ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.128
Committed: Sat Dec 24 02:13:42 2011 UTC (12 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.127: +69 -40 lines
Log Message:
restore pool invariants if thread creation fails

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4 jsr166 1.124 * http://creativecommons.org/publicdomain/zero/1.0/
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.127 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
9     import java.util.concurrent.locks.Condition;
10     import java.util.concurrent.locks.ReentrantLock;
11     import java.util.concurrent.atomic.AtomicInteger;
12 dl 1.2 import java.util.*;
13 tim 1.1
14     /**
15 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
16 dl 1.28 * one of possibly several pooled threads, normally configured
17     * using {@link Executors} factory methods.
18 tim 1.1 *
19 dl 1.17 * <p>Thread pools address two different problems: they usually
20     * provide improved performance when executing large numbers of
21     * asynchronous tasks, due to reduced per-task invocation overhead,
22     * and they provide a means of bounding and managing the resources,
23     * including threads, consumed when executing a collection of tasks.
24 jsr166 1.116 * Each {@code ThreadPoolExecutor} also maintains some basic
25 dl 1.22 * statistics, such as the number of completed tasks.
26 dl 1.17 *
27 tim 1.1 * <p>To be useful across a wide range of contexts, this class
28 dl 1.24 * provides many adjustable parameters and extensibility
29     * hooks. However, programmers are urged to use the more convenient
30 dl 1.20 * {@link Executors} factory methods {@link
31     * Executors#newCachedThreadPool} (unbounded thread pool, with
32     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
33     * (fixed size thread pool) and {@link
34     * Executors#newSingleThreadExecutor} (single background thread), that
35 dl 1.22 * preconfigure settings for the most common usage
36     * scenarios. Otherwise, use the following guide when manually
37 dl 1.24 * configuring and tuning this class:
38 dl 1.17 *
39 tim 1.1 * <dl>
40 dl 1.2 *
41 dl 1.21 * <dt>Core and maximum pool sizes</dt>
42 dl 1.2 *
43 jsr166 1.116 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
44 jsr166 1.117 * pool size (see {@link #getPoolSize})
45     * according to the bounds set by
46     * corePoolSize (see {@link #getCorePoolSize}) and
47     * maximumPoolSize (see {@link #getMaximumPoolSize}).
48     *
49     * When a new task is submitted in method {@link #execute}, and fewer
50     * than corePoolSize threads are running, a new thread is created to
51     * handle the request, even if other worker threads are idle. If
52     * there are more than corePoolSize but less than maximumPoolSize
53     * threads running, a new thread will be created only if the queue is
54     * full. By setting corePoolSize and maximumPoolSize the same, you
55     * create a fixed-size thread pool. By setting maximumPoolSize to an
56     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
57     * allow the pool to accommodate an arbitrary number of concurrent
58     * tasks. Most typically, core and maximum pool sizes are set only
59     * upon construction, but they may also be changed dynamically using
60     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
61 dl 1.2 *
62 jsr166 1.93 * <dt>On-demand construction</dt>
63 dl 1.2 *
64 dl 1.21 * <dd> By default, even core threads are initially created and
65 dl 1.69 * started only when new tasks arrive, but this can be overridden
66 jsr166 1.117 * dynamically using method {@link #prestartCoreThread} or {@link
67     * #prestartAllCoreThreads}. You probably want to prestart threads if
68     * you construct the pool with a non-empty queue. </dd>
69 dl 1.2 *
70 tim 1.1 * <dt>Creating new threads</dt>
71 dl 1.2 *
72 jsr166 1.117 * <dd>New threads are created using a {@link ThreadFactory}. If not
73     * otherwise specified, a {@link Executors#defaultThreadFactory} is
74     * used, that creates threads to all be in the same {@link
75     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
76     * non-daemon status. By supplying a different ThreadFactory, you can
77     * alter the thread's name, thread group, priority, daemon status,
78     * etc. If a {@code ThreadFactory} fails to create a thread when asked
79     * by returning null from {@code newThread}, the executor will
80     * continue, but might not be able to execute any tasks. Threads
81     * should possess the "modifyThread" {@code RuntimePermission}. If
82     * worker threads or other threads using the pool do not possess this
83     * permission, service may be degraded: configuration changes may not
84     * take effect in a timely manner, and a shutdown pool may remain in a
85     * state in which termination is possible but not completed.</dd>
86 dl 1.2 *
87 dl 1.21 * <dt>Keep-alive times</dt>
88     *
89     * <dd>If the pool currently has more than corePoolSize threads,
90     * excess threads will be terminated if they have been idle for more
91 jsr166 1.117 * than the keepAliveTime (see {@link #getKeepAliveTime}). This
92     * provides a means of reducing resource consumption when the pool is
93     * not being actively used. If the pool becomes more active later, new
94     * threads will be constructed. This parameter can also be changed
95     * dynamically using method {@link #setKeepAliveTime}. Using a value
96 jsr166 1.116 * of {@code Long.MAX_VALUE} {@link TimeUnit#NANOSECONDS} effectively
97 dl 1.62 * disables idle threads from ever terminating prior to shut down. By
98     * default, the keep-alive policy applies only when there are more
99     * than corePoolSizeThreads. But method {@link
100 jsr166 1.117 * #allowCoreThreadTimeOut(boolean)} can be used to apply this
101     * time-out policy to core threads as well, so long as the
102     * keepAliveTime value is non-zero. </dd>
103 dl 1.21 *
104 dl 1.48 * <dt>Queuing</dt>
105 dl 1.21 *
106     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
107     * submitted tasks. The use of this queue interacts with pool sizing:
108 dl 1.2 *
109 dl 1.21 * <ul>
110     *
111 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
112     * always prefers adding a new thread
113 dl 1.48 * rather than queuing.</li>
114 dl 1.21 *
115 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
116     * always prefers queuing a request rather than adding a new
117     * thread.</li>
118 jsr166 1.66 *
119 dl 1.21 * <li> If a request cannot be queued, a new thread is created unless
120     * this would exceed maximumPoolSize, in which case, the task will be
121     * rejected.</li>
122     *
123     * </ul>
124     *
125     * There are three general strategies for queuing:
126     * <ol>
127     *
128     * <li> <em> Direct handoffs.</em> A good default choice for a work
129     * queue is a {@link SynchronousQueue} that hands off tasks to threads
130     * without otherwise holding them. Here, an attempt to queue a task
131     * will fail if no threads are immediately available to run it, so a
132     * new thread will be constructed. This policy avoids lockups when
133     * handling sets of requests that might have internal dependencies.
134     * Direct handoffs generally require unbounded maximumPoolSizes to
135 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
136 dl 1.21 * possibility of unbounded thread growth when commands continue to
137     * arrive on average faster than they can be processed. </li>
138     *
139     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
140     * example a {@link LinkedBlockingQueue} without a predefined
141 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
142 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
143     * threads will ever be created. (And the value of the maximumPoolSize
144     * therefore doesn't have any effect.) This may be appropriate when
145     * each task is completely independent of others, so tasks cannot
146     * affect each others execution; for example, in a web page server.
147     * While this style of queuing can be useful in smoothing out
148     * transient bursts of requests, it admits the possibility of
149     * unbounded work queue growth when commands continue to arrive on
150     * average faster than they can be processed. </li>
151 dl 1.21 *
152     * <li><em>Bounded queues.</em> A bounded queue (for example, an
153     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
154     * used with finite maximumPoolSizes, but can be more difficult to
155     * tune and control. Queue sizes and maximum pool sizes may be traded
156     * off for each other: Using large queues and small pools minimizes
157     * CPU usage, OS resources, and context-switching overhead, but can
158 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
159 dl 1.21 * example if they are I/O bound), a system may be able to schedule
160     * time for more threads than you otherwise allow. Use of small queues
161 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
162     * may encounter unacceptable scheduling overhead, which also
163     * decreases throughput. </li>
164 dl 1.21 *
165     * </ol>
166     *
167     * </dd>
168     *
169     * <dt>Rejected tasks</dt>
170     *
171 jsr166 1.117 * <dd> New tasks submitted in method {@link #execute} will be
172     * <em>rejected</em> when the Executor has been shut down, and also
173     * when the Executor uses finite bounds for both maximum threads and
174     * work queue capacity, and is saturated. In either case, the {@code
175     * execute} method invokes the {@link
176     * RejectedExecutionHandler#rejectedExecution} method of its {@link
177     * RejectedExecutionHandler}. Four predefined handler policies are
178     * provided:
179 dl 1.21 *
180     * <ol>
181     *
182 jsr166 1.117 * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
183     * handler throws a runtime {@link RejectedExecutionException} upon
184     * rejection. </li>
185     *
186     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
187     * that invokes {@code execute} itself runs the task. This provides a
188     * simple feedback control mechanism that will slow down the rate that
189     * new tasks are submitted. </li>
190     *
191     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
192     * cannot be executed is simply dropped. </li>
193     *
194     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
195     * executor is not shut down, the task at the head of the work queue
196     * is dropped, and then execution is retried (which can fail again,
197     * causing this to be repeated.) </li>
198 dl 1.21 *
199     * </ol>
200     *
201     * It is possible to define and use other kinds of {@link
202     * RejectedExecutionHandler} classes. Doing so requires some care
203     * especially when policies are designed to work only under particular
204 dl 1.48 * capacity or queuing policies. </dd>
205 dl 1.21 *
206     * <dt>Hook methods</dt>
207     *
208 jsr166 1.116 * <dd>This class provides {@code protected} overridable {@link
209 jsr166 1.117 * #beforeExecute} and {@link #afterExecute} methods that are called
210     * before and after execution of each task. These can be used to
211     * manipulate the execution environment; for example, reinitializing
212     * ThreadLocals, gathering statistics, or adding log
213     * entries. Additionally, method {@link #terminated} can be overridden
214     * to perform any special processing that needs to be done once the
215     * Executor has fully terminated.
