975     * 4. This worker timed out waiting for a task, and timed-out
976     * workers are subject to termination (that is,
977     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
978     * both before and after the timed wait.
979 dl 1.107 *
980     * @return task, or null if the worker must exit, in which case
981 jsr166 1.116 * workerCount is decremented
982 tim 1.10 */
983 dl 1.107 private Runnable getTask() {
984 jsr166 1.121 boolean timedOut = false; // Did the last poll() time out?
985 jsr166 1.119
986 jsr166 1.121 retry:
987     for (;;) {
988 dl 1.107 int c = ctl.get();
989 jsr166 1.121 int rs = runStateOf(c);
990    
991     // Check if queue empty only if necessary.
992     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
993     decrementWorkerCount();
994     return null;
995     }
996 jsr166 1.119
997 jsr166 1.121 boolean timed; // Are workers subject to culling?
998    
999     for (;;) {
1000     int wc = workerCountOf(c);
1001     timed = allowCoreThreadTimeOut || wc > corePoolSize;
1002    
1003     if (wc <= maximumPoolSize && ! (timedOut && timed))
1004     break;
1005     if (compareAndDecrementWorkerCount(c))
1006     return null;
1007     c = ctl.get(); // Re-read ctl
1008     if (runStateOf(c) != rs)
1009     continue retry;
1010     // else CAS failed due to workerCount change; retry inner loop
1011 dl 1.107 }
1012    
1013     try {
1014 jsr166 1.110 Runnable r = timed ?
1015 dl 1.107 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1016     workQueue.take();
1017     if (r != null)
1018     return r;
1019 jsr166 1.121 timedOut = true;
1020 jsr166 1.108 } catch (InterruptedException retry) {
1021 jsr166 1.121 timedOut = false;
1022 dl 1.107 }
1023     }
1024     }
1025 jsr166 1.66
1026 dl 1.8 /**
1027 dl 1.107 * Main worker run loop. Repeatedly gets tasks from queue and
1028     * executes them, while coping with a number of issues:
1029     *
1030     * 1. We may start out with an initial task, in which case we
1031     * don't need to get the first one. Otherwise, as long as pool is
1032     * running, we get tasks from getTask. If it returns null then the
1033     * worker exits due to changed pool state or configuration
1034     * parameters. Other exits result from exception throws in
1035     * external code, in which case completedAbruptly holds, which
1036     * usually leads processWorkerExit to replace this thread.
1037     *
1038     * 2. Before running any task, the lock is acquired to prevent
1039 jsr166 1.108 * other pool interrupts while the task is executing, and
1040 dl 1.107 * clearInterruptsForTaskRun called to ensure that unless pool is
1041     * stopping, this thread does not have its interrupt set.
1042     *
1043     * 3. Each task run is preceded by a call to beforeExecute, which
1044     * might throw an exception, in which case we cause thread to die
1045     * (breaking loop with completedAbruptly true) without processing
1046     * the task.
1047     *
1048     * 4. Assuming beforeExecute completes normally, we run the task,
1049     * gathering any of its thrown exceptions to send to
1050     * afterExecute. We separately handle RuntimeException, Error
1051     * (both of which the specs guarantee that we trap) and arbitrary
1052     * Throwables. Because we cannot rethrow Throwables within
1053     * Runnable.run, we wrap them within Errors on the way out (to the
1054     * thread's UncaughtExceptionHandler). Any thrown exception also
1055     * conservatively causes thread to die.
1056     *
1057     * 5. After task.run completes, we call afterExecute, which may
1058     * also throw an exception, which will also cause thread to
1059     * die. According to JLS Sec 14.20, this exception is the one that
1060     * will be in effect even if task.run throws.
1061     *
1062     * The net effect of the exception mechanics is that afterExecute
1063     * and the thread's UncaughtExceptionHandler have as accurate
1064     * information as we can provide about any problems encountered by
1065     * user code.
1066     *
1067     * @param w the worker
1068 dl 1.8 */
1069 dl 1.107 final void runWorker(Worker w) {
1070     Runnable task = w.firstTask;
1071     w.firstTask = null;
1072     boolean completedAbruptly = true;
1073     try {
1074     while (task != null || (task = getTask()) != null) {
1075     w.lock();
1076     clearInterruptsForTaskRun();
1077     try {
1078     beforeExecute(w.thread, task);
1079     Throwable thrown = null;
1080     try {
1081     task.run();
1082     } catch (RuntimeException x) {
1083     thrown = x; throw x;
1084     } catch (Error x) {
1085     thrown = x; throw x;
1086     } catch (Throwable x) {
1087     thrown = x; throw new Error(x);
1088     } finally {
1089     afterExecute(task, thrown);
1090     }
1091     } finally {
1092     task = null;
1093     w.completedTasks++;
1094     w.unlock();
1095     }
1096     }
1097     completedAbruptly = false;
1098     } finally {
1099     processWorkerExit(w, completedAbruptly);
1100     }
1101     }
1102 dl 1.2
1103 dl 1.107 // Public constructors and methods
1104 dl 1.86
1105 dl 1.2 /**
1106 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1107 dl 1.86 * parameters and default thread factory and rejected execution handler.
1108     * It may be more convenient to use one of the {@link Executors} factory
1109     * methods instead of this general purpose constructor.
