ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.131
Committed: Thu Jun 21 02:48:31 2012 UTC (11 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.130: +1 -1 lines
Log Message:
typo

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4 jsr166 1.124 * http://creativecommons.org/publicdomain/zero/1.0/
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.127 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
9     import java.util.concurrent.locks.Condition;
10     import java.util.concurrent.locks.ReentrantLock;
11     import java.util.concurrent.atomic.AtomicInteger;
12 dl 1.2 import java.util.*;
13 tim 1.1
14     /**
15 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
16 dl 1.28 * one of possibly several pooled threads, normally configured
17     * using {@link Executors} factory methods.
18 tim 1.1 *
19 dl 1.17 * <p>Thread pools address two different problems: they usually
20     * provide improved performance when executing large numbers of
21     * asynchronous tasks, due to reduced per-task invocation overhead,
22     * and they provide a means of bounding and managing the resources,
23     * including threads, consumed when executing a collection of tasks.
24 jsr166 1.116 * Each {@code ThreadPoolExecutor} also maintains some basic
25 dl 1.22 * statistics, such as the number of completed tasks.
26 dl 1.17 *
27 tim 1.1 * <p>To be useful across a wide range of contexts, this class
28 dl 1.24 * provides many adjustable parameters and extensibility
29     * hooks. However, programmers are urged to use the more convenient
30 dl 1.20 * {@link Executors} factory methods {@link
31     * Executors#newCachedThreadPool} (unbounded thread pool, with
32     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
33     * (fixed size thread pool) and {@link
34     * Executors#newSingleThreadExecutor} (single background thread), that
35 dl 1.22 * preconfigure settings for the most common usage
36     * scenarios. Otherwise, use the following guide when manually
37 dl 1.24 * configuring and tuning this class:
38 dl 1.17 *
39 tim 1.1 * <dl>
40 dl 1.2 *
41 dl 1.21 * <dt>Core and maximum pool sizes</dt>
42 dl 1.2 *
43 jsr166 1.116 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
44 jsr166 1.117 * pool size (see {@link #getPoolSize})
45     * according to the bounds set by
46     * corePoolSize (see {@link #getCorePoolSize}) and
47     * maximumPoolSize (see {@link #getMaximumPoolSize}).
48     *
49     * When a new task is submitted in method {@link #execute}, and fewer
50     * than corePoolSize threads are running, a new thread is created to
51     * handle the request, even if other worker threads are idle. If
52     * there are more than corePoolSize but less than maximumPoolSize
53     * threads running, a new thread will be created only if the queue is
54     * full. By setting corePoolSize and maximumPoolSize the same, you
55     * create a fixed-size thread pool. By setting maximumPoolSize to an
56     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
57     * allow the pool to accommodate an arbitrary number of concurrent
58     * tasks. Most typically, core and maximum pool sizes are set only
59     * upon construction, but they may also be changed dynamically using
60     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
61 dl 1.2 *
62 jsr166 1.93 * <dt>On-demand construction</dt>
63 dl 1.2 *
64 dl 1.21 * <dd> By default, even core threads are initially created and
65 dl 1.69 * started only when new tasks arrive, but this can be overridden
66 jsr166 1.117 * dynamically using method {@link #prestartCoreThread} or {@link
67     * #prestartAllCoreThreads}. You probably want to prestart threads if
68     * you construct the pool with a non-empty queue. </dd>
69 dl 1.2 *
70 tim 1.1 * <dt>Creating new threads</dt>
71 dl 1.2 *
72 jsr166 1.117 * <dd>New threads are created using a {@link ThreadFactory}. If not
73     * otherwise specified, a {@link Executors#defaultThreadFactory} is
74     * used, that creates threads to all be in the same {@link
75     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
76     * non-daemon status. By supplying a different ThreadFactory, you can
77     * alter the thread's name, thread group, priority, daemon status,
78     * etc. If a {@code ThreadFactory} fails to create a thread when asked
79     * by returning null from {@code newThread}, the executor will
80     * continue, but might not be able to execute any tasks. Threads
81     * should possess the "modifyThread" {@code RuntimePermission}. If
82     * worker threads or other threads using the pool do not possess this
83     * permission, service may be degraded: configuration changes may not
84     * take effect in a timely manner, and a shutdown pool may remain in a
85     * state in which termination is possible but not completed.</dd>
86 dl 1.2 *
87 dl 1.21 * <dt>Keep-alive times</dt>
88     *
89     * <dd>If the pool currently has more than corePoolSize threads,
90     * excess threads will be terminated if they have been idle for more
91 jsr166 1.117 * than the keepAliveTime (see {@link #getKeepAliveTime}). This
92     * provides a means of reducing resource consumption when the pool is
93     * not being actively used. If the pool becomes more active later, new
94     * threads will be constructed. This parameter can also be changed
95     * dynamically using method {@link #setKeepAliveTime}. Using a value
96 jsr166 1.116 * of {@code Long.MAX_VALUE} {@link TimeUnit#NANOSECONDS} effectively
97 dl 1.62 * disables idle threads from ever terminating prior to shut down. By
98     * default, the keep-alive policy applies only when there are more
99     * than corePoolSizeThreads. But method {@link
100 jsr166 1.117 * #allowCoreThreadTimeOut(boolean)} can be used to apply this
101     * time-out policy to core threads as well, so long as the
102     * keepAliveTime value is non-zero. </dd>
103 dl 1.21 *
104 dl 1.48 * <dt>Queuing</dt>
105 dl 1.21 *
106     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
107     * submitted tasks. The use of this queue interacts with pool sizing:
108 dl 1.2 *
109 dl 1.21 * <ul>
110     *
111 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
112     * always prefers adding a new thread
113 dl 1.48 * rather than queuing.</li>
114 dl 1.21 *
115 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
116     * always prefers queuing a request rather than adding a new
117     * thread.</li>
118 jsr166 1.66 *
119 dl 1.21 * <li> If a request cannot be queued, a new thread is created unless
120     * this would exceed maximumPoolSize, in which case, the task will be
121     * rejected.</li>
122     *
123     * </ul>
124     *
125     * There are three general strategies for queuing:
126     * <ol>
127     *
128     * <li> <em> Direct handoffs.</em> A good default choice for a work
129     * queue is a {@link SynchronousQueue} that hands off tasks to threads
130     * without otherwise holding them. Here, an attempt to queue a task
131     * will fail if no threads are immediately available to run it, so a
132     * new thread will be constructed. This policy avoids lockups when
133     * handling sets of requests that might have internal dependencies.
134     * Direct handoffs generally require unbounded maximumPoolSizes to
135 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
136 dl 1.21 * possibility of unbounded thread growth when commands continue to
137     * arrive on average faster than they can be processed. </li>
138     *
139     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
140     * example a {@link LinkedBlockingQueue} without a predefined
141 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
142 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
143     * threads will ever be created. (And the value of the maximumPoolSize
144     * therefore doesn't have any effect.) This may be appropriate when
145     * each task is completely independent of others, so tasks cannot
146     * affect each others execution; for example, in a web page server.