216     *
217     * <p>If hook or callback methods throw exceptions, internal worker
218     * threads may in turn fail and abruptly terminate.</dd>
219 dl 1.2 *
220 dl 1.21 * <dt>Queue maintenance</dt>
221 dl 1.2 *
222 jsr166 1.117 * <dd> Method {@link #getQueue} allows access to the work queue for
223     * purposes of monitoring and debugging. Use of this method for any
224     * other purpose is strongly discouraged. Two supplied methods,
225     * {@link #remove} and {@link #purge} are available to assist in
226     * storage reclamation when large numbers of queued tasks become
227 jsr166 1.80 * cancelled.</dd>
228 dl 1.79 *
229     * <dt>Finalization</dt>
230     *
231     * <dd> A pool that is no longer referenced in a program <em>AND</em>
232 jsr166 1.117 * has no remaining threads will be {@code shutdown} automatically. If
233     * you would like to ensure that unreferenced pools are reclaimed even
234     * if users forget to call {@link #shutdown}, then you must arrange
235     * that unused threads eventually die, by setting appropriate
236     * keep-alive times, using a lower bound of zero core threads and/or
237     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
238     *
239     * </dl>
240 tim 1.1 *
241 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
242     * override one or more of the protected hook methods. For example,
243     * here is a subclass that adds a simple pause/resume feature:
244     *
245 jsr166 1.116 * <pre> {@code
246 dl 1.43 * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
247     * private boolean isPaused;
248     * private ReentrantLock pauseLock = new ReentrantLock();
249     * private Condition unpaused = pauseLock.newCondition();
250     *
251     * public PausableThreadPoolExecutor(...) { super(...); }
252 jsr166 1.66 *
253 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
254     * super.beforeExecute(t, r);
255     * pauseLock.lock();
256     * try {
257     * while (isPaused) unpaused.await();
258 jsr166 1.66 * } catch (InterruptedException ie) {
259 dl 1.53 * t.interrupt();
260 dl 1.43 * } finally {
261 dl 1.53 * pauseLock.unlock();
262 dl 1.43 * }
263     * }
264 jsr166 1.66 *
265 dl 1.43 * public void pause() {
266     * pauseLock.lock();
267     * try {
268     * isPaused = true;
269     * } finally {
270 dl 1.53 * pauseLock.unlock();
271 dl 1.43 * }
272     * }
273 jsr166 1.66 *
274 dl 1.43 * public void resume() {
275     * pauseLock.lock();
276     * try {
277     * isPaused = false;
278     * unpaused.signalAll();
279     * } finally {
280 dl 1.53 * pauseLock.unlock();
281 dl 1.43 * }
282     * }
283 jsr166 1.116 * }}</pre>
284     *
285 tim 1.1 * @since 1.5
286 dl 1.8 * @author Doug Lea
287 tim 1.1 */
288 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
289 dl 1.86 /**
290 dl 1.107 * The main pool control state, ctl, is an atomic integer packing
291     * two conceptual fields
292     * workerCount, indicating the effective number of threads
293     * runState, indicating whether running, shutting down etc
294     *
295     * In order to pack them into one int, we limit workerCount to
296 jsr166 1.117 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
297 dl 1.107 * billion) otherwise representable. If this is ever an issue in
298     * the future, the variable can be changed to be an AtomicLong,
299     * and the shift/mask constants below adjusted. But until the need
300     * arises, this code is a bit faster and simpler using an int.
301     *
302     * The workerCount is the number of workers that have been
303     * permitted to start and not permitted to stop. The value may be
304 jsr166 1.110 * transiently different from the actual number of live threads,
305 dl 1.107 * for example when a ThreadFactory fails to create a thread when
306     * asked, and when exiting threads are still performing
307     * bookkeeping before terminating. The user-visible pool size is
308     * reported as the current size of the workers set.
309     *
310     * The runState provides the main lifecyle control, taking on values:
311 dl 1.86 *
312 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
313     * SHUTDOWN: Don't accept new tasks, but process queued tasks
314 jsr166 1.91 * STOP: Don't accept new tasks, don't process queued tasks,
315 dl 1.85 * and interrupt in-progress tasks
316 jsr166 1.117 * TIDYING: All tasks have terminated, workerCount is zero,
317     * the thread transitioning to state TIDYING
318     * will run the terminated() hook method
319     * TERMINATED: terminated() has completed
320 dl 1.86 *
321     * The numerical order among these values matters, to allow
322     * ordered comparisons. The runState monotonically increases over
323     * time, but need not hit each state. The transitions are:
324 jsr166 1.87 *
325     * RUNNING -> SHUTDOWN
326 jsr166 1.88 * On invocation of shutdown(), perhaps implicitly in finalize()
327 jsr166 1.87 * (RUNNING or SHUTDOWN) -> STOP
328 dl 1.86 * On invocation of shutdownNow()
329 jsr166 1.117 * SHUTDOWN -> TIDYING
330 dl 1.86 * When both queue and pool are empty
331 jsr166 1.117 * STOP -> TIDYING
332 dl 1.86 * When pool is empty
333 jsr166 1.117 * TIDYING -> TERMINATED
334     * When the terminated() hook method has completed
335     *
336     * Threads waiting in awaitTermination() will return when the
337     * state reaches TERMINATED.
338 dl 1.107 *
339 jsr166 1.117 * Detecting the transition from SHUTDOWN to TIDYING is less
340 dl 1.107 * straightforward than you'd like because the queue may become
341     * empty after non-empty and vice versa during SHUTDOWN state, but
342     * we can only terminate if, after seeing that it is empty, we see
343     * that workerCount is 0 (which sometimes entails a recheck -- see
344     * below).
345     */
346     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
347 jsr166 1.117 private static final int COUNT_BITS = Integer.SIZE - 3;
348 dl 1.107 private static final int CAPACITY = (1 << COUNT_BITS) - 1;
349    
350 jsr166 1.117 // runState is stored in the high-order bits
351     private static final int RUNNING = -1 << COUNT_BITS;
352     private static final int SHUTDOWN = 0 << COUNT_BITS;
353     private static final int STOP = 1 << COUNT_BITS;
354     private static final int TIDYING = 2 << COUNT_BITS;
355     private static final int TERMINATED = 3 << COUNT_BITS;
356 dl 1.107
357     // Packing and unpacking ctl
358 jsr166 1.117 private static int runStateOf(int c) { return c & ~CAPACITY; }
359     private static int workerCountOf(int c) { return c & CAPACITY; }
360     private static int ctlOf(int rs, int wc) { return rs | wc; }
361    
362     /*
363     * Bit field accessors that don't require unpacking ctl.
364     * These depend on the bit layout and on workerCount being never negative.
365     */
366    
367     private static boolean runStateLessThan(int c, int s) {
368 jsr166 1.121 return c < s;
369 jsr166 1.117 }
370    
371     private static boolean runStateAtLeast(int c, int s) {
372 jsr166 1.121 return c >= s;
373 jsr166 1.117 }
374    
375     private static boolean isRunning(int c) {
376 jsr166 1.121 return c < SHUTDOWN;
377 jsr166 1.117 }
378    
379     /**
380     * Attempt to CAS-increment the workerCount field of ctl.
381     */
382     private boolean compareAndIncrementWorkerCount(int expect) {
383 jsr166 1.121 return ctl.compareAndSet(expect, expect + 1);
384 jsr166 1.117 }
385    
386     /**
387     * Attempt to CAS-decrement the workerCount field of ctl.
388     */
389     private boolean compareAndDecrementWorkerCount(int expect) {
390 jsr166 1.121 return ctl.compareAndSet(expect, expect - 1);
391 jsr166 1.117 }
392    
393     /**
394     * Decrements the workerCount field of ctl. This is called only on
395     * abrupt termination of a thread (see processWorkerExit). Other
396     * decrements are performed within getTask.
397     */
398     private void decrementWorkerCount() {
399 jsr166 1.121 do {} while (! compareAndDecrementWorkerCount(ctl.get()));
400 jsr166 1.117 }
401 tim 1.41
402     /**
403 dl 1.86 * The queue used for holding tasks and handing off to worker
404 dl 1.107 * threads. We do not require that workQueue.poll() returning
405 jsr166 1.109 * null necessarily means that workQueue.isEmpty(), so rely
406 dl 1.107 * solely on isEmpty to see if the queue is empty (which we must
407     * do for example when deciding whether to transition from
408 jsr166 1.117 * SHUTDOWN to TIDYING). This accommodates special-purpose
409 dl 1.107 * queues such as DelayQueues for which poll() is allowed to
410     * return null even if it may later return non-null when delays
411     * expire.
412 tim 1.10 */
413 dl 1.2 private final BlockingQueue<Runnable> workQueue;
414    
415     /**
416 dl 1.107 * Lock held on access to workers set and related bookkeeping.
417     * While we could use a concurrent set of some sort, it turns out
418     * to be generally preferable to use a lock. Among the reasons is
419     * that this serializes interruptIdleWorkers, which avoids
420     * unnecessary interrupt storms, especially during shutdown.
421     * Otherwise exiting threads would concurrently interrupt those
422     * that have not yet interrupted. It also simplifies some of the
423     * associated statistics bookkeeping of largestPoolSize etc. We
424     * also hold mainLock on shutdown and shutdownNow, for the sake of
425     * ensuring workers set is stable while separately checking
426     * permission to interrupt and actually interrupting.
427 tim 1.10 */
428 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
429    
430     /**
431 dl 1.107 * Set containing all worker threads in pool. Accessed only when
432     * holding mainLock.
433     */
434     private final HashSet<Worker> workers = new HashSet<Worker>();
435    
436     /**
437 dl 1.2 * Wait condition to support awaitTermination
438 tim 1.10 */
439 dl 1.46 private final Condition termination = mainLock.newCondition();
440 dl 1.2
441     /**
442 dl 1.107 * Tracks largest attained pool size. Accessed only under
443     * mainLock.
444     */
445     private int largestPoolSize;
446    
447     /**
448     * Counter for completed tasks. Updated only on termination of
449     * worker threads. Accessed only under mainLock.
450     */
451     private long completedTaskCount;
452    
453     /*
454     * All user control parameters are declared as volatiles so that
455     * ongoing actions are based on freshest values, but without need
456     * for locking, since no internal invariants depend on them
457     * changing synchronously with respect to other actions.
458     */
459    
460     /**
461     * Factory for new threads. All threads are created using this
462     * factory (via method addWorker). All callers must be prepared
463     * for addWorker to fail, which may reflect a system or user's
464     * policy limiting the number of threads. Even though it is not
465     * treated as an error, failure to create threads may result in
466     * new tasks being rejected or existing ones remaining stuck in
467 jsr166 1.128 * the queue.