1110     *
1111 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1112     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1113 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1114 jsr166 1.116 * pool
1115 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1116 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1117     * will wait for new tasks before terminating.
1118     * @param unit the time unit for the {@code keepAliveTime} argument
1119     * @param workQueue the queue to use for holding tasks before they are
1120     * executed. This queue will hold only the {@code Runnable}
1121     * tasks submitted by the {@code execute} method.
1122     * @throws IllegalArgumentException if one of the following holds:<br>
1123     * {@code corePoolSize < 0}<br>
1124     * {@code keepAliveTime < 0}<br>
1125     * {@code maximumPoolSize <= 0}<br>
1126     * {@code maximumPoolSize < corePoolSize}
1127     * @throws NullPointerException if {@code workQueue} is null
1128 dl 1.86 */
1129     public ThreadPoolExecutor(int corePoolSize,
1130     int maximumPoolSize,
1131     long keepAliveTime,
1132     TimeUnit unit,
1133     BlockingQueue<Runnable> workQueue) {
1134     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1135     Executors.defaultThreadFactory(), defaultHandler);
1136     }
1137    
1138     /**
1139 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1140 dl 1.86 * parameters and default rejected execution handler.
1141     *
1142 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1143     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1144 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1145 jsr166 1.116 * pool
1146 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1147 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1148     * will wait for new tasks before terminating.
1149     * @param unit the time unit for the {@code keepAliveTime} argument
1150     * @param workQueue the queue to use for holding tasks before they are
1151     * executed. This queue will hold only the {@code Runnable}
1152     * tasks submitted by the {@code execute} method.
1153 dl 1.86 * @param threadFactory the factory to use when the executor
1154 jsr166 1.116 * creates a new thread
1155     * @throws IllegalArgumentException if one of the following holds:<br>
1156     * {@code corePoolSize < 0}<br>
1157     * {@code keepAliveTime < 0}<br>
1158     * {@code maximumPoolSize <= 0}<br>
1159     * {@code maximumPoolSize < corePoolSize}
1160     * @throws NullPointerException if {@code workQueue}
1161     * or {@code threadFactory} is null
1162 dl 1.86 */
1163     public ThreadPoolExecutor(int corePoolSize,
1164     int maximumPoolSize,
1165     long keepAliveTime,
1166     TimeUnit unit,
1167     BlockingQueue<Runnable> workQueue,
1168     ThreadFactory threadFactory) {
1169     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1170     threadFactory, defaultHandler);
1171     }
1172    
1173     /**
1174 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1175 dl 1.86 * parameters and default thread factory.
1176     *
1177 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1178     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1179 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1180 jsr166 1.116 * pool
1181 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1182 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1183     * will wait for new tasks before terminating.
1184     * @param unit the time unit for the {@code keepAliveTime} argument
1185     * @param workQueue the queue to use for holding tasks before they are
1186     * executed. This queue will hold only the {@code Runnable}
1187     * tasks submitted by the {@code execute} method.
1188 dl 1.86 * @param handler the handler to use when execution is blocked
1189 jsr166 1.116 * because the thread bounds and queue capacities are reached
1190     * @throws IllegalArgumentException if one of the following holds:<br>
1191     * {@code corePoolSize < 0}<br>
1192     * {@code keepAliveTime < 0}<br>
1193     * {@code maximumPoolSize <= 0}<br>
1194     * {@code maximumPoolSize < corePoolSize}
1195     * @throws NullPointerException if {@code workQueue}
1196     * or {@code handler} is null
1197 dl 1.86 */
1198     public ThreadPoolExecutor(int corePoolSize,
1199     int maximumPoolSize,
1200     long keepAliveTime,
1201     TimeUnit unit,
1202     BlockingQueue<Runnable> workQueue,
1203     RejectedExecutionHandler handler) {
1204     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1205     Executors.defaultThreadFactory(), handler);
1206     }
1207    
1208     /**
1209 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1210 dl 1.86 * parameters.
1211     *
1212 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1213     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1214 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1215 jsr166 1.116 * pool
1216 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1217 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1218     * will wait for new tasks before terminating.
1219     * @param unit the time unit for the {@code keepAliveTime} argument
1220     * @param workQueue the queue to use for holding tasks before they are
1221     * executed. This queue will hold only the {@code Runnable}
1222     * tasks submitted by the {@code execute} method.
1223 dl 1.86 * @param threadFactory the factory to use when the executor
1224 jsr166 1.116 * creates a new thread
1225 dl 1.86 * @param handler the handler to use when execution is blocked
1226 jsr166 1.116 * because the thread bounds and queue capacities are reached
1227     * @throws IllegalArgumentException if one of the following holds:<br>
1228     * {@code corePoolSize < 0}<br>
1229     * {@code keepAliveTime < 0}<br>
1230     * {@code maximumPoolSize <= 0}<br>
1231     * {@code maximumPoolSize < corePoolSize}
1232     * @throws NullPointerException if {@code workQueue}
1233     * or {@code threadFactory} or {@code handler} is null
1234 dl 1.86 */
1235     public ThreadPoolExecutor(int corePoolSize,
1236     int maximumPoolSize,
1237     long keepAliveTime,
1238     TimeUnit unit,
1239     BlockingQueue<Runnable> workQueue,
1240     ThreadFactory threadFactory,
1241     RejectedExecutionHandler handler) {
1242     if (corePoolSize < 0 ||
1243     maximumPoolSize <= 0 ||
1244     maximumPoolSize < corePoolSize ||
1245     keepAliveTime < 0)
1246     throw new IllegalArgumentException();
1247     if (workQueue == null || threadFactory == null || handler == null)
1248     throw new NullPointerException();
1249     this.corePoolSize = corePoolSize;
1250     this.maximumPoolSize = maximumPoolSize;
1251     this.workQueue = workQueue;
1252     this.keepAliveTime = unit.toNanos(keepAliveTime);
1253     this.threadFactory = threadFactory;
1254     this.handler = handler;
1255     }
1256    
1257     /**
1258     * Executes the given task sometime in the future. The task
1259     * may execute in a new thread or in an existing pooled thread.