147     * While this style of queuing can be useful in smoothing out
148     * transient bursts of requests, it admits the possibility of
149     * unbounded work queue growth when commands continue to arrive on
150     * average faster than they can be processed. </li>
151 dl 1.21 *
152     * <li><em>Bounded queues.</em> A bounded queue (for example, an
153     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
154     * used with finite maximumPoolSizes, but can be more difficult to
155     * tune and control. Queue sizes and maximum pool sizes may be traded
156     * off for each other: Using large queues and small pools minimizes
157     * CPU usage, OS resources, and context-switching overhead, but can
158 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
159 dl 1.21 * example if they are I/O bound), a system may be able to schedule
160     * time for more threads than you otherwise allow. Use of small queues
161 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
162     * may encounter unacceptable scheduling overhead, which also
163     * decreases throughput. </li>
164 dl 1.21 *
165     * </ol>
166     *
167     * </dd>
168     *
169     * <dt>Rejected tasks</dt>
170     *
171 jsr166 1.117 * <dd> New tasks submitted in method {@link #execute} will be
172     * <em>rejected</em> when the Executor has been shut down, and also
173     * when the Executor uses finite bounds for both maximum threads and
174     * work queue capacity, and is saturated. In either case, the {@code
175     * execute} method invokes the {@link
176     * RejectedExecutionHandler#rejectedExecution} method of its {@link
177     * RejectedExecutionHandler}. Four predefined handler policies are
178     * provided:
179 dl 1.21 *
180     * <ol>
181     *
182 jsr166 1.117 * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
183     * handler throws a runtime {@link RejectedExecutionException} upon
184     * rejection. </li>
185     *
186     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
187     * that invokes {@code execute} itself runs the task. This provides a
188     * simple feedback control mechanism that will slow down the rate that
189     * new tasks are submitted. </li>
190     *
191     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
192     * cannot be executed is simply dropped. </li>
193     *
194     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
195     * executor is not shut down, the task at the head of the work queue
196     * is dropped, and then execution is retried (which can fail again,
197     * causing this to be repeated.) </li>
198 dl 1.21 *
199     * </ol>
200     *
201     * It is possible to define and use other kinds of {@link
202     * RejectedExecutionHandler} classes. Doing so requires some care
203     * especially when policies are designed to work only under particular
204 dl 1.48 * capacity or queuing policies. </dd>
205 dl 1.21 *
206     * <dt>Hook methods</dt>
207     *
208 jsr166 1.116 * <dd>This class provides {@code protected} overridable {@link
209 jsr166 1.117 * #beforeExecute} and {@link #afterExecute} methods that are called
210     * before and after execution of each task. These can be used to
211     * manipulate the execution environment; for example, reinitializing
212     * ThreadLocals, gathering statistics, or adding log
213     * entries. Additionally, method {@link #terminated} can be overridden
214     * to perform any special processing that needs to be done once the
215     * Executor has fully terminated.
216     *
217     * <p>If hook or callback methods throw exceptions, internal worker
218     * threads may in turn fail and abruptly terminate.</dd>
219 dl 1.2 *
220 dl 1.21 * <dt>Queue maintenance</dt>
221 dl 1.2 *
222 jsr166 1.117 * <dd> Method {@link #getQueue} allows access to the work queue for
223     * purposes of monitoring and debugging. Use of this method for any
224     * other purpose is strongly discouraged. Two supplied methods,
225     * {@link #remove} and {@link #purge} are available to assist in
226     * storage reclamation when large numbers of queued tasks become
227 jsr166 1.80 * cancelled.</dd>
228 dl 1.79 *
229     * <dt>Finalization</dt>
230     *
231     * <dd> A pool that is no longer referenced in a program <em>AND</em>
232 jsr166 1.117 * has no remaining threads will be {@code shutdown} automatically. If
233     * you would like to ensure that unreferenced pools are reclaimed even
234     * if users forget to call {@link #shutdown}, then you must arrange
235     * that unused threads eventually die, by setting appropriate
236     * keep-alive times, using a lower bound of zero core threads and/or
237     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
238     *
239     * </dl>
240 tim 1.1 *
241 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
242     * override one or more of the protected hook methods. For example,
243     * here is a subclass that adds a simple pause/resume feature:
244     *
245 jsr166 1.116 * <pre> {@code
246 dl 1.43 * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
247     * private boolean isPaused;
248     * private ReentrantLock pauseLock = new ReentrantLock();
249     * private Condition unpaused = pauseLock.newCondition();
250     *
251     * public PausableThreadPoolExecutor(...) { super(...); }
252 jsr166 1.66 *
253 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
254     * super.beforeExecute(t, r);
255     * pauseLock.lock();
256     * try {
257     * while (isPaused) unpaused.await();
258 jsr166 1.66 * } catch (InterruptedException ie) {
259 dl 1.53 * t.interrupt();
260 dl 1.43 * } finally {
261 dl 1.53 * pauseLock.unlock();
262 dl 1.43 * }
263     * }
264 jsr166 1.66 *
265 dl 1.43 * public void pause() {
266     * pauseLock.lock();
267     * try {
268     * isPaused = true;
269     * } finally {
270 dl 1.53 * pauseLock.unlock();
271 dl 1.43 * }
272     * }
273 jsr166 1.66 *
274 dl 1.43 * public void resume() {
275     * pauseLock.lock();
276     * try {
277     * isPaused = false;
278     * unpaused.signalAll();
279     * } finally {
280 dl 1.53 * pauseLock.unlock();
281 dl 1.43 * }
282     * }
283 jsr166 1.116 * }}</pre>
284     *
285 tim 1.1 * @since 1.5
286 dl 1.8 * @author Doug Lea
287 tim 1.1 */
288 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
289 dl 1.86 /**
290 dl 1.107 * The main pool control state, ctl, is an atomic integer packing
291     * two conceptual fields
292     * workerCount, indicating the effective number of threads
293     * runState, indicating whether running, shutting down etc
294     *
295     * In order to pack them into one int, we limit workerCount to
296 jsr166 1.117 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
297 dl 1.107 * billion) otherwise representable. If this is ever an issue in
298     * the future, the variable can be changed to be an AtomicLong,
299     * and the shift/mask constants below adjusted. But until the need
300     * arises, this code is a bit faster and simpler using an int.
301     *
302     * The workerCount is the number of workers that have been
303     * permitted to start and not permitted to stop. The value may be
304 jsr166 1.110 * transiently different from the actual number of live threads,
305 dl 1.107 * for example when a ThreadFactory fails to create a thread when
306     * asked, and when exiting threads are still performing
307     * bookkeeping before terminating. The user-visible pool size is
308     * reported as the current size of the workers set.
309     *
310 jsr166 1.131 * The runState provides the main lifecycle control, taking on values:
311 dl 1.86 *
312 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
313     * SHUTDOWN: Don't accept new tasks, but process queued tasks
314 jsr166 1.91 * STOP: Don't accept new tasks, don't process queued tasks,
315 dl 1.85 * and interrupt in-progress tasks
316 jsr166 1.117 * TIDYING: All tasks have terminated, workerCount is zero,
317     * the thread transitioning to state TIDYING
318     * will run the terminated() hook method
319     * TERMINATED: terminated() has completed
320 dl 1.86 *
321     * The numerical order among these values matters, to allow
322     * ordered comparisons. The runState monotonically increases over
323     * time, but need not hit each state. The transitions are:
324 jsr166 1.87 *
325     * RUNNING -> SHUTDOWN
326 jsr166 1.88 * On invocation of shutdown(), perhaps implicitly in finalize()
327 jsr166 1.87 * (RUNNING or SHUTDOWN) -> STOP
328 dl 1.86 * On invocation of shutdownNow()
329 jsr166 1.117 * SHUTDOWN -> TIDYING
330 dl 1.86 * When both queue and pool are empty
331 jsr166 1.117 * STOP -> TIDYING
332 dl 1.86 * When pool is empty
333 jsr166 1.117 * TIDYING -> TERMINATED
334     * When the terminated() hook method has completed
335     *
336     * Threads waiting in awaitTermination() will return when the
337     * state reaches TERMINATED.
338 dl 1.107 *
339 jsr166 1.117 * Detecting the transition from SHUTDOWN to TIDYING is less
340 dl 1.107 * straightforward than you'd like because the queue may become
341     * empty after non-empty and vice versa during SHUTDOWN state, but
342     * we can only terminate if, after seeing that it is empty, we see
343     * that workerCount is 0 (which sometimes entails a recheck -- see
344     * below).