468     *
469     * We go further and preserve pool invariants even in the face of
470     * errors such as OutOfMemoryError, that might be thrown while
471     * trying to create threads. Such errors are rather common due to
472     * the need to allocate a native stack in Thread#start, and users
473     * will want to perform clean pool shutdown to clean up. There
474     * will likely be enough memory available for the cleanup code to
475     * complete without encountering yet another OutOfMemoryError.
476 dl 1.107 */
477     private volatile ThreadFactory threadFactory;
478    
479     /**
480     * Handler called when saturated or shutdown in execute.
481 tim 1.10 */
482 dl 1.107 private volatile RejectedExecutionHandler handler;
483 dl 1.2
484     /**
485 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
486 dl 1.86 * Threads use this timeout when there are more than corePoolSize
487     * present or if allowCoreThreadTimeOut. Otherwise they wait
488     * forever for new work.
489 tim 1.10 */
490 dl 1.107 private volatile long keepAliveTime;
491 dl 1.2
492     /**
493 jsr166 1.101 * If false (default), core threads stay alive even when idle.
494     * If true, core threads use keepAliveTime to time out waiting
495     * for work.
496 dl 1.62 */
497 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
498 dl 1.62
499     /**
500 dl 1.107 * Core pool size is the minimum number of workers to keep alive
501     * (and not allow to time out etc) unless allowCoreThreadTimeOut
502 jsr166 1.109 * is set, in which case the minimum is zero.
503 dl 1.107 */
504     private volatile int corePoolSize;
505    
506     /**
507     * Maximum pool size. Note that the actual maximum is internally
508     * bounded by CAPACITY.
509     */
510     private volatile int maximumPoolSize;
511    
512     /**
513     * The default rejected execution handler
514     */
515     private static final RejectedExecutionHandler defaultHandler =
516     new AbortPolicy();
517    
518     /**
519     * Permission required for callers of shutdown and shutdownNow.
520     * We additionally require (see checkShutdownAccess) that callers
521     * have permission to actually interrupt threads in the worker set
522     * (as governed by Thread.interrupt, which relies on
523     * ThreadGroup.checkAccess, which in turn relies on
524     * SecurityManager.checkAccess). Shutdowns are attempted only if
525     * these checks pass.
526     *
527     * All actual invocations of Thread.interrupt (see
528     * interruptIdleWorkers and interruptWorkers) ignore
529     * SecurityExceptions, meaning that the attempted interrupts
530     * silently fail. In the case of shutdown, they should not fail
531     * unless the SecurityManager has inconsistent policies, sometimes
532     * allowing access to a thread and sometimes not. In such cases,
533     * failure to actually interrupt threads may disable or delay full
534     * termination. Other uses of interruptIdleWorkers are advisory,
535     * and failure to actually interrupt will merely delay response to
536     * configuration changes so is not handled exceptionally.
537     */
538     private static final RuntimePermission shutdownPerm =
539     new RuntimePermission("modifyThread");
540    
541     /**
542 jsr166 1.108 * Class Worker mainly maintains interrupt control state for
543 jsr166 1.120 * threads running tasks, along with other minor bookkeeping.
544     * This class opportunistically extends AbstractQueuedSynchronizer
545     * to simplify acquiring and releasing a lock surrounding each
546     * task execution. This protects against interrupts that are
547     * intended to wake up a worker thread waiting for a task from
548     * instead interrupting a task being run. We implement a simple
549     * non-reentrant mutual exclusion lock rather than use ReentrantLock
550     * because we do not want worker tasks to be able to reacquire the
551     * lock when they invoke pool control methods like setCorePoolSize.
552     */
553     private final class Worker
554 jsr166 1.121 extends AbstractQueuedSynchronizer
555     implements Runnable
556 jsr166 1.120 {
557 jsr166 1.121 /**
558     * This class will never be serialized, but we provide a
559     * serialVersionUID to suppress a javac warning.
560     */
561     private static final long serialVersionUID = 6138294804551838833L;
562 jsr166 1.116
563 jsr166 1.108 /** Thread this worker is running in. Null if factory fails. */
564 dl 1.107 final Thread thread;
565 jsr166 1.108 /** Initial task to run. Possibly null. */
566 dl 1.107 Runnable firstTask;
567     /** Per-thread task counter */
568     volatile long completedTasks;
569    
570     /**
571 jsr166 1.108 * Creates with given first task and thread from ThreadFactory.
572     * @param firstTask the first task (null if none)
573 dl 1.107 */
574     Worker(Runnable firstTask) {
575     this.firstTask = firstTask;
576 jsr166 1.121 this.thread = getThreadFactory().newThread(this);
577 dl 1.107 }
578    
579     /** Delegates main run loop to outer runWorker */
580     public void run() {
581     runWorker(this);
582     }
583 jsr166 1.120
584 jsr166 1.121 // Lock methods
585     //
586     // The value 0 represents the unlocked state.
587     // The value 1 represents the locked state.
588    
589     protected boolean isHeldExclusively() {
590     return getState() == 1;
591     }
592    
593     protected boolean tryAcquire(int unused) {
594     if (compareAndSetState(0, 1)) {
595     setExclusiveOwnerThread(Thread.currentThread());
596     return true;
597     }
598     return false;
599     }
600    
601     protected boolean tryRelease(int unused) {
602     setExclusiveOwnerThread(null);
603     setState(0);
604     return true;
605     }
606    
607     public void lock() { acquire(1); }
608     public boolean tryLock() { return tryAcquire(1); }
609     public void unlock() { release(1); }
610     public boolean isLocked() { return isHeldExclusively(); }
611 dl 1.107 }
612    
613     /*
614     * Methods for setting control state
615     */
616    
617     /**
618     * Transitions runState to given target, or leaves it alone if
619     * already at least the given target.
620 jsr166 1.116 *
621 jsr166 1.117 * @param targetState the desired state, either SHUTDOWN or STOP
622     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
623 dl 1.107 */
624     private void advanceRunState(int targetState) {
625     for (;;) {
626     int c = ctl.get();
627 jsr166 1.117 if (runStateAtLeast(c, targetState) ||
628 dl 1.107 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
629     break;
630     }
631     }
632    
633     /**
634     * Transitions to TERMINATED state if either (SHUTDOWN and pool
635     * and queue empty) or (STOP and pool empty). If otherwise
636     * eligible to terminate but workerCount is nonzero, interrupts an
637     * idle worker to ensure that shutdown signals propagate. This
638     * method must be called following any action that might make
639     * termination possible -- reducing worker count or removing tasks
640     * from the queue during shutdown. The method is non-private to
641 jsr166 1.110 * allow access from ScheduledThreadPoolExecutor.
642 dl 1.107 */
643     final void tryTerminate() {
644     for (;;) {
645     int c = ctl.get();
646 jsr166 1.121 if (isRunning(c) ||
647     runStateAtLeast(c, TIDYING) ||
648     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
649     return;
650 dl 1.107 if (workerCountOf(c) != 0) { // Eligible to terminate
651 jsr166 1.113 interruptIdleWorkers(ONLY_ONE);
652 dl 1.107 return;
653     }
654 jsr166 1.119
655 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
656     mainLock.lock();
657     try {
658     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
659     try {
660     terminated();
661     } finally {
662     ctl.set(ctlOf(TERMINATED, 0));
663     termination.signalAll();
664     }
665     return;
666     }
667     } finally {
668     mainLock.unlock();
669     }
670 dl 1.107 // else retry on failed CAS
671     }
672     }
673    
674 jsr166 1.116 /*
675 dl 1.107 * Methods for controlling interrupts to worker threads.
676     */
677    
678     /**
679     * If there is a security manager, makes sure caller has
680     * permission to shut down threads in general (see shutdownPerm).
681     * If this passes, additionally makes sure the caller is allowed
682     * to interrupt each worker thread. This might not be true even if
683     * first check passed, if the SecurityManager treats some threads
684     * specially.
685     */
686     private void checkShutdownAccess() {
687     SecurityManager security = System.getSecurityManager();
688     if (security != null) {
689     security.checkPermission(shutdownPerm);
690     final ReentrantLock mainLock = this.mainLock;
691     mainLock.lock();
692     try {
693     for (Worker w : workers)
694     security.checkAccess(w.thread);
695     } finally {
696     mainLock.unlock();
697     }
698     }
699     }
700    
701     /**
702 jsr166 1.116 * Interrupts all threads, even if active. Ignores SecurityExceptions
703     * (in which case some threads may remain uninterrupted).
704 dl 1.107 */
705     private void interruptWorkers() {
706     final ReentrantLock mainLock = this.mainLock;
707     mainLock.lock();
708     try {
709 jsr166 1.116 for (Worker w : workers) {
710 dl 1.107 try {
711     w.thread.interrupt();
712     } catch (SecurityException ignore) {
713     }
714     }
715     } finally {
716     mainLock.unlock();
717     }
718     }
719    
720     /**
721     * Interrupts threads that might be waiting for tasks (as
722     * indicated by not being locked) so they can check for
723     * termination or configuration changes. Ignores
724     * SecurityExceptions (in which case some threads may remain
725     * uninterrupted).
726     *
727     * @param onlyOne If true, interrupt at most one worker. This is
728     * called only from tryTerminate when termination is otherwise
729     * enabled but there are still other workers. In this case, at
730     * most one waiting worker is interrupted to propagate shutdown
731 jsr166 1.113 * signals in case all threads are currently waiting.
732 dl 1.107 * Interrupting any arbitrary thread ensures that newly arriving
733     * workers since shutdown began will also eventually exit.
734 jsr166 1.113 * To guarantee eventual termination, it suffices to always
735     * interrupt only one idle worker, but shutdown() interrupts all
736     * idle workers so that redundant workers exit promptly, not
737     * waiting for a straggler task to finish.
738 tim 1.10 */
739 dl 1.107 private void interruptIdleWorkers(boolean onlyOne) {
740 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
741 dl 1.107 mainLock.lock();
742     try {
743 jsr166 1.121 for (Worker w : workers) {
744 dl 1.107 Thread t = w.thread;
745 jsr166 1.121 if (!t.isInterrupted() && w.tryLock()) {
746 dl 1.107 try {
747     t.interrupt();
748     } catch (SecurityException ignore) {
749     } finally {
750     w.unlock();
751     }
752     }
753     if (onlyOne)
754     break;
755     }
756     } finally {
757     mainLock.unlock();
758     }
759     }
760    
761 dl 1.118 /**
762     * Common form of interruptIdleWorkers, to avoid having to
763     * remember what the boolean argument means.