1260     *
1261     * If the task cannot be submitted for execution, either because this
1262     * executor has been shutdown or because its capacity has been reached,
1263 jsr166 1.116 * the task is handled by the current {@code RejectedExecutionHandler}.
1264 dl 1.86 *
1265     * @param command the task to execute
1266     * @throws RejectedExecutionException at discretion of
1267 jsr166 1.116 * {@code RejectedExecutionHandler}, if the task
1268     * cannot be accepted for execution
1269     * @throws NullPointerException if {@code command} is null
1270 dl 1.13 */
1271 dl 1.86 public void execute(Runnable command) {
1272     if (command == null)
1273     throw new NullPointerException();
1274 dl 1.107 /*
1275     * Proceed in 3 steps:
1276     *
1277     * 1. If fewer than corePoolSize threads are running, try to
1278     * start a new thread with the given command as its first
1279     * task. The call to addWorker atomically checks runState and
1280     * workerCount, and so prevents false alarms that would add
1281     * threads when it shouldn't, by returning false.
1282     *
1283     * 2. If a task can be successfully queued, then we still need
1284     * to double-check whether we should have added a thread
1285     * (because existing ones died since last checking) or that
1286     * the pool shut down since entry into this method. So we
1287     * recheck state and if necessary roll back the enqueuing if
1288     * stopped, or start a new thread if there are none.
1289     *
1290     * 3. If we cannot queue task, then we try to add a new
1291     * thread. If it fails, we know we are shut down or saturated
1292     * and so reject the task.
1293     */
1294     int c = ctl.get();
1295     if (workerCountOf(c) < corePoolSize) {
1296     if (addWorker(command, true))
1297     return;
1298     c = ctl.get();
1299     }
1300 jsr166 1.117 if (isRunning(c) && workQueue.offer(command)) {
1301 dl 1.107 int recheck = ctl.get();
1302 jsr166 1.117 if (! isRunning(recheck) && remove(command))
1303 dl 1.107 reject(command);
1304     else if (workerCountOf(recheck) == 0)
1305     addWorker(null, false);
1306 dl 1.86 }
1307 dl 1.107 else if (!addWorker(command, false))
1308 dl 1.85 reject(command);
1309 tim 1.1 }
1310 dl 1.4
1311 dl 1.53 /**
1312     * Initiates an orderly shutdown in which previously submitted
1313 jsr166 1.116 * tasks are executed, but no new tasks will be accepted.
1314     * Invocation has no additional effect if already shut down.
1315     *
1316 jsr166 1.122 * <p>This method does not wait for previously submitted tasks to
1317     * complete execution. Use {@link #awaitTermination awaitTermination}
1318     * to do that.
1319     *
1320 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1321 dl 1.53 */
1322 dl 1.2 public void shutdown() {
1323 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1324 dl 1.2 mainLock.lock();
1325     try {
1326 dl 1.107 checkShutdownAccess();
1327     advanceRunState(SHUTDOWN);
1328 jsr166 1.113 interruptIdleWorkers();
1329 dl 1.107 onShutdown(); // hook for ScheduledThreadPoolExecutor
1330 tim 1.14 } finally {
1331 dl 1.2 mainLock.unlock();
1332     }
1333 dl 1.107 tryTerminate();
1334 tim 1.1 }
1335    
1336 dl 1.53 /**
1337     * Attempts to stop all actively executing tasks, halts the
1338 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1339 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1340     * from the task queue upon return from this method.
1341 jsr166 1.66 *
1342 jsr166 1.122 * <p>This method does not wait for actively executing tasks to
1343     * terminate. Use {@link #awaitTermination awaitTermination} to
1344     * do that.
1345     *
1346 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1347     * processing actively executing tasks. This implementation
1348     * cancels tasks via {@link Thread#interrupt}, so any task that
1349     * fails to respond to interrupts may never terminate.
1350 dl 1.53 *
1351 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1352 dl 1.53 */
1353 tim 1.39 public List<Runnable> shutdownNow() {
1354 dl 1.107 List<Runnable> tasks;
1355 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1356 dl 1.2 mainLock.lock();
1357     try {
1358 dl 1.107 checkShutdownAccess();
1359     advanceRunState(STOP);
1360     interruptWorkers();
1361     tasks = drainQueue();
1362 tim 1.14 } finally {
1363 dl 1.2 mainLock.unlock();
1364     }
1365 dl 1.107 tryTerminate();
1366     return tasks;
1367 dl 1.86 }
1368    
1369 dl 1.2 public boolean isShutdown() {
1370 jsr166 1.117 return ! isRunning(ctl.get());
1371 dl 1.16 }
1372    
1373 jsr166 1.66 /**
1374 dl 1.55 * Returns true if this executor is in the process of terminating
1375 jsr166 1.117 * after {@link #shutdown} or {@link #shutdownNow} but has not
1376 dl 1.16 * completely terminated. This method may be useful for
1377 jsr166 1.116 * debugging. A return of {@code true} reported a sufficient
1378 dl 1.16 * period after shutdown may indicate that submitted tasks have
1379     * ignored or suppressed interruption, causing this executor not
1380     * to properly terminate.