345     */
346     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
347 jsr166 1.117 private static final int COUNT_BITS = Integer.SIZE - 3;
348 dl 1.107 private static final int CAPACITY = (1 << COUNT_BITS) - 1;
349    
350 jsr166 1.117 // runState is stored in the high-order bits
351     private static final int RUNNING = -1 << COUNT_BITS;
352     private static final int SHUTDOWN = 0 << COUNT_BITS;
353     private static final int STOP = 1 << COUNT_BITS;
354     private static final int TIDYING = 2 << COUNT_BITS;
355     private static final int TERMINATED = 3 << COUNT_BITS;
356 dl 1.107
357     // Packing and unpacking ctl
358 jsr166 1.117 private static int runStateOf(int c) { return c & ~CAPACITY; }
359     private static int workerCountOf(int c) { return c & CAPACITY; }
360     private static int ctlOf(int rs, int wc) { return rs | wc; }
361    
362     /*
363     * Bit field accessors that don't require unpacking ctl.
364     * These depend on the bit layout and on workerCount being never negative.
365     */
366    
367     private static boolean runStateLessThan(int c, int s) {
368 jsr166 1.121 return c < s;
369 jsr166 1.117 }
370    
371     private static boolean runStateAtLeast(int c, int s) {
372 jsr166 1.121 return c >= s;
373 jsr166 1.117 }
374    
375     private static boolean isRunning(int c) {
376 jsr166 1.121 return c < SHUTDOWN;
377 jsr166 1.117 }
378    
379     /**
380     * Attempt to CAS-increment the workerCount field of ctl.
381     */
382     private boolean compareAndIncrementWorkerCount(int expect) {
383 jsr166 1.121 return ctl.compareAndSet(expect, expect + 1);
384 jsr166 1.117 }
385    
386     /**
387     * Attempt to CAS-decrement the workerCount field of ctl.
388     */
389     private boolean compareAndDecrementWorkerCount(int expect) {
390 jsr166 1.121 return ctl.compareAndSet(expect, expect - 1);
391 jsr166 1.117 }
392    
393     /**
394     * Decrements the workerCount field of ctl. This is called only on
395     * abrupt termination of a thread (see processWorkerExit). Other
396     * decrements are performed within getTask.
397     */
398     private void decrementWorkerCount() {
399 jsr166 1.121 do {} while (! compareAndDecrementWorkerCount(ctl.get()));
400 jsr166 1.117 }
401 tim 1.41
402     /**
403 dl 1.86 * The queue used for holding tasks and handing off to worker
404 dl 1.107 * threads. We do not require that workQueue.poll() returning
405 jsr166 1.109 * null necessarily means that workQueue.isEmpty(), so rely
406 dl 1.107 * solely on isEmpty to see if the queue is empty (which we must
407     * do for example when deciding whether to transition from
408 jsr166 1.117 * SHUTDOWN to TIDYING). This accommodates special-purpose
409 dl 1.107 * queues such as DelayQueues for which poll() is allowed to
410     * return null even if it may later return non-null when delays
411     * expire.
412 tim 1.10 */
413 dl 1.2 private final BlockingQueue<Runnable> workQueue;
414    
415     /**
416 dl 1.107 * Lock held on access to workers set and related bookkeeping.
417     * While we could use a concurrent set of some sort, it turns out
418     * to be generally preferable to use a lock. Among the reasons is
419     * that this serializes interruptIdleWorkers, which avoids
420     * unnecessary interrupt storms, especially during shutdown.
421     * Otherwise exiting threads would concurrently interrupt those
422     * that have not yet interrupted. It also simplifies some of the
423     * associated statistics bookkeeping of largestPoolSize etc. We
424     * also hold mainLock on shutdown and shutdownNow, for the sake of
425     * ensuring workers set is stable while separately checking
426     * permission to interrupt and actually interrupting.
427 tim 1.10 */
428 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
429    
430     /**
431 dl 1.107 * Set containing all worker threads in pool. Accessed only when
432     * holding mainLock.
433     */
434     private final HashSet<Worker> workers = new HashSet<Worker>();
435    
436     /**
437 dl 1.2 * Wait condition to support awaitTermination
438 tim 1.10 */
439 dl 1.46 private final Condition termination = mainLock.newCondition();
440 dl 1.2
441     /**
442 dl 1.107 * Tracks largest attained pool size. Accessed only under
443     * mainLock.
444     */
445     private int largestPoolSize;
446    
447     /**
448     * Counter for completed tasks. Updated only on termination of
449     * worker threads. Accessed only under mainLock.
450     */
451     private long completedTaskCount;
452    
453     /*
454     * All user control parameters are declared as volatiles so that
455     * ongoing actions are based on freshest values, but without need
456     * for locking, since no internal invariants depend on them
457     * changing synchronously with respect to other actions.
458     */
459    
460     /**
461     * Factory for new threads. All threads are created using this
462     * factory (via method addWorker). All callers must be prepared
463     * for addWorker to fail, which may reflect a system or user's
464     * policy limiting the number of threads. Even though it is not
465     * treated as an error, failure to create threads may result in
466     * new tasks being rejected or existing ones remaining stuck in
467 jsr166 1.128 * the queue.
468     *
469     * We go further and preserve pool invariants even in the face of
470     * errors such as OutOfMemoryError, that might be thrown while
471     * trying to create threads. Such errors are rather common due to
472     * the need to allocate a native stack in Thread#start, and users
473     * will want to perform clean pool shutdown to clean up. There
474     * will likely be enough memory available for the cleanup code to
475     * complete without encountering yet another OutOfMemoryError.
476 dl 1.107 */
477     private volatile ThreadFactory threadFactory;
478    
479     /**
480     * Handler called when saturated or shutdown in execute.
481 tim 1.10 */
482 dl 1.107 private volatile RejectedExecutionHandler handler;
483 dl 1.2
484     /**
485 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
486 dl 1.86 * Threads use this timeout when there are more than corePoolSize
487     * present or if allowCoreThreadTimeOut. Otherwise they wait
488     * forever for new work.
489 tim 1.10 */
490 dl 1.107 private volatile long keepAliveTime;
491 dl 1.2
492     /**
493 jsr166 1.101 * If false (default), core threads stay alive even when idle.
494     * If true, core threads use keepAliveTime to time out waiting
495     * for work.
496 dl 1.62 */
497 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
498 dl 1.62
499     /**
500 dl 1.107 * Core pool size is the minimum number of workers to keep alive
501     * (and not allow to time out etc) unless allowCoreThreadTimeOut
502 jsr166 1.109 * is set, in which case the minimum is zero.
503 dl 1.107 */
504     private volatile int corePoolSize;
505    
506     /**
507     * Maximum pool size. Note that the actual maximum is internally
508     * bounded by CAPACITY.
509     */
510     private volatile int maximumPoolSize;
511    
512     /**
513     * The default rejected execution handler
514     */
515     private static final RejectedExecutionHandler defaultHandler =
516     new AbortPolicy();
517    
518     /**
519     * Permission required for callers of shutdown and shutdownNow.
520     * We additionally require (see checkShutdownAccess) that callers
521     * have permission to actually interrupt threads in the worker set
522     * (as governed by Thread.interrupt, which relies on
523     * ThreadGroup.checkAccess, which in turn relies on
524     * SecurityManager.checkAccess). Shutdowns are attempted only if
525     * these checks pass.
526     *
527     * All actual invocations of Thread.interrupt (see
528     * interruptIdleWorkers and interruptWorkers) ignore
529     * SecurityExceptions, meaning that the attempted interrupts
530     * silently fail. In the case of shutdown, they should not fail
531     * unless the SecurityManager has inconsistent policies, sometimes
532     * allowing access to a thread and sometimes not. In such cases,
533     * failure to actually interrupt threads may disable or delay full
534     * termination. Other uses of interruptIdleWorkers are advisory,
535     * and failure to actually interrupt will merely delay response to
536     * configuration changes so is not handled exceptionally.
537     */
538     private static final RuntimePermission shutdownPerm =
539     new RuntimePermission("modifyThread");
540    
541     /**
542 jsr166 1.108 * Class Worker mainly maintains interrupt control state for
543 jsr166 1.120 * threads running tasks, along with other minor bookkeeping.