764     */
765 jsr166 1.119 private void interruptIdleWorkers() {
766     interruptIdleWorkers(false);
767 dl 1.118 }
768    
769 jsr166 1.113 private static final boolean ONLY_ONE = true;
770    
771 dl 1.107 /**
772     * Ensures that unless the pool is stopping, the current thread
773     * does not have its interrupt set. This requires a double-check
774     * of state in case the interrupt was cleared concurrently with a
775     * shutdownNow -- if so, the interrupt is re-enabled.
776     */
777     private void clearInterruptsForTaskRun() {
778 jsr166 1.117 if (runStateLessThan(ctl.get(), STOP) &&
779 dl 1.107 Thread.interrupted() &&
780 jsr166 1.117 runStateAtLeast(ctl.get(), STOP))
781 dl 1.107 Thread.currentThread().interrupt();
782     }
783    
784     /*
785     * Misc utilities, most of which are also exported to
786     * ScheduledThreadPoolExecutor
787     */
788    
789     /**
790     * Invokes the rejected execution handler for the given command.
791     * Package-protected for use by ScheduledThreadPoolExecutor.
792     */
793     final void reject(Runnable command) {
794     handler.rejectedExecution(command, this);
795     }
796 dl 1.2
797     /**
798 dl 1.107 * Performs any further cleanup following run state transition on
799     * invocation of shutdown. A no-op here, but used by
800     * ScheduledThreadPoolExecutor to cancel delayed tasks.
801 tim 1.10 */
802 dl 1.107 void onShutdown() {
803     }
804 dl 1.2
805     /**
806 dl 1.107 * State check needed by ScheduledThreadPoolExecutor to
807 jsr166 1.117 * enable running tasks during shutdown.
808     *
809 dl 1.107 * @param shutdownOK true if should return true if SHUTDOWN
810 tim 1.10 */
811 dl 1.107 final boolean isRunningOrShutdown(boolean shutdownOK) {
812     int rs = runStateOf(ctl.get());
813     return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
814     }
815 dl 1.2
816     /**
817 dl 1.107 * Drains the task queue into a new list, normally using
818     * drainTo. But if the queue is a DelayQueue or any other kind of
819     * queue for which poll or drainTo may fail to remove some
820     * elements, it deletes them one by one.
821     */
822     private List<Runnable> drainQueue() {
823     BlockingQueue<Runnable> q = workQueue;
824     List<Runnable> taskList = new ArrayList<Runnable>();
825     q.drainTo(taskList);
826     if (!q.isEmpty()) {
827     for (Runnable r : q.toArray(new Runnable[0])) {
828     if (q.remove(r))
829     taskList.add(r);
830     }
831     }
832     return taskList;
833     }
834    
835     /*
836     * Methods for creating, running and cleaning up after workers
837 tim 1.10 */
838 dl 1.2
839     /**
840 dl 1.107 * Checks if a new worker can be added with respect to current
841 jsr166 1.116 * pool state and the given bound (either core or maximum). If so,
842 dl 1.107 * the worker count is adjusted accordingly, and, if possible, a
843 jsr166 1.128 * new worker is created and started, running firstTask as its
844 jsr166 1.117 * first task. This method returns false if the pool is stopped or
845 dl 1.107 * eligible to shut down. It also returns false if the thread
846 jsr166 1.128 * factory fails to create a thread when asked. If the thread
847     * creation fails, either due to the thread factory returning
848     * null, or due to an exception (typically OutOfMemoryError in
849     * Thread#start), we roll back cleanly.
850 dl 1.107 *
851     * @param firstTask the task the new thread should run first (or
852     * null if none). Workers are created with an initial first task
853     * (in method execute()) to bypass queuing when there are fewer
854     * than corePoolSize threads (in which case we always start one),
855 jsr166 1.110 * or when the queue is full (in which case we must bypass queue).
856 dl 1.107 * Initially idle threads are usually created via
857     * prestartCoreThread or to replace other dying workers.
858     *
859     * @param core if true use corePoolSize as bound, else
860 jsr166 1.110 * maximumPoolSize. (A boolean indicator is used here rather than a
861 dl 1.107 * value to ensure reads of fresh values after checking other pool
862     * state).
863     * @return true if successful
864 tim 1.10 */
865 dl 1.107 private boolean addWorker(Runnable firstTask, boolean core) {
866 jsr166 1.121 retry:
867 dl 1.107 for (;;) {
868 jsr166 1.121 int c = ctl.get();
869     int rs = runStateOf(c);
870 jsr166 1.119
871 jsr166 1.121 // Check if queue empty only if necessary.
872 jsr166 1.119 if (rs >= SHUTDOWN &&
873 jsr166 1.121 ! (rs == SHUTDOWN &&
874     firstTask == null &&
875     ! workQueue.isEmpty()))
876     return false;
877    
878     for (;;) {
879     int wc = workerCountOf(c);
880     if (wc >= CAPACITY ||
881     wc >= (core ? corePoolSize : maximumPoolSize))
882     return false;
883     if (compareAndIncrementWorkerCount(c))
884     break retry;
885     c = ctl.get(); // Re-read ctl
886     if (runStateOf(c) != rs)
887     continue retry;
888     // else CAS failed due to workerCount change; retry inner loop
889     }
890 dl 1.107 }
891    
892 jsr166 1.128 boolean workerStarted = false;
893     Worker w = null;
894     try {
895     w = new Worker(firstTask);
896     final Thread t = w.thread;
897     final ReentrantLock mainLock = this.mainLock;
898     mainLock.lock();
899     try {
900     // Recheck while holding lock.
901     // Back out on ThreadFactory failure or if
902     // shut down before lock acquired.
903     int c = ctl.get();
904     int rs = runStateOf(c);
905    
906     if (t == null ||
907     (rs >= SHUTDOWN &&
908     ! (rs == SHUTDOWN &&
909     firstTask == null)))
910     return false;
911 dl 1.107
912 jsr166 1.128 workers.add(w);
913 jsr166 1.119
914 jsr166 1.128 int s = workers.size();
915     if (s > largestPoolSize)
916     largestPoolSize = s;
917     } finally {
918     mainLock.unlock();
919 jsr166 1.121 }
920 jsr166 1.119
921 jsr166 1.128 t.start();
922     // It is possible (but unlikely) for a thread to have been
923     // added to workers, but not yet started, during transition to
924     // STOP, which could result in a rare missed interrupt,
925     // because Thread.interrupt is not guaranteed to have any
926     // effect on a non-yet-started Thread (see Thread#interrupt).
927     if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted())
928     t.interrupt();
929 jsr166 1.119
930 jsr166 1.128 return workerStarted = true;
931     } finally {
932     if (! workerStarted)
933     addWorkerFailed(w);
934     }
935     }
936    
937     /**
938     * Rolls back the worker thread creation.
939     * - removes worker from workers, if present
940     * - decrements worker count
941     * - rechecks for termination, in case the existence of this
942     * worker was holding up termination
943     */
944     private void addWorkerFailed(Worker w) {
945     final ReentrantLock mainLock = this.mainLock;
946     mainLock.lock();
947     try {
948     if (w != null)
949     workers.remove(w);
950     decrementWorkerCount();
951     tryTerminate();
952 dl 1.107 } finally {
953     mainLock.unlock();
954     }
955     }
956 dl 1.2
957     /**
958 dl 1.107 * Performs cleanup and bookkeeping for a dying worker. Called
959     * only from worker threads. Unless completedAbruptly is set,
960     * assumes that workerCount has already been adjusted to account
961     * for exit. This method removes thread from worker set, and
962     * possibly terminates the pool or replaces the worker if either
963     * it exited due to user task exception or if fewer than
964     * corePoolSize workers are running or queue is non-empty but
965     * there are no workers.
966     *
967     * @param w the worker
968     * @param completedAbruptly if the worker died due to user exception
969 tim 1.10 */
970 dl 1.107 private void processWorkerExit(Worker w, boolean completedAbruptly) {
971     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
972     decrementWorkerCount();
973    
974     final ReentrantLock mainLock = this.mainLock;
975     mainLock.lock();
976     try {
977     completedTaskCount += w.completedTasks;
978     workers.remove(w);
979     } finally {
980     mainLock.unlock();
981     }
982    
983     tryTerminate();
984    
985 jsr166 1.121 int c = ctl.get();
986     if (runStateLessThan(c, STOP)) {
987     if (!completedAbruptly) {
988     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
989     if (min == 0 && ! workQueue.isEmpty())
990     min = 1;
991     if (workerCountOf(c) >= min)
992     return; // replacement not needed
993     }
994     addWorker(null, false);
995     }
996 dl 1.107 }
997 dl 1.2
998     /**
999 dl 1.107 * Performs blocking or timed wait for a task, depending on
1000     * current configuration settings, or returns null if this worker
1001     * must exit because of any of:
1002     * 1. There are more than maximumPoolSize workers (due to
1003     * a call to setMaximumPoolSize).
1004 jsr166 1.110 * 2. The pool is stopped.
1005 jsr166 1.119 * 3. The pool is shutdown and the queue is empty.
1006     * 4. This worker timed out waiting for a task, and timed-out
1007     * workers are subject to termination (that is,
1008     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1009     * both before and after the timed wait.
1010 dl 1.107 *
1011     * @return task, or null if the worker must exit, in which case
1012 jsr166 1.116 * workerCount is decremented
1013 tim 1.10 */
1014 dl 1.107 private Runnable getTask() {
1015 jsr166 1.121 boolean timedOut = false; // Did the last poll() time out?
1016 jsr166 1.119
1017 jsr166 1.121 retry:
1018     for (;;) {
1019 dl 1.107 int c = ctl.get();
1020 jsr166 1.121 int rs = runStateOf(c);
1021    
1022     // Check if queue empty only if necessary.
1023     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
1024     decrementWorkerCount();
1025     return null;
1026     }
1027 jsr166 1.119
1028 jsr166 1.121 boolean timed; // Are workers subject to culling?