1381 jsr166 1.116 *
1382 jsr166 1.93 * @return true if terminating but not yet terminated
1383 dl 1.16 */
1384     public boolean isTerminating() {
1385 jsr166 1.117 int c = ctl.get();
1386     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1387 tim 1.1 }
1388    
1389 dl 1.2 public boolean isTerminated() {
1390 jsr166 1.117 return runStateAtLeast(ctl.get(), TERMINATED);
1391 dl 1.2 }
1392 tim 1.1
1393 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1394     throws InterruptedException {
1395 dl 1.50 long nanos = unit.toNanos(timeout);
1396 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1397 dl 1.2 mainLock.lock();
1398     try {
1399 dl 1.25 for (;;) {
1400 jsr166 1.117 if (runStateAtLeast(ctl.get(), TERMINATED))
1401 dl 1.25 return true;
1402     if (nanos <= 0)
1403     return false;
1404     nanos = termination.awaitNanos(nanos);
1405     }
1406 tim 1.14 } finally {
1407 dl 1.2 mainLock.unlock();
1408     }
1409 dl 1.15 }
1410    
1411     /**
1412 jsr166 1.116 * Invokes {@code shutdown} when this executor is no longer
1413     * referenced and it has no threads.
1414 jsr166 1.66 */
1415 dl 1.107 protected void finalize() {
1416 dl 1.15 shutdown();
1417 dl 1.2 }
1418 tim 1.10
1419 dl 1.2 /**
1420     * Sets the thread factory used to create new threads.
1421     *
1422     * @param threadFactory the new thread factory
1423 dl 1.30 * @throws NullPointerException if threadFactory is null
1424 tim 1.11 * @see #getThreadFactory
1425 dl 1.2 */
1426     public void setThreadFactory(ThreadFactory threadFactory) {
1427 dl 1.30 if (threadFactory == null)
1428     throw new NullPointerException();
1429 dl 1.2 this.threadFactory = threadFactory;
1430 tim 1.1 }
1431    
1432 dl 1.2 /**
1433     * Returns the thread factory used to create new threads.
1434     *
1435     * @return the current thread factory
1436 tim 1.11 * @see #setThreadFactory
1437 dl 1.2 */
1438     public ThreadFactory getThreadFactory() {
1439     return threadFactory;
1440 tim 1.1 }
1441    
1442 dl 1.2 /**
1443     * Sets a new handler for unexecutable tasks.
1444     *
1445     * @param handler the new handler
1446 dl 1.31 * @throws NullPointerException if handler is null
1447 tim 1.11 * @see #getRejectedExecutionHandler
1448 dl 1.2 */
1449     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1450 dl 1.31 if (handler == null)
1451     throw new NullPointerException();
1452 dl 1.2 this.handler = handler;
1453     }
1454 tim 1.1
1455 dl 1.2 /**
1456     * Returns the current handler for unexecutable tasks.
1457     *
1458     * @return the current handler
1459 tim 1.11 * @see #setRejectedExecutionHandler
1460 dl 1.2 */
1461     public RejectedExecutionHandler getRejectedExecutionHandler() {
1462     return handler;
1463 tim 1.1 }
1464    
1465 dl 1.2 /**
1466     * Sets the core number of threads. This overrides any value set
1467     * in the constructor. If the new value is smaller than the
1468     * current value, excess existing threads will be terminated when
1469 jsr166 1.116 * they next become idle. If larger, new threads will, if needed,
1470 dl 1.34 * be started to execute any queued tasks.
1471 tim 1.1 *
1472 dl 1.2 * @param corePoolSize the new core size
1473 jsr166 1.116 * @throws IllegalArgumentException if {@code corePoolSize < 0}
1474 tim 1.11 * @see #getCorePoolSize
1475 tim 1.1 */
1476 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1477     if (corePoolSize < 0)
1478     throw new IllegalArgumentException();
1479 dl 1.107 int delta = corePoolSize - this.corePoolSize;
1480     this.corePoolSize = corePoolSize;
1481     if (workerCountOf(ctl.get()) > corePoolSize)
1482 jsr166 1.113 interruptIdleWorkers();
1483 dl 1.107 else if (delta > 0) {
1484     // We don't really know how many new threads are "needed".
1485     // As a heuristic, prestart enough new workers (up to new
1486     // core size) to handle the current number of tasks in
1487     // queue, but stop if queue becomes empty while doing so.
1488     int k = Math.min(delta, workQueue.size());
1489     while (k-- > 0 && addWorker(null, true)) {
1490     if (workQueue.isEmpty())
1491     break;
1492 tim 1.38 }
1493 dl 1.2 }
1494     }
1495 tim 1.1
1496     /**
1497 dl 1.2 * Returns the core number of threads.