544     * This class opportunistically extends AbstractQueuedSynchronizer
545     * to simplify acquiring and releasing a lock surrounding each
546     * task execution. This protects against interrupts that are
547     * intended to wake up a worker thread waiting for a task from
548     * instead interrupting a task being run. We implement a simple
549 dl 1.130 * non-reentrant mutual exclusion lock rather than use
550     * ReentrantLock because we do not want worker tasks to be able to
551     * reacquire the lock when they invoke pool control methods like
552     * setCorePoolSize. Additionally, to suppress interrupts until
553     * the thread actually starts running tasks, we initialize lock
554     * state to a negative value, and clear it upon start (in
555     * runWorker).
556 jsr166 1.120 */
557     private final class Worker
558 jsr166 1.121 extends AbstractQueuedSynchronizer
559     implements Runnable
560 jsr166 1.120 {
561 jsr166 1.121 /**
562     * This class will never be serialized, but we provide a
563     * serialVersionUID to suppress a javac warning.
564     */
565     private static final long serialVersionUID = 6138294804551838833L;
566 jsr166 1.116
567 jsr166 1.108 /** Thread this worker is running in. Null if factory fails. */
568 dl 1.107 final Thread thread;
569 jsr166 1.108 /** Initial task to run. Possibly null. */
570 dl 1.107 Runnable firstTask;
571     /** Per-thread task counter */
572     volatile long completedTasks;
573    
574     /**
575 jsr166 1.108 * Creates with given first task and thread from ThreadFactory.
576     * @param firstTask the first task (null if none)
577 dl 1.107 */
578     Worker(Runnable firstTask) {
579 dl 1.130 setState(-1); // inhibit interrupts until runWorker
580 dl 1.107 this.firstTask = firstTask;
581 jsr166 1.121 this.thread = getThreadFactory().newThread(this);
582 dl 1.107 }
583    
584     /** Delegates main run loop to outer runWorker */
585     public void run() {
586     runWorker(this);
587     }
588 jsr166 1.120
589 jsr166 1.121 // Lock methods
590     //
591     // The value 0 represents the unlocked state.
592     // The value 1 represents the locked state.
593    
594     protected boolean isHeldExclusively() {
595 dl 1.130 return getState() != 0;
596 jsr166 1.121 }
597    
598     protected boolean tryAcquire(int unused) {
599     if (compareAndSetState(0, 1)) {
600     setExclusiveOwnerThread(Thread.currentThread());
601     return true;
602     }
603     return false;
604     }
605    
606     protected boolean tryRelease(int unused) {
607     setExclusiveOwnerThread(null);
608     setState(0);
609     return true;
610     }
611    
612     public void lock() { acquire(1); }
613     public boolean tryLock() { return tryAcquire(1); }
614     public void unlock() { release(1); }
615     public boolean isLocked() { return isHeldExclusively(); }
616 dl 1.130
617     void interruptIfStarted() {
618     Thread t;
619     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
620     try {
621     t.interrupt();
622     } catch (SecurityException ignore) {
623     }
624     }
625     }
626 dl 1.107 }
627    
628     /*
629     * Methods for setting control state
630     */
631    
632     /**
633     * Transitions runState to given target, or leaves it alone if
634     * already at least the given target.
635 jsr166 1.116 *
636 jsr166 1.117 * @param targetState the desired state, either SHUTDOWN or STOP
637     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
638 dl 1.107 */
639     private void advanceRunState(int targetState) {
640     for (;;) {
641     int c = ctl.get();
642 jsr166 1.117 if (runStateAtLeast(c, targetState) ||
643 dl 1.107 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
644     break;
645     }
646     }
647    
648     /**
649     * Transitions to TERMINATED state if either (SHUTDOWN and pool
650     * and queue empty) or (STOP and pool empty). If otherwise
651     * eligible to terminate but workerCount is nonzero, interrupts an
652     * idle worker to ensure that shutdown signals propagate. This
653     * method must be called following any action that might make
654     * termination possible -- reducing worker count or removing tasks
655     * from the queue during shutdown. The method is non-private to
656 jsr166 1.110 * allow access from ScheduledThreadPoolExecutor.
657 dl 1.107 */
658     final void tryTerminate() {
659     for (;;) {
660     int c = ctl.get();
661 jsr166 1.121 if (isRunning(c) ||
662     runStateAtLeast(c, TIDYING) ||
663     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
664     return;
665 dl 1.107 if (workerCountOf(c) != 0) { // Eligible to terminate
666 jsr166 1.113 interruptIdleWorkers(ONLY_ONE);
667 dl 1.107 return;
668     }
669 jsr166 1.119
670 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
671     mainLock.lock();
672     try {
673     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
674     try {
675     terminated();
676     } finally {
677     ctl.set(ctlOf(TERMINATED, 0));
678     termination.signalAll();
679     }
680     return;
681     }
682     } finally {
683     mainLock.unlock();
684     }
685 dl 1.107 // else retry on failed CAS
686     }
687     }
688    
689 jsr166 1.116 /*
690 dl 1.107 * Methods for controlling interrupts to worker threads.
691     */
692    
693     /**
694     * If there is a security manager, makes sure caller has
695     * permission to shut down threads in general (see shutdownPerm).
696     * If this passes, additionally makes sure the caller is allowed
697     * to interrupt each worker thread. This might not be true even if
698     * first check passed, if the SecurityManager treats some threads
699     * specially.
700     */
701     private void checkShutdownAccess() {
702     SecurityManager security = System.getSecurityManager();
703     if (security != null) {
704     security.checkPermission(shutdownPerm);
705     final ReentrantLock mainLock = this.mainLock;
706     mainLock.lock();
707     try {
708     for (Worker w : workers)
709     security.checkAccess(w.thread);
710     } finally {
711     mainLock.unlock();
712     }
713     }
714     }
715    
716     /**
717 jsr166 1.116 * Interrupts all threads, even if active. Ignores SecurityExceptions
718     * (in which case some threads may remain uninterrupted).
719 dl 1.107 */
720     private void interruptWorkers() {
721     final ReentrantLock mainLock = this.mainLock;
722     mainLock.lock();
723     try {
724 dl 1.130 for (Worker w : workers)
725     w.interruptIfStarted();
726 dl 1.107 } finally {
727     mainLock.unlock();
728     }
729     }
730    
731     /**
732     * Interrupts threads that might be waiting for tasks (as
733     * indicated by not being locked) so they can check for
734     * termination or configuration changes. Ignores
735     * SecurityExceptions (in which case some threads may remain
736     * uninterrupted).
737     *
738     * @param onlyOne If true, interrupt at most one worker. This is
739     * called only from tryTerminate when termination is otherwise
740     * enabled but there are still other workers. In this case, at
741     * most one waiting worker is interrupted to propagate shutdown
742 jsr166 1.113 * signals in case all threads are currently waiting.
743 dl 1.107 * Interrupting any arbitrary thread ensures that newly arriving
744     * workers since shutdown began will also eventually exit.
745 jsr166 1.113 * To guarantee eventual termination, it suffices to always
746     * interrupt only one idle worker, but shutdown() interrupts all
747     * idle workers so that redundant workers exit promptly, not
748     * waiting for a straggler task to finish.
749 tim 1.10 */
750 dl 1.107 private void interruptIdleWorkers(boolean onlyOne) {
751 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
752 dl 1.107 mainLock.lock();
753     try {
754 jsr166 1.121 for (Worker w : workers) {
755 dl 1.107 Thread t = w.thread;
756 jsr166 1.121 if (!t.isInterrupted() && w.tryLock()) {
757 dl 1.107 try {
758     t.interrupt();
759     } catch (SecurityException ignore) {
760     } finally {
761     w.unlock();
762     }
763     }
764     if (onlyOne)
765     break;
766     }
767     } finally {
768     mainLock.unlock();
769     }
770     }
771    
772 dl 1.118 /**
773     * Common form of interruptIdleWorkers, to avoid having to
774     * remember what the boolean argument means.