1029    
1030     for (;;) {
1031     int wc = workerCountOf(c);
1032     timed = allowCoreThreadTimeOut || wc > corePoolSize;
1033    
1034     if (wc <= maximumPoolSize && ! (timedOut && timed))
1035     break;
1036     if (compareAndDecrementWorkerCount(c))
1037     return null;
1038     c = ctl.get(); // Re-read ctl
1039     if (runStateOf(c) != rs)
1040     continue retry;
1041     // else CAS failed due to workerCount change; retry inner loop
1042 dl 1.107 }
1043    
1044     try {
1045 jsr166 1.110 Runnable r = timed ?
1046 dl 1.107 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1047     workQueue.take();
1048     if (r != null)
1049     return r;
1050 jsr166 1.121 timedOut = true;
1051 jsr166 1.108 } catch (InterruptedException retry) {
1052 jsr166 1.121 timedOut = false;
1053 dl 1.107 }
1054     }
1055     }
1056 jsr166 1.66
1057 dl 1.8 /**
1058 dl 1.107 * Main worker run loop. Repeatedly gets tasks from queue and
1059     * executes them, while coping with a number of issues:
1060     *
1061     * 1. We may start out with an initial task, in which case we
1062     * don't need to get the first one. Otherwise, as long as pool is
1063     * running, we get tasks from getTask. If it returns null then the
1064     * worker exits due to changed pool state or configuration
1065     * parameters. Other exits result from exception throws in
1066     * external code, in which case completedAbruptly holds, which
1067     * usually leads processWorkerExit to replace this thread.
1068     *
1069     * 2. Before running any task, the lock is acquired to prevent
1070 jsr166 1.108 * other pool interrupts while the task is executing, and
1071 dl 1.107 * clearInterruptsForTaskRun called to ensure that unless pool is
1072     * stopping, this thread does not have its interrupt set.
1073     *
1074     * 3. Each task run is preceded by a call to beforeExecute, which
1075     * might throw an exception, in which case we cause thread to die
1076     * (breaking loop with completedAbruptly true) without processing
1077     * the task.
1078     *
1079     * 4. Assuming beforeExecute completes normally, we run the task,
1080     * gathering any of its thrown exceptions to send to
1081     * afterExecute. We separately handle RuntimeException, Error
1082     * (both of which the specs guarantee that we trap) and arbitrary
1083     * Throwables. Because we cannot rethrow Throwables within
1084     * Runnable.run, we wrap them within Errors on the way out (to the
1085     * thread's UncaughtExceptionHandler). Any thrown exception also
1086     * conservatively causes thread to die.
1087     *
1088     * 5. After task.run completes, we call afterExecute, which may
1089     * also throw an exception, which will also cause thread to
1090     * die. According to JLS Sec 14.20, this exception is the one that
1091     * will be in effect even if task.run throws.
1092     *
1093     * The net effect of the exception mechanics is that afterExecute
1094     * and the thread's UncaughtExceptionHandler have as accurate
1095     * information as we can provide about any problems encountered by
1096     * user code.
1097     *
1098     * @param w the worker
1099 dl 1.8 */
1100 dl 1.107 final void runWorker(Worker w) {
1101     Runnable task = w.firstTask;
1102     w.firstTask = null;
1103     boolean completedAbruptly = true;
1104     try {
1105     while (task != null || (task = getTask()) != null) {
1106     w.lock();
1107     clearInterruptsForTaskRun();
1108     try {
1109     beforeExecute(w.thread, task);
1110     Throwable thrown = null;
1111     try {
1112     task.run();
1113     } catch (RuntimeException x) {
1114     thrown = x; throw x;
1115     } catch (Error x) {
1116     thrown = x; throw x;
1117     } catch (Throwable x) {
1118     thrown = x; throw new Error(x);
1119     } finally {
1120     afterExecute(task, thrown);
1121     }
1122     } finally {
1123     task = null;
1124     w.completedTasks++;
1125     w.unlock();
1126     }
1127     }
1128     completedAbruptly = false;
1129     } finally {
1130     processWorkerExit(w, completedAbruptly);
1131     }
1132     }
1133 dl 1.2
1134 dl 1.107 // Public constructors and methods
1135 dl 1.86
1136 dl 1.2 /**
1137 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1138 dl 1.86 * parameters and default thread factory and rejected execution handler.
1139     * It may be more convenient to use one of the {@link Executors} factory
1140     * methods instead of this general purpose constructor.
1141     *
1142 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1143     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1144 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1145 jsr166 1.116 * pool
1146 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1147 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1148     * will wait for new tasks before terminating.
1149     * @param unit the time unit for the {@code keepAliveTime} argument
1150     * @param workQueue the queue to use for holding tasks before they are
1151     * executed. This queue will hold only the {@code Runnable}
1152     * tasks submitted by the {@code execute} method.
1153     * @throws IllegalArgumentException if one of the following holds:<br>
1154     * {@code corePoolSize < 0}<br>
1155     * {@code keepAliveTime < 0}<br>
1156     * {@code maximumPoolSize <= 0}<br>
1157     * {@code maximumPoolSize < corePoolSize}
1158     * @throws NullPointerException if {@code workQueue} is null
1159 dl 1.86 */
1160     public ThreadPoolExecutor(int corePoolSize,
1161     int maximumPoolSize,
1162     long keepAliveTime,
1163     TimeUnit unit,
1164     BlockingQueue<Runnable> workQueue) {
1165     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1166     Executors.defaultThreadFactory(), defaultHandler);
1167     }
1168    
1169     /**
1170 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1171 dl 1.86 * parameters and default rejected execution handler.
1172     *
1173 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1174     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1175 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1176 jsr166 1.116 * pool
1177 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1178 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1179     * will wait for new tasks before terminating.
1180     * @param unit the time unit for the {@code keepAliveTime} argument
1181     * @param workQueue the queue to use for holding tasks before they are
1182     * executed. This queue will hold only the {@code Runnable}
1183     * tasks submitted by the {@code execute} method.
1184 dl 1.86 * @param threadFactory the factory to use when the executor
1185 jsr166 1.116 * creates a new thread
1186     * @throws IllegalArgumentException if one of the following holds:<br>
1187     * {@code corePoolSize < 0}<br>
1188     * {@code keepAliveTime < 0}<br>
1189     * {@code maximumPoolSize <= 0}<br>
1190     * {@code maximumPoolSize < corePoolSize}
1191     * @throws NullPointerException if {@code workQueue}
1192     * or {@code threadFactory} is null
1193 dl 1.86 */
1194     public ThreadPoolExecutor(int corePoolSize,
1195     int maximumPoolSize,
1196     long keepAliveTime,
1197     TimeUnit unit,
1198     BlockingQueue<Runnable> workQueue,
1199     ThreadFactory threadFactory) {
1200     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1201     threadFactory, defaultHandler);
1202     }
1203    
1204     /**
1205 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1206 dl 1.86 * parameters and default thread factory.
1207     *
1208 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1209     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1210 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1211 jsr166 1.116 * pool
1212 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1213 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1214     * will wait for new tasks before terminating.
1215     * @param unit the time unit for the {@code keepAliveTime} argument
1216     * @param workQueue the queue to use for holding tasks before they are
1217     * executed. This queue will hold only the {@code Runnable}
1218     * tasks submitted by the {@code execute} method.
1219 dl 1.86 * @param handler the handler to use when execution is blocked
1220 jsr166 1.116 * because the thread bounds and queue capacities are reached
1221     * @throws IllegalArgumentException if one of the following holds:<br>
1222     * {@code corePoolSize < 0}<br>
1223     * {@code keepAliveTime < 0}<br>
1224     * {@code maximumPoolSize <= 0}<br>
1225     * {@code maximumPoolSize < corePoolSize}
1226     * @throws NullPointerException if {@code workQueue}
1227     * or {@code handler} is null
1228 dl 1.86 */
1229     public ThreadPoolExecutor(int corePoolSize,
1230     int maximumPoolSize,
1231     long keepAliveTime,
1232     TimeUnit unit,
1233     BlockingQueue<Runnable> workQueue,
1234     RejectedExecutionHandler handler) {
1235     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1236     Executors.defaultThreadFactory(), handler);
1237     }
1238    
1239     /**
1240 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1241 dl 1.86 * parameters.
1242     *
1243 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1244     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1245 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1246 jsr166 1.116 * pool
1247 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1248 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1249     * will wait for new tasks before terminating.
1250     * @param unit the time unit for the {@code keepAliveTime} argument
1251     * @param workQueue the queue to use for holding tasks before they are
1252     * executed. This queue will hold only the {@code Runnable}
1253     * tasks submitted by the {@code execute} method.
1254 dl 1.86 * @param threadFactory the factory to use when the executor
1255 jsr166 1.116 * creates a new thread
1256 dl 1.86 * @param handler the handler to use when execution is blocked
1257 jsr166 1.116 * because the thread bounds and queue capacities are reached
1258     * @throws IllegalArgumentException if one of the following holds:<br>
1259     * {@code corePoolSize < 0}<br>
1260     * {@code keepAliveTime < 0}<br>
1261     * {@code maximumPoolSize <= 0}<br>
1262     * {@code maximumPoolSize < corePoolSize}
1263     * @throws NullPointerException if {@code workQueue}
1264     * or {@code threadFactory} or {@code handler} is null
1265 dl 1.86 */
1266     public ThreadPoolExecutor(int corePoolSize,
1267     int maximumPoolSize,
1268     long keepAliveTime,
1269     TimeUnit unit,
1270     BlockingQueue<Runnable> workQueue,
1271     ThreadFactory threadFactory,
1272     RejectedExecutionHandler handler) {
1273     if (corePoolSize < 0 ||
1274     maximumPoolSize <= 0 ||
1275     maximumPoolSize < corePoolSize ||
1276     keepAliveTime < 0)
1277     throw new IllegalArgumentException();
1278     if (workQueue == null || threadFactory == null || handler == null)
1279     throw new NullPointerException();
1280     this.corePoolSize = corePoolSize;
1281     this.maximumPoolSize = maximumPoolSize;
1282     this.workQueue = workQueue;
1283     this.keepAliveTime = unit.toNanos(keepAliveTime);
1284     this.threadFactory = threadFactory;
1285     this.handler = handler;
1286     }
1287    
1288     /**
1289     * Executes the given task sometime in the future. The task
1290     * may execute in a new thread or in an existing pooled thread.