1498 tim 1.1 *
1499 dl 1.2 * @return the core number of threads
1500 tim 1.11 * @see #setCorePoolSize
1501 tim 1.1 */
1502 tim 1.10 public int getCorePoolSize() {
1503 dl 1.2 return corePoolSize;
1504 dl 1.16 }
1505    
1506     /**
1507 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1508 dl 1.16 * overrides the default policy of starting core threads only when
1509 jsr166 1.116 * new tasks are executed. This method will return {@code false}
1510 dl 1.16 * if all core threads have already been started.
1511 jsr166 1.116 *
1512     * @return {@code true} if a thread was started
1513 jsr166 1.66 */
1514 dl 1.16 public boolean prestartCoreThread() {
1515 dl 1.107 return workerCountOf(ctl.get()) < corePoolSize &&
1516     addWorker(null, true);
1517 dl 1.16 }
1518    
1519     /**
1520 dl 1.125 * Same as prestartCoreThread except arranges that at least one
1521     * thread is started even if corePoolSize is 0.
1522     */
1523     void ensurePrestart() {
1524     int wc = workerCountOf(ctl.get());
1525     if (wc == 0)
1526     addWorker(null, false);
1527     else if (wc < corePoolSize)
1528     addWorker(null, true);
1529     }
1530    
1531     /**
1532 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1533 dl 1.16 * overrides the default policy of starting core threads only when
1534 jsr166 1.66 * new tasks are executed.
1535 jsr166 1.116 *
1536 jsr166 1.88 * @return the number of threads started
1537 jsr166 1.66 */
1538 dl 1.16 public int prestartAllCoreThreads() {
1539     int n = 0;
1540 dl 1.107 while (addWorker(null, true))
1541 dl 1.16 ++n;
1542     return n;
1543 dl 1.2 }
1544 tim 1.1
1545     /**
1546 dl 1.62 * Returns true if this pool allows core threads to time out and
1547     * terminate if no tasks arrive within the keepAlive time, being
1548     * replaced if needed when new tasks arrive. When true, the same
1549     * keep-alive policy applying to non-core threads applies also to
1550     * core threads. When false (the default), core threads are never
1551     * terminated due to lack of incoming tasks.
1552 jsr166 1.116 *
1553     * @return {@code true} if core threads are allowed to time out,
1554     * else {@code false}
1555 jsr166 1.72 *
1556     * @since 1.6
1557 dl 1.62 */
1558     public boolean allowsCoreThreadTimeOut() {
1559     return allowCoreThreadTimeOut;
1560     }
1561    
1562     /**
1563     * Sets the policy governing whether core threads may time out and
1564     * terminate if no tasks arrive within the keep-alive time, being
1565     * replaced if needed when new tasks arrive. When false, core
1566     * threads are never terminated due to lack of incoming
1567     * tasks. When true, the same keep-alive policy applying to
1568     * non-core threads applies also to core threads. To avoid
1569     * continual thread replacement, the keep-alive time must be
1570 jsr166 1.116 * greater than zero when setting {@code true}. This method
1571 dl 1.64 * should in general be called before the pool is actively used.
1572 jsr166 1.116 *
1573     * @param value {@code true} if should time out, else {@code false}
1574     * @throws IllegalArgumentException if value is {@code true}
1575     * and the current keep-alive time is not greater than zero
1576 jsr166 1.72 *
1577     * @since 1.6
1578 dl 1.62 */
1579     public void allowCoreThreadTimeOut(boolean value) {
1580 dl 1.64 if (value && keepAliveTime <= 0)
1581     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1582 dl 1.107 if (value != allowCoreThreadTimeOut) {
1583     allowCoreThreadTimeOut = value;
1584     if (value)
1585 jsr166 1.113 interruptIdleWorkers();
1586 dl 1.107 }
1587 dl 1.62 }
1588    
1589     /**
1590 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1591 dl 1.2 * value set in the constructor. If the new value is smaller than
1592     * the current value, excess existing threads will be
1593     * terminated when they next become idle.
1594 tim 1.1 *
1595 dl 1.2 * @param maximumPoolSize the new maximum
1596 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1597     * less than or equal to zero, or
1598     * less than the {@linkplain #getCorePoolSize core pool size}
1599 tim 1.11 * @see #getMaximumPoolSize
1600 dl 1.2 */
1601     public void setMaximumPoolSize(int maximumPoolSize) {
1602     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1603     throw new IllegalArgumentException();
1604 dl 1.107 this.maximumPoolSize = maximumPoolSize;
1605     if (workerCountOf(ctl.get()) > maximumPoolSize)
1606 jsr166 1.113 interruptIdleWorkers();
1607 dl 1.2 }
1608 tim 1.1
1609     /**
1610     * Returns the maximum allowed number of threads.
1611     *
1612 dl 1.2 * @return the maximum allowed number of threads
1613 tim 1.11 * @see #setMaximumPoolSize
1614 tim 1.1 */
1615 tim 1.10 public int getMaximumPoolSize() {
1616 dl 1.2 return maximumPoolSize;
1617     }
1618 tim 1.1
1619     /**
1620     * Sets the time limit for which threads may remain idle before
1621 dl 1.2 * being terminated. If there are more than the core number of
1622 tim 1.1 * threads currently in the pool, after waiting this amount of
1623     * time without processing a task, excess threads will be
1624     * terminated. This overrides any value set in the constructor.