775     */
776 jsr166 1.119 private void interruptIdleWorkers() {
777     interruptIdleWorkers(false);
778 dl 1.118 }
779    
780 jsr166 1.113 private static final boolean ONLY_ONE = true;
781    
782 dl 1.107 /*
783     * Misc utilities, most of which are also exported to
784     * ScheduledThreadPoolExecutor
785     */
786    
787     /**
788     * Invokes the rejected execution handler for the given command.
789     * Package-protected for use by ScheduledThreadPoolExecutor.
790     */
791     final void reject(Runnable command) {
792     handler.rejectedExecution(command, this);
793     }
794 dl 1.2
795     /**
796 dl 1.107 * Performs any further cleanup following run state transition on
797     * invocation of shutdown. A no-op here, but used by
798     * ScheduledThreadPoolExecutor to cancel delayed tasks.
799 tim 1.10 */
800 dl 1.107 void onShutdown() {
801     }
802 dl 1.2
803     /**
804 dl 1.107 * State check needed by ScheduledThreadPoolExecutor to
805 jsr166 1.117 * enable running tasks during shutdown.
806     *
807 dl 1.107 * @param shutdownOK true if should return true if SHUTDOWN
808 tim 1.10 */
809 dl 1.107 final boolean isRunningOrShutdown(boolean shutdownOK) {
810     int rs = runStateOf(ctl.get());
811     return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
812     }
813 dl 1.2
814     /**
815 dl 1.107 * Drains the task queue into a new list, normally using
816     * drainTo. But if the queue is a DelayQueue or any other kind of
817     * queue for which poll or drainTo may fail to remove some
818     * elements, it deletes them one by one.
819     */
820     private List<Runnable> drainQueue() {
821     BlockingQueue<Runnable> q = workQueue;
822     List<Runnable> taskList = new ArrayList<Runnable>();
823     q.drainTo(taskList);
824     if (!q.isEmpty()) {
825     for (Runnable r : q.toArray(new Runnable[0])) {
826     if (q.remove(r))
827     taskList.add(r);
828     }
829     }
830     return taskList;
831     }
832    
833     /*
834     * Methods for creating, running and cleaning up after workers
835 tim 1.10 */
836 dl 1.2
837     /**
838 dl 1.107 * Checks if a new worker can be added with respect to current
839 jsr166 1.116 * pool state and the given bound (either core or maximum). If so,
840 dl 1.107 * the worker count is adjusted accordingly, and, if possible, a
841 jsr166 1.128 * new worker is created and started, running firstTask as its
842 jsr166 1.117 * first task. This method returns false if the pool is stopped or
843 dl 1.107 * eligible to shut down. It also returns false if the thread
844 jsr166 1.128 * factory fails to create a thread when asked. If the thread
845     * creation fails, either due to the thread factory returning
846     * null, or due to an exception (typically OutOfMemoryError in
847     * Thread#start), we roll back cleanly.
848 dl 1.107 *
849     * @param firstTask the task the new thread should run first (or
850     * null if none). Workers are created with an initial first task
851     * (in method execute()) to bypass queuing when there are fewer
852     * than corePoolSize threads (in which case we always start one),
853 jsr166 1.110 * or when the queue is full (in which case we must bypass queue).
854 dl 1.107 * Initially idle threads are usually created via
855     * prestartCoreThread or to replace other dying workers.
856     *
857     * @param core if true use corePoolSize as bound, else
858 jsr166 1.110 * maximumPoolSize. (A boolean indicator is used here rather than a
859 dl 1.107 * value to ensure reads of fresh values after checking other pool
860     * state).
861     * @return true if successful
862 tim 1.10 */
863 dl 1.107 private boolean addWorker(Runnable firstTask, boolean core) {
864 jsr166 1.121 retry:
865 dl 1.107 for (;;) {
866 jsr166 1.121 int c = ctl.get();
867     int rs = runStateOf(c);
868 jsr166 1.119
869 jsr166 1.121 // Check if queue empty only if necessary.
870 jsr166 1.119 if (rs >= SHUTDOWN &&
871 jsr166 1.121 ! (rs == SHUTDOWN &&
872     firstTask == null &&
873     ! workQueue.isEmpty()))
874     return false;
875    
876     for (;;) {
877     int wc = workerCountOf(c);
878     if (wc >= CAPACITY ||
879     wc >= (core ? corePoolSize : maximumPoolSize))
880     return false;
881     if (compareAndIncrementWorkerCount(c))
882     break retry;
883     c = ctl.get(); // Re-read ctl
884     if (runStateOf(c) != rs)
885     continue retry;
886     // else CAS failed due to workerCount change; retry inner loop
887     }
888 dl 1.107 }
889    
890 jsr166 1.128 boolean workerStarted = false;
891 dl 1.130 boolean workerAdded = false;
892 jsr166 1.128 Worker w = null;
893     try {
894 dl 1.129 final ReentrantLock mainLock = this.mainLock;
895 jsr166 1.128 w = new Worker(firstTask);
896     final Thread t = w.thread;
897 dl 1.130 if (t != null) {
898     mainLock.lock();
899     try {
900     // Recheck while holding lock.
901     // Back out on ThreadFactory failure or if
902     // shut down before lock acquired.
903     int c = ctl.get();
904     int rs = runStateOf(c);
905    
906     if (rs < SHUTDOWN ||
907     (rs == SHUTDOWN && firstTask == null)) {
908     if (t.isAlive()) // precheck that t is startable
909     throw new IllegalThreadStateException();
910     workers.add(w);
911     int s = workers.size();
912     if (s > largestPoolSize)
913     largestPoolSize = s;
914     workerAdded = true;
915     }
916     } finally {
917     mainLock.unlock();
918     }
919     if (workerAdded) {
920     t.start();
921     workerStarted = true;
922     }
923 jsr166 1.121 }
924 jsr166 1.128 } finally {
925     if (! workerStarted)
926     addWorkerFailed(w);
927     }
928 dl 1.130 return workerStarted;
929 jsr166 1.128 }
930    
931     /**
932     * Rolls back the worker thread creation.
933     * - removes worker from workers, if present
934     * - decrements worker count
935     * - rechecks for termination, in case the existence of this
936     * worker was holding up termination
937     */
938     private void addWorkerFailed(Worker w) {
939     final ReentrantLock mainLock = this.mainLock;
940     mainLock.lock();
941     try {
942     if (w != null)
943     workers.remove(w);
944     decrementWorkerCount();
945     tryTerminate();
946 dl 1.107 } finally {
947     mainLock.unlock();
948     }
949     }
950 dl 1.2
951     /**
952 dl 1.107 * Performs cleanup and bookkeeping for a dying worker. Called
953     * only from worker threads. Unless completedAbruptly is set,
954     * assumes that workerCount has already been adjusted to account
955     * for exit. This method removes thread from worker set, and
956     * possibly terminates the pool or replaces the worker if either
957     * it exited due to user task exception or if fewer than
958     * corePoolSize workers are running or queue is non-empty but
959     * there are no workers.
960     *
961     * @param w the worker
962     * @param completedAbruptly if the worker died due to user exception
963 tim 1.10 */
964 dl 1.107 private void processWorkerExit(Worker w, boolean completedAbruptly) {
965     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
966     decrementWorkerCount();
967    
968     final ReentrantLock mainLock = this.mainLock;
969     mainLock.lock();
970     try {
971     completedTaskCount += w.completedTasks;
972     workers.remove(w);
973     } finally {
974     mainLock.unlock();
975     }
976    
977     tryTerminate();
978    
979 jsr166 1.121 int c = ctl.get();
980     if (runStateLessThan(c, STOP)) {
981     if (!completedAbruptly) {
982     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
983     if (min == 0 && ! workQueue.isEmpty())
984     min = 1;
985     if (workerCountOf(c) >= min)
986     return; // replacement not needed
987     }
988     addWorker(null, false);
989     }
990 dl 1.107 }
991 dl 1.2
992     /**
993 dl 1.107 * Performs blocking or timed wait for a task, depending on
994     * current configuration settings, or returns null if this worker
995     * must exit because of any of:
996     * 1. There are more than maximumPoolSize workers (due to
997     * a call to setMaximumPoolSize).