1291     *
1292     * If the task cannot be submitted for execution, either because this
1293     * executor has been shutdown or because its capacity has been reached,
1294 jsr166 1.116 * the task is handled by the current {@code RejectedExecutionHandler}.
1295 dl 1.86 *
1296     * @param command the task to execute
1297     * @throws RejectedExecutionException at discretion of
1298 jsr166 1.116 * {@code RejectedExecutionHandler}, if the task
1299     * cannot be accepted for execution
1300     * @throws NullPointerException if {@code command} is null
1301 dl 1.13 */
1302 dl 1.86 public void execute(Runnable command) {
1303     if (command == null)
1304     throw new NullPointerException();
1305 dl 1.107 /*
1306     * Proceed in 3 steps:
1307     *
1308     * 1. If fewer than corePoolSize threads are running, try to
1309     * start a new thread with the given command as its first
1310     * task. The call to addWorker atomically checks runState and
1311     * workerCount, and so prevents false alarms that would add
1312     * threads when it shouldn't, by returning false.
1313     *
1314     * 2. If a task can be successfully queued, then we still need
1315     * to double-check whether we should have added a thread
1316     * (because existing ones died since last checking) or that
1317     * the pool shut down since entry into this method. So we
1318     * recheck state and if necessary roll back the enqueuing if
1319     * stopped, or start a new thread if there are none.
1320     *
1321     * 3. If we cannot queue task, then we try to add a new
1322     * thread. If it fails, we know we are shut down or saturated
1323     * and so reject the task.
1324     */
1325     int c = ctl.get();
1326     if (workerCountOf(c) < corePoolSize) {
1327     if (addWorker(command, true))
1328     return;
1329     c = ctl.get();
1330     }
1331 jsr166 1.117 if (isRunning(c) && workQueue.offer(command)) {
1332 dl 1.107 int recheck = ctl.get();
1333 jsr166 1.117 if (! isRunning(recheck) && remove(command))
1334 dl 1.107 reject(command);
1335     else if (workerCountOf(recheck) == 0)
1336     addWorker(null, false);
1337 dl 1.86 }
1338 dl 1.107 else if (!addWorker(command, false))
1339 dl 1.85 reject(command);
1340 tim 1.1 }
1341 dl 1.4
1342 dl 1.53 /**
1343     * Initiates an orderly shutdown in which previously submitted
1344 jsr166 1.116 * tasks are executed, but no new tasks will be accepted.
1345     * Invocation has no additional effect if already shut down.
1346     *
1347 jsr166 1.122 * <p>This method does not wait for previously submitted tasks to
1348     * complete execution. Use {@link #awaitTermination awaitTermination}
1349     * to do that.
1350     *
1351 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1352 dl 1.53 */
1353 dl 1.2 public void shutdown() {
1354 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1355 dl 1.2 mainLock.lock();
1356     try {
1357 dl 1.107 checkShutdownAccess();
1358     advanceRunState(SHUTDOWN);
1359 jsr166 1.113 interruptIdleWorkers();
1360 dl 1.107 onShutdown(); // hook for ScheduledThreadPoolExecutor
1361 tim 1.14 } finally {
1362 dl 1.2 mainLock.unlock();
1363     }
1364 dl 1.107 tryTerminate();
1365 tim 1.1 }
1366    
1367 dl 1.53 /**
1368     * Attempts to stop all actively executing tasks, halts the
1369 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1370 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1371     * from the task queue upon return from this method.
1372 jsr166 1.66 *
1373 jsr166 1.122 * <p>This method does not wait for actively executing tasks to
1374     * terminate. Use {@link #awaitTermination awaitTermination} to
1375     * do that.
1376     *
1377 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1378     * processing actively executing tasks. This implementation
1379     * cancels tasks via {@link Thread#interrupt}, so any task that
1380     * fails to respond to interrupts may never terminate.
1381 dl 1.53 *
1382 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1383 dl 1.53 */
1384 tim 1.39 public List<Runnable> shutdownNow() {
1385 dl 1.107 List<Runnable> tasks;
1386 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1387 dl 1.2 mainLock.lock();
1388     try {
1389 dl 1.107 checkShutdownAccess();
1390     advanceRunState(STOP);
1391     interruptWorkers();
1392     tasks = drainQueue();
1393 tim 1.14 } finally {
1394 dl 1.2 mainLock.unlock();
1395     }
1396 dl 1.107 tryTerminate();
1397     return tasks;
1398 dl 1.86 }
1399    
1400 dl 1.2 public boolean isShutdown() {
1401 jsr166 1.117 return ! isRunning(ctl.get());
1402 dl 1.16 }
1403    
1404 jsr166 1.66 /**
1405 dl 1.55 * Returns true if this executor is in the process of terminating
1406 jsr166 1.117 * after {@link #shutdown} or {@link #shutdownNow} but has not
1407 dl 1.16 * completely terminated. This method may be useful for
1408 jsr166 1.116 * debugging. A return of {@code true} reported a sufficient
1409 dl 1.16 * period after shutdown may indicate that submitted tasks have
1410     * ignored or suppressed interruption, causing this executor not
1411     * to properly terminate.
1412 jsr166 1.116 *
1413 jsr166 1.93 * @return true if terminating but not yet terminated
1414 dl 1.16 */
1415     public boolean isTerminating() {
1416 jsr166 1.117 int c = ctl.get();
1417     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1418 tim 1.1 }
1419    
1420 dl 1.2 public boolean isTerminated() {
1421 jsr166 1.117 return runStateAtLeast(ctl.get(), TERMINATED);
1422 dl 1.2 }
1423 tim 1.1
1424 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1425     throws InterruptedException {
1426 dl 1.50 long nanos = unit.toNanos(timeout);
1427 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1428 dl 1.2 mainLock.lock();
1429     try {
1430 dl 1.25 for (;;) {
1431 jsr166 1.117 if (runStateAtLeast(ctl.get(), TERMINATED))
1432 dl 1.25 return true;
1433     if (nanos <= 0)
1434     return false;
1435     nanos = termination.awaitNanos(nanos);
1436     }
1437 tim 1.14 } finally {
1438 dl 1.2 mainLock.unlock();
1439     }
1440 dl 1.15 }
1441    
1442     /**
1443 jsr166 1.116 * Invokes {@code shutdown} when this executor is no longer
1444     * referenced and it has no threads.
1445 jsr166 1.66 */
1446 dl 1.107 protected void finalize() {
1447 dl 1.15 shutdown();
1448 dl 1.2 }
1449 tim 1.10
1450 dl 1.2 /**
1451     * Sets the thread factory used to create new threads.
1452     *
1453     * @param threadFactory the new thread factory
1454 dl 1.30 * @throws NullPointerException if threadFactory is null
1455 tim 1.11 * @see #getThreadFactory
1456 dl 1.2 */
1457     public void setThreadFactory(ThreadFactory threadFactory) {
1458 dl 1.30 if (threadFactory == null)
1459     throw new NullPointerException();
1460 dl 1.2 this.threadFactory = threadFactory;
1461 tim 1.1 }
1462    
1463 dl 1.2 /**
1464     * Returns the thread factory used to create new threads.
1465     *
1466     * @return the current thread factory
1467 tim 1.11 * @see #setThreadFactory
1468 dl 1.2 */
1469     public ThreadFactory getThreadFactory() {
1470     return threadFactory;
1471 tim 1.1 }
1472    
1473 dl 1.2 /**
1474     * Sets a new handler for unexecutable tasks.
1475     *
1476     * @param handler the new handler
1477 dl 1.31 * @throws NullPointerException if handler is null
1478 tim 1.11 * @see #getRejectedExecutionHandler
1479 dl 1.2 */
1480     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1481 dl 1.31 if (handler == null)
1482     throw new NullPointerException();
1483 dl 1.2 this.handler = handler;
1484     }
1485 tim 1.1
1486 dl 1.2 /**
1487     * Returns the current handler for unexecutable tasks.
1488     *
1489     * @return the current handler
1490 tim 1.11 * @see #setRejectedExecutionHandler
1491 dl 1.2 */
1492     public RejectedExecutionHandler getRejectedExecutionHandler() {
1493     return handler;
1494 tim 1.1 }
1495    
1496 dl 1.2 /**
1497     * Sets the core number of threads. This overrides any value set
1498     * in the constructor. If the new value is smaller than the
1499     * current value, excess existing threads will be terminated when
1500 jsr166 1.116 * they next become idle. If larger, new threads will, if needed,
1501 dl 1.34 * be started to execute any queued tasks.
1502 tim 1.1 *
1503 dl 1.2 * @param corePoolSize the new core size
1504 jsr166 1.116 * @throws IllegalArgumentException if {@code corePoolSize < 0}
1505 tim 1.11 * @see #getCorePoolSize
1506 tim 1.1 */
1507 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1508     if (corePoolSize < 0)
1509     throw new IllegalArgumentException();
1510 dl 1.107 int delta = corePoolSize - this.corePoolSize;
1511     this.corePoolSize = corePoolSize;
1512     if (workerCountOf(ctl.get()) > corePoolSize)
1513 jsr166 1.113 interruptIdleWorkers();
1514 dl 1.107 else if (delta > 0) {
1515     // We don't really know how many new threads are "needed".
1516     // As a heuristic, prestart enough new workers (up to new
1517     // core size) to handle the current number of tasks in
1518     // queue, but stop if queue becomes empty while doing so.
1519     int k = Math.min(delta, workQueue.size());
1520     while (k-- > 0 && addWorker(null, true)) {
1521     if (workQueue.isEmpty())
1522     break;
1523 tim 1.38 }
1524 dl 1.2 }
1525     }
1526 tim 1.1
1527     /**
1528 dl 1.2 * Returns the core number of threads.
1529 tim 1.1 *
1530 dl 1.2 * @return the core number of threads
1531 tim 1.11 * @see #setCorePoolSize
1532 tim 1.1 */
1533 tim 1.10 public int getCorePoolSize() {
1534 dl 1.2 return corePoolSize;
1535 dl 1.16 }
1536    
1537     /**
1538 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1539 dl 1.16 * overrides the default policy of starting core threads only when
1540 jsr166 1.116 * new tasks are executed. This method will return {@code false}
1541 dl 1.16 * if all core threads have already been started.