1625 jsr166 1.116 *
1626 tim 1.1 * @param time the time to wait. A time value of zero will cause
1627 jsr166 1.116 * excess threads to terminate immediately after executing tasks.
1628     * @param unit the time unit of the {@code time} argument
1629     * @throws IllegalArgumentException if {@code time} less than zero or
1630     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1631 tim 1.11 * @see #getKeepAliveTime
1632 tim 1.1 */
1633 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1634     if (time < 0)
1635     throw new IllegalArgumentException();
1636 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1637     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1638 dl 1.107 long keepAliveTime = unit.toNanos(time);
1639     long delta = keepAliveTime - this.keepAliveTime;
1640     this.keepAliveTime = keepAliveTime;
1641     if (delta < 0)
1642 jsr166 1.113 interruptIdleWorkers();
1643 dl 1.2 }
1644 tim 1.1
1645     /**
1646     * Returns the thread keep-alive time, which is the amount of time
1647 jsr166 1.93 * that threads in excess of the core pool size may remain
1648 tim 1.10 * idle before being terminated.
1649 tim 1.1 *
1650 dl 1.2 * @param unit the desired time unit of the result
1651 tim 1.1 * @return the time limit
1652 tim 1.11 * @see #setKeepAliveTime
1653 tim 1.1 */
1654 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1655 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1656     }
1657 tim 1.1
1658 dl 1.86 /* User-level queue utilities */
1659    
1660     /**
1661     * Returns the task queue used by this executor. Access to the
1662     * task queue is intended primarily for debugging and monitoring.
1663     * This queue may be in active use. Retrieving the task queue
1664     * does not prevent queued tasks from executing.
1665     *
1666     * @return the task queue
1667     */
1668     public BlockingQueue<Runnable> getQueue() {
1669     return workQueue;
1670     }
1671    
1672     /**
1673     * Removes this task from the executor's internal queue if it is
1674     * present, thus causing it not to be run if it has not already
1675     * started.
1676     *
1677     * <p> This method may be useful as one part of a cancellation
1678     * scheme. It may fail to remove tasks that have been converted
1679     * into other forms before being placed on the internal queue. For
1680 jsr166 1.116 * example, a task entered using {@code submit} might be
1681     * converted into a form that maintains {@code Future} status.
1682 jsr166 1.117 * However, in such cases, method {@link #purge} may be used to
1683     * remove those Futures that have been cancelled.
1684 dl 1.86 *
1685     * @param task the task to remove
1686     * @return true if the task was removed
1687     */
1688     public boolean remove(Runnable task) {
1689 jsr166 1.116 boolean removed = workQueue.remove(task);
1690     tryTerminate(); // In case SHUTDOWN and now empty
1691 dl 1.107 return removed;
1692 dl 1.86 }
1693    
1694     /**
1695     * Tries to remove from the work queue all {@link Future}
1696     * tasks that have been cancelled. This method can be useful as a
1697     * storage reclamation operation, that has no other impact on
1698     * functionality. Cancelled tasks are never executed, but may
1699     * accumulate in work queues until worker threads can actively
1700     * remove them. Invoking this method instead tries to remove them now.
1701     * However, this method may fail to remove tasks in
1702     * the presence of interference by other threads.
1703     */
1704     public void purge() {
1705 jsr166 1.111 final BlockingQueue<Runnable> q = workQueue;
1706 dl 1.86 try {
1707 dl 1.107 Iterator<Runnable> it = q.iterator();
1708 dl 1.86 while (it.hasNext()) {
1709     Runnable r = it.next();
1710 jsr166 1.111 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1711 jsr166 1.121 it.remove();
1712 dl 1.107 }
1713 jsr166 1.111 } catch (ConcurrentModificationException fallThrough) {
1714 jsr166 1.121 // Take slow path if we encounter interference during traversal.
1715 jsr166 1.111 // Make copy for traversal and call remove for cancelled entries.
1716 jsr166 1.121 // The slow path is more likely to be O(N*N).
1717 jsr166 1.111 for (Object r : q.toArray())
1718     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1719 jsr166 1.121 q.remove(r);
1720 dl 1.86 }
1721 dl 1.107
1722     tryTerminate(); // In case SHUTDOWN and now empty
1723 dl 1.86 }
1724    
1725 tim 1.1 /* Statistics */
1726    
1727     /**
1728     * Returns the current number of threads in the pool.
1729     *
1730     * @return the number of threads
1731     */
1732 tim 1.10 public int getPoolSize() {
1733 dl 1.107 final ReentrantLock mainLock = this.mainLock;
1734     mainLock.lock();
1735     try {
1736 jsr166 1.121 // Remove rare and surprising possibility of
1737     // isTerminated() && getPoolSize() > 0
1738 jsr166 1.117 return runStateAtLeast(ctl.get(), TIDYING) ? 0
1739 jsr166 1.121 : workers.size();
1740 dl 1.107 } finally {
1741     mainLock.unlock();
1742     }
1743 dl 1.2 }
1744 tim 1.1
1745     /**
1746 dl 1.2 * Returns the approximate number of threads that are actively
1747 tim 1.1 * executing tasks.