998 jsr166 1.110 * 2. The pool is stopped.
999 jsr166 1.119 * 3. The pool is shutdown and the queue is empty.
1000     * 4. This worker timed out waiting for a task, and timed-out
1001     * workers are subject to termination (that is,
1002     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1003     * both before and after the timed wait.
1004 dl 1.107 *
1005     * @return task, or null if the worker must exit, in which case
1006 jsr166 1.116 * workerCount is decremented
1007 tim 1.10 */
1008 dl 1.107 private Runnable getTask() {
1009 jsr166 1.121 boolean timedOut = false; // Did the last poll() time out?
1010 jsr166 1.119
1011 jsr166 1.121 retry:
1012     for (;;) {
1013 dl 1.107 int c = ctl.get();
1014 jsr166 1.121 int rs = runStateOf(c);
1015    
1016     // Check if queue empty only if necessary.
1017     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
1018     decrementWorkerCount();
1019     return null;
1020     }
1021 jsr166 1.119
1022 jsr166 1.121 boolean timed; // Are workers subject to culling?
1023    
1024     for (;;) {
1025     int wc = workerCountOf(c);
1026     timed = allowCoreThreadTimeOut || wc > corePoolSize;
1027    
1028     if (wc <= maximumPoolSize && ! (timedOut && timed))
1029     break;
1030     if (compareAndDecrementWorkerCount(c))
1031     return null;
1032     c = ctl.get(); // Re-read ctl
1033     if (runStateOf(c) != rs)
1034     continue retry;
1035     // else CAS failed due to workerCount change; retry inner loop
1036 dl 1.107 }
1037    
1038     try {
1039 jsr166 1.110 Runnable r = timed ?
1040 dl 1.107 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1041     workQueue.take();
1042     if (r != null)
1043     return r;
1044 jsr166 1.121 timedOut = true;
1045 jsr166 1.108 } catch (InterruptedException retry) {
1046 jsr166 1.121 timedOut = false;
1047 dl 1.107 }
1048     }
1049     }
1050 jsr166 1.66
1051 dl 1.8 /**
1052 dl 1.107 * Main worker run loop. Repeatedly gets tasks from queue and
1053     * executes them, while coping with a number of issues:
1054     *
1055     * 1. We may start out with an initial task, in which case we
1056     * don't need to get the first one. Otherwise, as long as pool is
1057     * running, we get tasks from getTask. If it returns null then the
1058     * worker exits due to changed pool state or configuration
1059     * parameters. Other exits result from exception throws in
1060     * external code, in which case completedAbruptly holds, which
1061     * usually leads processWorkerExit to replace this thread.
1062     *
1063     * 2. Before running any task, the lock is acquired to prevent
1064 jsr166 1.108 * other pool interrupts while the task is executing, and
1065 dl 1.107 * clearInterruptsForTaskRun called to ensure that unless pool is
1066     * stopping, this thread does not have its interrupt set.
1067     *
1068     * 3. Each task run is preceded by a call to beforeExecute, which
1069     * might throw an exception, in which case we cause thread to die
1070     * (breaking loop with completedAbruptly true) without processing
1071     * the task.
1072     *
1073     * 4. Assuming beforeExecute completes normally, we run the task,
1074     * gathering any of its thrown exceptions to send to
1075     * afterExecute. We separately handle RuntimeException, Error
1076     * (both of which the specs guarantee that we trap) and arbitrary
1077     * Throwables. Because we cannot rethrow Throwables within
1078     * Runnable.run, we wrap them within Errors on the way out (to the
1079     * thread's UncaughtExceptionHandler). Any thrown exception also
1080     * conservatively causes thread to die.
1081     *
1082     * 5. After task.run completes, we call afterExecute, which may
1083     * also throw an exception, which will also cause thread to
1084     * die. According to JLS Sec 14.20, this exception is the one that
1085     * will be in effect even if task.run throws.
1086     *
1087     * The net effect of the exception mechanics is that afterExecute
1088     * and the thread's UncaughtExceptionHandler have as accurate
1089     * information as we can provide about any problems encountered by
1090     * user code.
1091     *
1092     * @param w the worker
1093 dl 1.8 */
1094 dl 1.107 final void runWorker(Worker w) {
1095 dl 1.130 Thread wt = Thread.currentThread();
1096 dl 1.107 Runnable task = w.firstTask;
1097     w.firstTask = null;
1098 dl 1.130 w.unlock(); // allow interrupts
1099 dl 1.107 boolean completedAbruptly = true;
1100     try {
1101     while (task != null || (task = getTask()) != null) {
1102     w.lock();
1103 dl 1.130 // If pool is stopping, ensure thread is interrupted;
1104     // if not, ensure thread is not interrupted. This
1105     // requires a recheck in second case to deal with
1106     // shutdownNow race while clearing interrupt
1107     if ((runStateAtLeast(ctl.get(), STOP) ||
1108     (Thread.interrupted() &&
1109     runStateAtLeast(ctl.get(), STOP))) &&
1110     !wt.isInterrupted())
1111     wt.interrupt();
1112 dl 1.107 try {
1113 dl 1.130 beforeExecute(wt, task);
1114 dl 1.107 Throwable thrown = null;
1115     try {
1116     task.run();
1117     } catch (RuntimeException x) {
1118     thrown = x; throw x;
1119     } catch (Error x) {
1120     thrown = x; throw x;
1121     } catch (Throwable x) {
1122     thrown = x; throw new Error(x);
1123     } finally {
1124     afterExecute(task, thrown);
1125     }
1126     } finally {
1127     task = null;
1128     w.completedTasks++;
1129     w.unlock();
1130     }
1131     }
1132     completedAbruptly = false;
1133     } finally {
1134     processWorkerExit(w, completedAbruptly);
1135     }
1136     }
1137 dl 1.2
1138 dl 1.107 // Public constructors and methods
1139 dl 1.86
1140 dl 1.2 /**
1141 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1142 dl 1.86 * parameters and default thread factory and rejected execution handler.
1143     * It may be more convenient to use one of the {@link Executors} factory
1144     * methods instead of this general purpose constructor.
1145     *
1146 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1147     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1148 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1149 jsr166 1.116 * pool
1150 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1151 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1152     * will wait for new tasks before terminating.
1153     * @param unit the time unit for the {@code keepAliveTime} argument
1154     * @param workQueue the queue to use for holding tasks before they are
1155     * executed. This queue will hold only the {@code Runnable}
1156     * tasks submitted by the {@code execute} method.
1157     * @throws IllegalArgumentException if one of the following holds:<br>
1158     * {@code corePoolSize < 0}<br>
1159     * {@code keepAliveTime < 0}<br>
1160     * {@code maximumPoolSize <= 0}<br>
1161     * {@code maximumPoolSize < corePoolSize}
1162     * @throws NullPointerException if {@code workQueue} is null
1163 dl 1.86 */
1164     public ThreadPoolExecutor(int corePoolSize,
1165     int maximumPoolSize,
1166     long keepAliveTime,
1167     TimeUnit unit,
1168     BlockingQueue<Runnable> workQueue) {
1169     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1170     Executors.defaultThreadFactory(), defaultHandler);
1171     }
1172    
1173     /**
1174 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1175 dl 1.86 * parameters and default rejected execution handler.
1176     *
1177 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1178     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1179 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1180 jsr166 1.116 * pool
1181 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1182 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1183     * will wait for new tasks before terminating.