1542 jsr166 1.116 *
1543     * @return {@code true} if a thread was started
1544 jsr166 1.66 */
1545 dl 1.16 public boolean prestartCoreThread() {
1546 dl 1.107 return workerCountOf(ctl.get()) < corePoolSize &&
1547     addWorker(null, true);
1548 dl 1.16 }
1549    
1550     /**
1551 dl 1.125 * Same as prestartCoreThread except arranges that at least one
1552     * thread is started even if corePoolSize is 0.
1553     */
1554     void ensurePrestart() {
1555     int wc = workerCountOf(ctl.get());
1556 dl 1.126 if (wc < corePoolSize)
1557     addWorker(null, true);
1558     else if (wc == 0)
1559 dl 1.125 addWorker(null, false);
1560     }
1561    
1562     /**
1563 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1564 dl 1.16 * overrides the default policy of starting core threads only when
1565 jsr166 1.66 * new tasks are executed.
1566 jsr166 1.116 *
1567 jsr166 1.88 * @return the number of threads started
1568 jsr166 1.66 */
1569 dl 1.16 public int prestartAllCoreThreads() {
1570     int n = 0;
1571 dl 1.107 while (addWorker(null, true))
1572 dl 1.16 ++n;
1573     return n;
1574 dl 1.2 }
1575 tim 1.1
1576     /**
1577 dl 1.62 * Returns true if this pool allows core threads to time out and
1578     * terminate if no tasks arrive within the keepAlive time, being
1579     * replaced if needed when new tasks arrive. When true, the same
1580     * keep-alive policy applying to non-core threads applies also to
1581     * core threads. When false (the default), core threads are never
1582     * terminated due to lack of incoming tasks.
1583 jsr166 1.116 *
1584     * @return {@code true} if core threads are allowed to time out,
1585     * else {@code false}
1586 jsr166 1.72 *
1587     * @since 1.6
1588 dl 1.62 */
1589     public boolean allowsCoreThreadTimeOut() {
1590     return allowCoreThreadTimeOut;
1591     }
1592    
1593     /**
1594     * Sets the policy governing whether core threads may time out and
1595     * terminate if no tasks arrive within the keep-alive time, being
1596     * replaced if needed when new tasks arrive. When false, core
1597     * threads are never terminated due to lack of incoming
1598     * tasks. When true, the same keep-alive policy applying to
1599     * non-core threads applies also to core threads. To avoid
1600     * continual thread replacement, the keep-alive time must be
1601 jsr166 1.116 * greater than zero when setting {@code true}. This method
1602 dl 1.64 * should in general be called before the pool is actively used.
1603 jsr166 1.116 *
1604     * @param value {@code true} if should time out, else {@code false}
1605     * @throws IllegalArgumentException if value is {@code true}
1606     * and the current keep-alive time is not greater than zero
1607 jsr166 1.72 *
1608     * @since 1.6
1609 dl 1.62 */
1610     public void allowCoreThreadTimeOut(boolean value) {
1611 dl 1.64 if (value && keepAliveTime <= 0)
1612     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1613 dl 1.107 if (value != allowCoreThreadTimeOut) {
1614     allowCoreThreadTimeOut = value;
1615     if (value)
1616 jsr166 1.113 interruptIdleWorkers();
1617 dl 1.107 }
1618 dl 1.62 }
1619    
1620     /**
1621 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1622 dl 1.2 * value set in the constructor. If the new value is smaller than
1623     * the current value, excess existing threads will be
1624     * terminated when they next become idle.
1625 tim 1.1 *
1626 dl 1.2 * @param maximumPoolSize the new maximum
1627 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1628     * less than or equal to zero, or
1629     * less than the {@linkplain #getCorePoolSize core pool size}
1630 tim 1.11 * @see #getMaximumPoolSize
1631 dl 1.2 */
1632     public void setMaximumPoolSize(int maximumPoolSize) {
1633     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1634     throw new IllegalArgumentException();
1635 dl 1.107 this.maximumPoolSize = maximumPoolSize;
1636     if (workerCountOf(ctl.get()) > maximumPoolSize)
1637 jsr166 1.113 interruptIdleWorkers();
1638 dl 1.2 }
1639 tim 1.1
1640     /**
1641     * Returns the maximum allowed number of threads.
1642     *
1643 dl 1.2 * @return the maximum allowed number of threads
1644 tim 1.11 * @see #setMaximumPoolSize
1645 tim 1.1 */
1646 tim 1.10 public int getMaximumPoolSize() {
1647 dl 1.2 return maximumPoolSize;
1648     }
1649 tim 1.1
1650     /**
1651     * Sets the time limit for which threads may remain idle before
1652 dl 1.2 * being terminated. If there are more than the core number of
1653 tim 1.1 * threads currently in the pool, after waiting this amount of
1654     * time without processing a task, excess threads will be
1655     * terminated. This overrides any value set in the constructor.
1656 jsr166 1.116 *
1657 tim 1.1 * @param time the time to wait. A time value of zero will cause
1658 jsr166 1.116 * excess threads to terminate immediately after executing tasks.
1659     * @param unit the time unit of the {@code time} argument
1660     * @throws IllegalArgumentException if {@code time} less than zero or
1661     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1662 tim 1.11 * @see #getKeepAliveTime
1663 tim 1.1 */
1664 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1665     if (time < 0)
1666     throw new IllegalArgumentException();
1667 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1668     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1669 dl 1.107 long keepAliveTime = unit.toNanos(time);
1670     long delta = keepAliveTime - this.keepAliveTime;
1671     this.keepAliveTime = keepAliveTime;
1672     if (delta < 0)
1673 jsr166 1.113 interruptIdleWorkers();
1674 dl 1.2 }
1675 tim 1.1
1676     /**
1677     * Returns the thread keep-alive time, which is the amount of time
1678 jsr166 1.93 * that threads in excess of the core pool size may remain
1679 tim 1.10 * idle before being terminated.
1680 tim 1.1 *
1681 dl 1.2 * @param unit the desired time unit of the result
1682 tim 1.1 * @return the time limit
1683 tim 1.11 * @see #setKeepAliveTime
1684 tim 1.1 */
1685 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1686 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1687     }
1688 tim 1.1
1689 dl 1.86 /* User-level queue utilities */
1690    
1691     /**
1692     * Returns the task queue used by this executor. Access to the
1693     * task queue is intended primarily for debugging and monitoring.
1694     * This queue may be in active use. Retrieving the task queue
1695     * does not prevent queued tasks from executing.
1696     *
1697     * @return the task queue
1698     */
1699     public BlockingQueue<Runnable> getQueue() {
1700     return workQueue;
1701     }
1702    
1703     /**
1704     * Removes this task from the executor's internal queue if it is
1705     * present, thus causing it not to be run if it has not already
1706     * started.
1707     *
1708     * <p> This method may be useful as one part of a cancellation
1709     * scheme. It may fail to remove tasks that have been converted
1710     * into other forms before being placed on the internal queue. For
1711 jsr166 1.116 * example, a task entered using {@code submit} might be
1712     * converted into a form that maintains {@code Future} status.
1713 jsr166 1.117 * However, in such cases, method {@link #purge} may be used to
1714     * remove those Futures that have been cancelled.
1715 dl 1.86 *
1716     * @param task the task to remove
1717     * @return true if the task was removed
1718     */
1719     public boolean remove(Runnable task) {
1720 jsr166 1.116 boolean removed = workQueue.remove(task);
1721     tryTerminate(); // In case SHUTDOWN and now empty
1722 dl 1.107 return removed;
1723 dl 1.86 }
1724    
1725     /**
1726     * Tries to remove from the work queue all {@link Future}
1727     * tasks that have been cancelled. This method can be useful as a
1728     * storage reclamation operation, that has no other impact on
1729     * functionality. Cancelled tasks are never executed, but may
1730     * accumulate in work queues until worker threads can actively
1731     * remove them. Invoking this method instead tries to remove them now.
1732     * However, this method may fail to remove tasks in
1733     * the presence of interference by other threads.
1734     */
1735     public void purge() {
1736 jsr166 1.111 final BlockingQueue<Runnable> q = workQueue;
1737 dl 1.86 try {
1738 dl 1.107 Iterator<Runnable> it = q.iterator();
1739 dl 1.86 while (it.hasNext()) {
1740     Runnable r = it.next();
1741 jsr166 1.111 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1742 jsr166 1.121 it.remove();
1743 dl 1.107 }
1744 jsr166 1.111 } catch (ConcurrentModificationException fallThrough) {
1745 jsr166 1.121 // Take slow path if we encounter interference during traversal.
1746 jsr166 1.111 // Make copy for traversal and call remove for cancelled entries.
1747 jsr166 1.121 // The slow path is more likely to be O(N*N).
1748 jsr166 1.111 for (Object r : q.toArray())
1749     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1750 jsr166 1.121 q.remove(r);
1751 dl 1.86 }
1752 dl 1.107
1753     tryTerminate(); // In case SHUTDOWN and now empty
1754 dl 1.86 }
1755    
1756 tim 1.1 /* Statistics */
1757    
1758     /**
1759     * Returns the current number of threads in the pool.
1760     *
1761     * @return the number of threads
1762     */
1763 tim 1.10 public int getPoolSize() {
1764 dl 1.107 final ReentrantLock mainLock = this.mainLock;
1765     mainLock.lock();
1766     try {
1767 jsr166 1.121 // Remove rare and surprising possibility of
1768     // isTerminated() && getPoolSize() > 0
1769 jsr166 1.117 return runStateAtLeast(ctl.get(), TIDYING) ? 0
1770 jsr166 1.121 : workers.size();
1771 dl 1.107 } finally {
1772     mainLock.unlock();
1773     }
1774 dl 1.2 }
1775 tim 1.1
1776     /**
1777 dl 1.2 * Returns the approximate number of threads that are actively
1778 tim 1.1 * executing tasks.
1779     *
1780     * @return the number of threads
1781     */
1782 tim 1.10 public int getActiveCount() {
1783 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1784 dl 1.2 mainLock.lock();
1785     try {
1786     int n = 0;
1787 jsr166 1.116 for (Worker w : workers)
1788 dl 1.107 if (w.isLocked())
1789 dl 1.2 ++n;
1790     return n;
1791 tim 1.14 } finally {
1792 dl 1.2 mainLock.unlock();
1793     }
1794     }
1795 tim 1.1
1796     /**
1797 dl 1.2 * Returns the largest number of threads that have ever
1798     * simultaneously been in the pool.