1748     *
1749     * @return the number of threads
1750     */
1751 tim 1.10 public int getActiveCount() {
1752 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1753 dl 1.2 mainLock.lock();
1754     try {
1755     int n = 0;
1756 jsr166 1.116 for (Worker w : workers)
1757 dl 1.107 if (w.isLocked())
1758 dl 1.2 ++n;
1759     return n;
1760 tim 1.14 } finally {
1761 dl 1.2 mainLock.unlock();
1762     }
1763     }
1764 tim 1.1
1765     /**
1766 dl 1.2 * Returns the largest number of threads that have ever
1767     * simultaneously been in the pool.
1768 tim 1.1 *
1769     * @return the number of threads
1770     */
1771 tim 1.10 public int getLargestPoolSize() {
1772 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1773 dl 1.2 mainLock.lock();
1774     try {
1775     return largestPoolSize;
1776 tim 1.14 } finally {
1777 dl 1.2 mainLock.unlock();
1778     }
1779     }
1780 tim 1.1
1781     /**
1782 dl 1.85 * Returns the approximate total number of tasks that have ever been
1783 dl 1.2 * scheduled for execution. Because the states of tasks and
1784     * threads may change dynamically during computation, the returned
1785 dl 1.97 * value is only an approximation.
1786 tim 1.1 *
1787     * @return the number of tasks
1788     */
1789 tim 1.10 public long getTaskCount() {
1790 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1791 dl 1.2 mainLock.lock();
1792     try {
1793     long n = completedTaskCount;
1794 tim 1.39 for (Worker w : workers) {
1795 dl 1.2 n += w.completedTasks;
1796 dl 1.107 if (w.isLocked())
1797 dl 1.2 ++n;
1798     }
1799     return n + workQueue.size();
1800 tim 1.14 } finally {
1801 dl 1.2 mainLock.unlock();
1802     }
1803     }
1804 tim 1.1
1805     /**
1806 dl 1.2 * Returns the approximate total number of tasks that have
1807     * completed execution. Because the states of tasks and threads
1808     * may change dynamically during computation, the returned value
1809 dl 1.17 * is only an approximation, but one that does not ever decrease
1810     * across successive calls.
1811 tim 1.1 *
1812     * @return the number of tasks
1813     */
1814 tim 1.10 public long getCompletedTaskCount() {
1815 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1816 dl 1.2 mainLock.lock();
1817     try {
1818     long n = completedTaskCount;
1819 tim 1.39 for (Worker w : workers)
1820     n += w.completedTasks;
1821 dl 1.2 return n;
1822 tim 1.14 } finally {
1823 dl 1.2 mainLock.unlock();
1824     }
1825     }
1826 tim 1.1
1827 dl 1.123 /**
1828     * Returns a string identifying this pool, as well as its state,
1829     * including indications of run state and estimated worker and
1830     * task counts.
1831     *
1832     * @return a string identifying this pool, as well as its state
1833     */
1834     public String toString() {
1835     long ncompleted;
1836     int nworkers, nactive;
1837     final ReentrantLock mainLock = this.mainLock;
1838     mainLock.lock();
1839     try {
1840     ncompleted = completedTaskCount;
1841     nactive = 0;
1842     nworkers = workers.size();
1843     for (Worker w : workers) {
1844     ncompleted += w.completedTasks;
1845     if (w.isLocked())
1846     ++nactive;
1847     }
1848     } finally {
1849     mainLock.unlock();
1850     }
1851     int c = ctl.get();
1852     String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :
1853     (runStateAtLeast(c, TERMINATED) ? "Terminated" :
1854     "Shutting down"));
1855     return super.toString() +
1856     "[" + rs +
1857     ", pool size = " + nworkers +
1858     ", active threads = " + nactive +
1859     ", queued tasks = " + workQueue.size() +
1860     ", completed tasks = " + ncompleted +
1861     "]";
1862     }
1863    
1864 dl 1.86 /* Extension hooks */
1865    
1866 tim 1.1 /**
1867 dl 1.17 * Method invoked prior to executing the given Runnable in the
1868 jsr166 1.116 * given thread. This method is invoked by thread {@code t} that
1869     * will execute task {@code r}, and may be used to re-initialize
1870 jsr166 1.73 * ThreadLocals, or to perform logging.
1871     *
1872     * <p>This implementation does nothing, but may be customized in
1873     * subclasses. Note: To properly nest multiple overridings, subclasses
1874 jsr166 1.116 * should generally invoke {@code super.beforeExecute} at the end of
1875 jsr166 1.73 * this method.
1876 tim 1.1 *
1877 jsr166 1.116 * @param t the thread that will run task {@code r}
1878     * @param r the task that will be executed
1879 tim 1.1 */
1880 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1881 tim 1.1
1882     /**
1883 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1884     * This method is invoked by the thread that executed the task. If
1885 jsr166 1.116 * non-null, the Throwable is the uncaught {@code RuntimeException}
1886     * or {@code Error} that caused execution to terminate abruptly.
1887 dl 1.69 *
1888 dl 1.107 * <p>This implementation does nothing, but may be customized in
1889     * subclasses. Note: To properly nest multiple overridings, subclasses
1890 jsr166 1.116 * should generally invoke {@code super.afterExecute} at the
1891 dl 1.107 * beginning of this method.