1184     * @param unit the time unit for the {@code keepAliveTime} argument
1185     * @param workQueue the queue to use for holding tasks before they are
1186     * executed. This queue will hold only the {@code Runnable}
1187     * tasks submitted by the {@code execute} method.
1188 dl 1.86 * @param threadFactory the factory to use when the executor
1189 jsr166 1.116 * creates a new thread
1190     * @throws IllegalArgumentException if one of the following holds:<br>
1191     * {@code corePoolSize < 0}<br>
1192     * {@code keepAliveTime < 0}<br>
1193     * {@code maximumPoolSize <= 0}<br>
1194     * {@code maximumPoolSize < corePoolSize}
1195     * @throws NullPointerException if {@code workQueue}
1196     * or {@code threadFactory} is null
1197 dl 1.86 */
1198     public ThreadPoolExecutor(int corePoolSize,
1199     int maximumPoolSize,
1200     long keepAliveTime,
1201     TimeUnit unit,
1202     BlockingQueue<Runnable> workQueue,
1203     ThreadFactory threadFactory) {
1204     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1205     threadFactory, defaultHandler);
1206     }
1207    
1208     /**
1209 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1210 dl 1.86 * parameters and default thread factory.
1211     *
1212 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1213     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1214 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1215 jsr166 1.116 * pool
1216 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1217 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1218     * will wait for new tasks before terminating.
1219     * @param unit the time unit for the {@code keepAliveTime} argument
1220     * @param workQueue the queue to use for holding tasks before they are
1221     * executed. This queue will hold only the {@code Runnable}
1222     * tasks submitted by the {@code execute} method.
1223 dl 1.86 * @param handler the handler to use when execution is blocked
1224 jsr166 1.116 * because the thread bounds and queue capacities are reached
1225     * @throws IllegalArgumentException if one of the following holds:<br>
1226     * {@code corePoolSize < 0}<br>
1227     * {@code keepAliveTime < 0}<br>
1228     * {@code maximumPoolSize <= 0}<br>
1229     * {@code maximumPoolSize < corePoolSize}
1230     * @throws NullPointerException if {@code workQueue}
1231     * or {@code handler} is null
1232 dl 1.86 */
1233     public ThreadPoolExecutor(int corePoolSize,
1234     int maximumPoolSize,
1235     long keepAliveTime,
1236     TimeUnit unit,
1237     BlockingQueue<Runnable> workQueue,
1238     RejectedExecutionHandler handler) {
1239     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1240     Executors.defaultThreadFactory(), handler);
1241     }
1242    
1243     /**
1244 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1245 dl 1.86 * parameters.
1246     *
1247 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1248     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1249 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1250 jsr166 1.116 * pool
1251 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1252 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1253     * will wait for new tasks before terminating.
1254     * @param unit the time unit for the {@code keepAliveTime} argument
1255     * @param workQueue the queue to use for holding tasks before they are
1256     * executed. This queue will hold only the {@code Runnable}
1257     * tasks submitted by the {@code execute} method.
1258 dl 1.86 * @param threadFactory the factory to use when the executor
1259 jsr166 1.116 * creates a new thread
1260 dl 1.86 * @param handler the handler to use when execution is blocked
1261 jsr166 1.116 * because the thread bounds and queue capacities are reached
1262     * @throws IllegalArgumentException if one of the following holds:<br>
1263     * {@code corePoolSize < 0}<br>
1264     * {@code keepAliveTime < 0}<br>
1265     * {@code maximumPoolSize <= 0}<br>
1266     * {@code maximumPoolSize < corePoolSize}
1267     * @throws NullPointerException if {@code workQueue}
1268     * or {@code threadFactory} or {@code handler} is null
1269 dl 1.86 */
1270     public ThreadPoolExecutor(int corePoolSize,
1271     int maximumPoolSize,
1272     long keepAliveTime,
1273     TimeUnit unit,
1274     BlockingQueue<Runnable> workQueue,
1275     ThreadFactory threadFactory,
1276     RejectedExecutionHandler handler) {
1277     if (corePoolSize < 0 ||
1278     maximumPoolSize <= 0 ||
1279     maximumPoolSize < corePoolSize ||
1280     keepAliveTime < 0)
1281     throw new IllegalArgumentException();
1282     if (workQueue == null || threadFactory == null || handler == null)
1283     throw new NullPointerException();
1284     this.corePoolSize = corePoolSize;
1285     this.maximumPoolSize = maximumPoolSize;
1286     this.workQueue = workQueue;
1287     this.keepAliveTime = unit.toNanos(keepAliveTime);
1288     this.threadFactory = threadFactory;
1289     this.handler = handler;
1290     }
1291    
1292     /**
1293     * Executes the given task sometime in the future. The task
1294     * may execute in a new thread or in an existing pooled thread.
1295     *
1296     * If the task cannot be submitted for execution, either because this
1297     * executor has been shutdown or because its capacity has been reached,
1298 jsr166 1.116 * the task is handled by the current {@code RejectedExecutionHandler}.
1299 dl 1.86 *
1300     * @param command the task to execute
1301     * @throws RejectedExecutionException at discretion of
1302 jsr166 1.116 * {@code RejectedExecutionHandler}, if the task
1303     * cannot be accepted for execution
1304     * @throws NullPointerException if {@code command} is null
1305 dl 1.13 */
1306 dl 1.86 public void execute(Runnable command) {
1307     if (command == null)
1308     throw new NullPointerException();
1309 dl 1.107 /*
1310     * Proceed in 3 steps:
1311     *
1312     * 1. If fewer than corePoolSize threads are running, try to
1313     * start a new thread with the given command as its first
1314     * task. The call to addWorker atomically checks runState and
1315     * workerCount, and so prevents false alarms that would add
1316     * threads when it shouldn't, by returning false.
1317     *
1318     * 2. If a task can be successfully queued, then we still need
1319     * to double-check whether we should have added a thread
1320     * (because existing ones died since last checking) or that
1321     * the pool shut down since entry into this method. So we
1322     * recheck state and if necessary roll back the enqueuing if
1323     * stopped, or start a new thread if there are none.
1324     *
1325     * 3. If we cannot queue task, then we try to add a new
1326     * thread. If it fails, we know we are shut down or saturated
1327     * and so reject the task.
1328     */
1329     int c = ctl.get();
1330     if (workerCountOf(c) < corePoolSize) {
1331     if (addWorker(command, true))
1332     return;
1333     c = ctl.get();
1334     }
1335 jsr166 1.117 if (isRunning(c) && workQueue.offer(command)) {
1336 dl 1.107 int recheck = ctl.get();
1337 jsr166 1.117 if (! isRunning(recheck) && remove(command))
1338 dl 1.107 reject(command);
1339     else if (workerCountOf(recheck) == 0)
1340     addWorker(null, false);
1341 dl 1.86 }
1342 dl 1.107 else if (!addWorker(command, false))
1343 dl 1.85 reject(command);
1344 tim 1.1 }
1345 dl 1.4
1346 dl 1.53 /**
1347     * Initiates an orderly shutdown in which previously submitted
1348 jsr166 1.116 * tasks are executed, but no new tasks will be accepted.
1349     * Invocation has no additional effect if already shut down.
1350     *
1351 jsr166 1.122 * <p>This method does not wait for previously submitted tasks to
1352     * complete execution. Use {@link #awaitTermination awaitTermination}
1353     * to do that.
1354     *
1355 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1356 dl 1.53 */
1357 dl 1.2 public void shutdown() {
1358 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1359 dl 1.2 mainLock.lock();
1360     try {
1361 dl 1.107 checkShutdownAccess();
1362     advanceRunState(SHUTDOWN);
1363 jsr166 1.113 interruptIdleWorkers();
1364 dl 1.107 onShutdown(); // hook for ScheduledThreadPoolExecutor
1365 tim 1.14 } finally {
1366 dl 1.2 mainLock.unlock();
1367     }
1368 dl 1.107 tryTerminate();
1369 tim 1.1 }
1370    
1371 dl 1.53 /**
1372     * Attempts to stop all actively executing tasks, halts the
1373 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1374 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1375     * from the task queue upon return from this method.