1799 tim 1.1 *
1800     * @return the number of threads
1801     */
1802 tim 1.10 public int getLargestPoolSize() {
1803 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1804 dl 1.2 mainLock.lock();
1805     try {
1806     return largestPoolSize;
1807 tim 1.14 } finally {
1808 dl 1.2 mainLock.unlock();
1809     }
1810     }
1811 tim 1.1
1812     /**
1813 dl 1.85 * Returns the approximate total number of tasks that have ever been
1814 dl 1.2 * scheduled for execution. Because the states of tasks and
1815     * threads may change dynamically during computation, the returned
1816 dl 1.97 * value is only an approximation.
1817 tim 1.1 *
1818     * @return the number of tasks
1819     */
1820 tim 1.10 public long getTaskCount() {
1821 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1822 dl 1.2 mainLock.lock();
1823     try {
1824     long n = completedTaskCount;
1825 tim 1.39 for (Worker w : workers) {
1826 dl 1.2 n += w.completedTasks;
1827 dl 1.107 if (w.isLocked())
1828 dl 1.2 ++n;
1829     }
1830     return n + workQueue.size();
1831 tim 1.14 } finally {
1832 dl 1.2 mainLock.unlock();
1833     }
1834     }
1835 tim 1.1
1836     /**
1837 dl 1.2 * Returns the approximate total number of tasks that have
1838     * completed execution. Because the states of tasks and threads
1839     * may change dynamically during computation, the returned value
1840 dl 1.17 * is only an approximation, but one that does not ever decrease
1841     * across successive calls.
1842 tim 1.1 *
1843     * @return the number of tasks
1844     */
1845 tim 1.10 public long getCompletedTaskCount() {
1846 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1847 dl 1.2 mainLock.lock();
1848     try {
1849     long n = completedTaskCount;
1850 tim 1.39 for (Worker w : workers)
1851     n += w.completedTasks;
1852 dl 1.2 return n;
1853 tim 1.14 } finally {
1854 dl 1.2 mainLock.unlock();
1855     }
1856     }
1857 tim 1.1
1858 dl 1.123 /**
1859     * Returns a string identifying this pool, as well as its state,
1860     * including indications of run state and estimated worker and
1861     * task counts.
1862     *
1863     * @return a string identifying this pool, as well as its state
1864     */
1865     public String toString() {
1866     long ncompleted;
1867     int nworkers, nactive;
1868     final ReentrantLock mainLock = this.mainLock;
1869     mainLock.lock();
1870     try {
1871     ncompleted = completedTaskCount;
1872     nactive = 0;
1873     nworkers = workers.size();
1874     for (Worker w : workers) {
1875     ncompleted += w.completedTasks;
1876     if (w.isLocked())
1877     ++nactive;
1878     }
1879     } finally {
1880     mainLock.unlock();
1881     }
1882     int c = ctl.get();
1883     String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :
1884     (runStateAtLeast(c, TERMINATED) ? "Terminated" :
1885     "Shutting down"));
1886     return super.toString() +
1887     "[" + rs +
1888     ", pool size = " + nworkers +
1889     ", active threads = " + nactive +
1890     ", queued tasks = " + workQueue.size() +
1891     ", completed tasks = " + ncompleted +
1892     "]";
1893     }
1894    
1895 dl 1.86 /* Extension hooks */
1896    
1897 tim 1.1 /**
1898 dl 1.17 * Method invoked prior to executing the given Runnable in the
1899 jsr166 1.116 * given thread. This method is invoked by thread {@code t} that
1900     * will execute task {@code r}, and may be used to re-initialize
1901 jsr166 1.73 * ThreadLocals, or to perform logging.
1902     *
1903     * <p>This implementation does nothing, but may be customized in
1904     * subclasses. Note: To properly nest multiple overridings, subclasses
1905 jsr166 1.116 * should generally invoke {@code super.beforeExecute} at the end of
1906 jsr166 1.73 * this method.
1907 tim 1.1 *
1908 jsr166 1.116 * @param t the thread that will run task {@code r}
1909     * @param r the task that will be executed
1910 tim 1.1 */
1911 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1912 tim 1.1
1913     /**
1914 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1915     * This method is invoked by the thread that executed the task. If
1916 jsr166 1.116 * non-null, the Throwable is the uncaught {@code RuntimeException}
1917     * or {@code Error} that caused execution to terminate abruptly.
1918 dl 1.69 *
1919 dl 1.107 * <p>This implementation does nothing, but may be customized in
1920     * subclasses. Note: To properly nest multiple overridings, subclasses
1921 jsr166 1.116 * should generally invoke {@code super.afterExecute} at the
1922 dl 1.107 * beginning of this method.
1923     *
1924 dl 1.69 * <p><b>Note:</b> When actions are enclosed in tasks (such as
1925     * {@link FutureTask}) either explicitly or via methods such as
1926 jsr166 1.116 * {@code submit}, these task objects catch and maintain
1927 dl 1.69 * computational exceptions, and so they do not cause abrupt
1928 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1929 dl 1.107 * passed to this method. If you would like to trap both kinds of
1930     * failures in this method, you can further probe for such cases,
1931     * as in this sample subclass that prints either the direct cause
1932     * or the underlying exception if a task has been aborted:
1933     *
1934 jsr166 1.116 * <pre> {@code
1935 dl 1.107 * class ExtendedExecutor extends ThreadPoolExecutor {
1936     * // ...
1937     * protected void afterExecute(Runnable r, Throwable t) {
1938     * super.afterExecute(r, t);
1939 jsr166 1.116 * if (t == null && r instanceof Future<?>) {
1940 dl 1.107 * try {
1941 jsr166 1.116 * Object result = ((Future<?>) r).get();
1942 dl 1.107 * } catch (CancellationException ce) {
1943     * t = ce;
1944     * } catch (ExecutionException ee) {
1945     * t = ee.getCause();
1946     * } catch (InterruptedException ie) {
1947     * Thread.currentThread().interrupt(); // ignore/reset
1948     * }
1949     * }
1950     * if (t != null)
1951     * System.out.println(t);
1952     * }
1953 jsr166 1.116 * }}</pre>
1954 tim 1.1 *
1955 jsr166 1.116 * @param r the runnable that has completed
1956 dl 1.24 * @param t the exception that caused termination, or null if
1957 jsr166 1.116 * execution completed normally
1958 tim 1.1 */
1959 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1960 tim 1.1
1961 dl 1.2 /**
1962     * Method invoked when the Executor has terminated. Default
1963 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1964     * overridings, subclasses should generally invoke
1965 jsr166 1.116 * {@code super.terminated} within this method.
1966 dl 1.2 */
1967     protected void terminated() { }
1968 tim 1.1
1969 dl 1.86 /* Predefined RejectedExecutionHandlers */
1970    
1971 tim 1.1 /**
1972 dl 1.21 * A handler for rejected tasks that runs the rejected task
1973 jsr166 1.116 * directly in the calling thread of the {@code execute} method,
1974 dl 1.21 * unless the executor has been shut down, in which case the task
1975     * is discarded.
1976 tim 1.1 */
1977 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1978 tim 1.1 /**
1979 jsr166 1.116 * Creates a {@code CallerRunsPolicy}.
1980 tim 1.1 */
1981     public CallerRunsPolicy() { }
1982    
1983 dl 1.24 /**
1984     * Executes task r in the caller's thread, unless the executor
1985     * has been shut down, in which case the task is discarded.
1986 jsr166 1.116 *
1987 dl 1.24 * @param r the runnable task requested to be executed
1988     * @param e the executor attempting to execute this task
1989     */
1990 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1991     if (!e.isShutdown()) {
1992 tim 1.1 r.run();
1993     }
1994     }
1995     }
1996    
1997     /**
1998 dl 1.21 * A handler for rejected tasks that throws a
1999 jsr166 1.116 * {@code RejectedExecutionException}.
2000 tim 1.1 */
2001 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
2002 tim 1.1 /**
2003 jsr166 1.116 * Creates an {@code AbortPolicy}.
2004 tim 1.1 */
2005     public AbortPolicy() { }
2006    
2007 dl 1.24 /**
2008 dl 1.54 * Always throws RejectedExecutionException.
2009 jsr166 1.116 *
2010 dl 1.24 * @param r the runnable task requested to be executed
2011     * @param e the executor attempting to execute this task
2012     * @throws RejectedExecutionException always.
2013     */
2014 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2015 dl 1.123 throw new RejectedExecutionException("Task " + r.toString() +
2016     " rejected from " +
2017     e.toString());
2018 tim 1.1 }
2019     }
2020    
2021     /**
2022 dl 1.21 * A handler for rejected tasks that silently discards the
2023     * rejected task.
2024 tim 1.1 */
2025 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
2026 tim 1.1 /**
2027 jsr166 1.116 * Creates a {@code DiscardPolicy}.
2028 tim 1.1 */
2029     public DiscardPolicy() { }
2030    
2031 dl 1.24 /**
2032     * Does nothing, which has the effect of discarding task r.
2033 jsr166 1.116 *
2034 dl 1.24 * @param r the runnable task requested to be executed
2035     * @param e the executor attempting to execute this task
2036     */
2037 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2038 tim 1.1 }
2039     }
2040    
2041     /**
2042 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
2043 jsr166 1.116 * request and then retries {@code execute}, unless the executor
2044 dl 1.21 * is shut down, in which case the task is discarded.
2045 tim 1.1 */
2046 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2047 tim 1.1 /**
2048 jsr166 1.116 * Creates a {@code DiscardOldestPolicy} for the given executor.
2049 tim 1.1 */
2050     public DiscardOldestPolicy() { }
2051    
2052 dl 1.24 /**
2053     * Obtains and ignores the next task that the executor
2054     * would otherwise execute, if one is immediately available,
2055     * and then retries execution of task r, unless the executor
2056     * is shut down, in which case task r is instead discarded.
2057 jsr166 1.116 *
2058 dl 1.24 * @param r the runnable task requested to be executed
2059     * @param e the executor attempting to execute this task
2060     */
2061 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2062     if (!e.isShutdown()) {
2063     e.getQueue().poll();
2064     e.execute(r);
2065 tim 1.1 }
2066     }
2067     }
2068     }