1892     *
1893 dl 1.69 * <p><b>Note:</b> When actions are enclosed in tasks (such as
1894     * {@link FutureTask}) either explicitly or via methods such as
1895 jsr166 1.116 * {@code submit}, these task objects catch and maintain
1896 dl 1.69 * computational exceptions, and so they do not cause abrupt
1897 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1898 dl 1.107 * passed to this method. If you would like to trap both kinds of
1899     * failures in this method, you can further probe for such cases,
1900     * as in this sample subclass that prints either the direct cause
1901     * or the underlying exception if a task has been aborted:
1902     *
1903 jsr166 1.116 * <pre> {@code
1904 dl 1.107 * class ExtendedExecutor extends ThreadPoolExecutor {
1905     * // ...
1906     * protected void afterExecute(Runnable r, Throwable t) {
1907     * super.afterExecute(r, t);
1908 jsr166 1.116 * if (t == null && r instanceof Future<?>) {
1909 dl 1.107 * try {
1910 jsr166 1.116 * Object result = ((Future<?>) r).get();
1911 dl 1.107 * } catch (CancellationException ce) {
1912     * t = ce;
1913     * } catch (ExecutionException ee) {
1914     * t = ee.getCause();
1915     * } catch (InterruptedException ie) {
1916     * Thread.currentThread().interrupt(); // ignore/reset
1917     * }
1918     * }
1919     * if (t != null)
1920     * System.out.println(t);
1921     * }
1922 jsr166 1.116 * }}</pre>
1923 tim 1.1 *
1924 jsr166 1.116 * @param r the runnable that has completed
1925 dl 1.24 * @param t the exception that caused termination, or null if
1926 jsr166 1.116 * execution completed normally
1927 tim 1.1 */
1928 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1929 tim 1.1
1930 dl 1.2 /**
1931     * Method invoked when the Executor has terminated. Default
1932 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1933     * overridings, subclasses should generally invoke
1934 jsr166 1.116 * {@code super.terminated} within this method.
1935 dl 1.2 */
1936     protected void terminated() { }
1937 tim 1.1
1938 dl 1.86 /* Predefined RejectedExecutionHandlers */
1939    
1940 tim 1.1 /**
1941 dl 1.21 * A handler for rejected tasks that runs the rejected task
1942 jsr166 1.116 * directly in the calling thread of the {@code execute} method,
1943 dl 1.21 * unless the executor has been shut down, in which case the task
1944     * is discarded.
1945 tim 1.1 */
1946 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1947 tim 1.1 /**
1948 jsr166 1.116 * Creates a {@code CallerRunsPolicy}.
1949 tim 1.1 */
1950     public CallerRunsPolicy() { }
1951    
1952 dl 1.24 /**
1953     * Executes task r in the caller's thread, unless the executor
1954     * has been shut down, in which case the task is discarded.
1955 jsr166 1.116 *
1956 dl 1.24 * @param r the runnable task requested to be executed
1957     * @param e the executor attempting to execute this task
1958     */
1959 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1960     if (!e.isShutdown()) {
1961 tim 1.1 r.run();
1962     }
1963     }
1964     }
1965    
1966     /**
1967 dl 1.21 * A handler for rejected tasks that throws a
1968 jsr166 1.116 * {@code RejectedExecutionException}.
1969 tim 1.1 */
1970 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
1971 tim 1.1 /**
1972 jsr166 1.116 * Creates an {@code AbortPolicy}.
1973 tim 1.1 */
1974     public AbortPolicy() { }
1975    
1976 dl 1.24 /**
1977 dl 1.54 * Always throws RejectedExecutionException.
1978 jsr166 1.116 *
1979 dl 1.24 * @param r the runnable task requested to be executed
1980     * @param e the executor attempting to execute this task
1981     * @throws RejectedExecutionException always.
1982     */
1983 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1984 dl 1.123 throw new RejectedExecutionException("Task " + r.toString() +
1985     " rejected from " +
1986     e.toString());
1987 tim 1.1 }
1988     }
1989    
1990     /**
1991 dl 1.21 * A handler for rejected tasks that silently discards the
1992     * rejected task.
1993 tim 1.1 */
1994 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
1995 tim 1.1 /**
1996 jsr166 1.116 * Creates a {@code DiscardPolicy}.
1997 tim 1.1 */
1998     public DiscardPolicy() { }
1999    
2000 dl 1.24 /**
2001     * Does nothing, which has the effect of discarding task r.
2002 jsr166 1.116 *
2003 dl 1.24 * @param r the runnable task requested to be executed
2004     * @param e the executor attempting to execute this task
2005     */
2006 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2007 tim 1.1 }
2008     }
2009    
2010     /**
2011 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
2012 jsr166 1.116 * request and then retries {@code execute}, unless the executor
2013 dl 1.21 * is shut down, in which case the task is discarded.
2014 tim 1.1 */
2015 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2016 tim 1.1 /**
2017 jsr166 1.116 * Creates a {@code DiscardOldestPolicy} for the given executor.
2018 tim 1.1 */
2019     public DiscardOldestPolicy() { }
2020    
2021 dl 1.24 /**
2022     * Obtains and ignores the next task that the executor
2023     * would otherwise execute, if one is immediately available,
2024     * and then retries execution of task r, unless the executor
2025     * is shut down, in which case task r is instead discarded.
2026 jsr166 1.116 *
2027 dl 1.24 * @param r the runnable task requested to be executed
2028     * @param e the executor attempting to execute this task
2029     */
2030 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2031     if (!e.isShutdown()) {
2032     e.getQueue().poll();
2033     e.execute(r);
2034 tim 1.1 }
2035     }
2036     }
2037     }