1376 jsr166 1.66 *
1377 jsr166 1.122 * <p>This method does not wait for actively executing tasks to
1378     * terminate. Use {@link #awaitTermination awaitTermination} to
1379     * do that.
1380     *
1381 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1382     * processing actively executing tasks. This implementation
1383     * cancels tasks via {@link Thread#interrupt}, so any task that
1384     * fails to respond to interrupts may never terminate.
1385 dl 1.53 *
1386 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1387 dl 1.53 */
1388 tim 1.39 public List<Runnable> shutdownNow() {
1389 dl 1.107 List<Runnable> tasks;
1390 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1391 dl 1.2 mainLock.lock();
1392     try {
1393 dl 1.107 checkShutdownAccess();
1394     advanceRunState(STOP);
1395     interruptWorkers();
1396     tasks = drainQueue();
1397 tim 1.14 } finally {
1398 dl 1.2 mainLock.unlock();
1399     }
1400 dl 1.107 tryTerminate();
1401     return tasks;
1402 dl 1.86 }
1403    
1404 dl 1.2 public boolean isShutdown() {
1405 jsr166 1.117 return ! isRunning(ctl.get());
1406 dl 1.16 }
1407    
1408 jsr166 1.66 /**
1409 dl 1.55 * Returns true if this executor is in the process of terminating
1410 jsr166 1.117 * after {@link #shutdown} or {@link #shutdownNow} but has not
1411 dl 1.16 * completely terminated. This method may be useful for
1412 jsr166 1.116 * debugging. A return of {@code true} reported a sufficient
1413 dl 1.16 * period after shutdown may indicate that submitted tasks have
1414     * ignored or suppressed interruption, causing this executor not
1415     * to properly terminate.
1416 jsr166 1.116 *
1417 jsr166 1.93 * @return true if terminating but not yet terminated
1418 dl 1.16 */
1419     public boolean isTerminating() {
1420 jsr166 1.117 int c = ctl.get();
1421     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1422 tim 1.1 }
1423    
1424 dl 1.2 public boolean isTerminated() {
1425 jsr166 1.117 return runStateAtLeast(ctl.get(), TERMINATED);
1426 dl 1.2 }
1427 tim 1.1
1428 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1429     throws InterruptedException {
1430 dl 1.50 long nanos = unit.toNanos(timeout);
1431 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1432 dl 1.2 mainLock.lock();
1433     try {
1434 dl 1.25 for (;;) {
1435 jsr166 1.117 if (runStateAtLeast(ctl.get(), TERMINATED))
1436 dl 1.25 return true;
1437     if (nanos <= 0)
1438     return false;
1439     nanos = termination.awaitNanos(nanos);
1440     }
1441 tim 1.14 } finally {
1442 dl 1.2 mainLock.unlock();
1443     }
1444 dl 1.15 }
1445    
1446     /**
1447 jsr166 1.116 * Invokes {@code shutdown} when this executor is no longer
1448     * referenced and it has no threads.
1449 jsr166 1.66 */
1450 dl 1.107 protected void finalize() {
1451 dl 1.15 shutdown();
1452 dl 1.2 }
1453 tim 1.10
1454 dl 1.2 /**
1455     * Sets the thread factory used to create new threads.
1456     *
1457     * @param threadFactory the new thread factory
1458 dl 1.30 * @throws NullPointerException if threadFactory is null
1459 tim 1.11 * @see #getThreadFactory
1460 dl 1.2 */
1461     public void setThreadFactory(ThreadFactory threadFactory) {
1462 dl 1.30 if (threadFactory == null)
1463     throw new NullPointerException();
1464 dl 1.2 this.threadFactory = threadFactory;
1465 tim 1.1 }
1466    
1467 dl 1.2 /**
1468     * Returns the thread factory used to create new threads.
1469     *
1470     * @return the current thread factory
1471 tim 1.11 * @see #setThreadFactory
1472 dl 1.2 */
1473     public ThreadFactory getThreadFactory() {
1474     return threadFactory;
1475 tim 1.1 }
1476    
1477 dl 1.2 /**
1478     * Sets a new handler for unexecutable tasks.
1479     *
1480     * @param handler the new handler
1481 dl 1.31 * @throws NullPointerException if handler is null
1482 tim 1.11 * @see #getRejectedExecutionHandler
1483 dl 1.2 */
1484     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1485 dl 1.31 if (handler == null)
1486     throw new NullPointerException();
1487 dl 1.2 this.handler = handler;
1488     }
1489 tim 1.1
1490 dl 1.2 /**
1491     * Returns the current handler for unexecutable tasks.
1492     *
1493     * @return the current handler
1494 tim 1.11 * @see #setRejectedExecutionHandler
1495 dl 1.2 */
1496     public RejectedExecutionHandler getRejectedExecutionHandler() {
1497     return handler;
1498 tim 1.1 }
1499    
1500 dl 1.2 /**
1501     * Sets the core number of threads. This overrides any value set
1502     * in the constructor. If the new value is smaller than the
1503     * current value, excess existing threads will be terminated when
1504 jsr166 1.116 * they next become idle. If larger, new threads will, if needed,
1505 dl 1.34 * be started to execute any queued tasks.
1506 tim 1.1 *
1507 dl 1.2 * @param corePoolSize the new core size
1508 jsr166 1.116 * @throws IllegalArgumentException if {@code corePoolSize < 0}
1509 tim 1.11 * @see #getCorePoolSize
1510 tim 1.1 */
1511 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1512     if (corePoolSize < 0)
1513     throw new IllegalArgumentException();
1514 dl 1.107 int delta = corePoolSize - this.corePoolSize;
1515     this.corePoolSize = corePoolSize;
1516     if (workerCountOf(ctl.get()) > corePoolSize)
1517 jsr166 1.113 interruptIdleWorkers();
1518 dl 1.107 else if (delta > 0) {
1519     // We don't really know how many new threads are "needed".
1520     // As a heuristic, prestart enough new workers (up to new
1521     // core size) to handle the current number of tasks in
1522     // queue, but stop if queue becomes empty while doing so.
1523     int k = Math.min(delta, workQueue.size());
1524     while (k-- > 0 && addWorker(null, true)) {
1525     if (workQueue.isEmpty())
1526     break;
1527 tim 1.38 }
1528 dl 1.2 }
1529     }
1530 tim 1.1
1531     /**
1532 dl 1.2 * Returns the core number of threads.
1533 tim 1.1 *
1534 dl 1.2 * @return the core number of threads
1535 tim 1.11 * @see #setCorePoolSize
1536 tim 1.1 */
1537 tim 1.10 public int getCorePoolSize() {
1538 dl 1.2 return corePoolSize;
1539 dl 1.16 }
1540    
1541     /**
1542 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1543 dl 1.16 * overrides the default policy of starting core threads only when
1544 jsr166 1.116 * new tasks are executed. This method will return {@code false}
1545 dl 1.16 * if all core threads have already been started.
1546 jsr166 1.116 *
1547     * @return {@code true} if a thread was started
1548 jsr166 1.66 */
1549 dl 1.16 public boolean prestartCoreThread() {
1550 dl 1.107 return workerCountOf(ctl.get()) < corePoolSize &&
1551     addWorker(null, true);
1552 dl 1.16 }
1553    
1554     /**
1555 dl 1.125 * Same as prestartCoreThread except arranges that at least one
1556     * thread is started even if corePoolSize is 0.
1557     */
1558     void ensurePrestart() {
1559     int wc = workerCountOf(ctl.get());
1560 dl 1.126 if (wc < corePoolSize)
1561     addWorker(null, true);
1562     else if (wc == 0)
1563 dl 1.125 addWorker(null, false);
1564     }
1565    
1566     /**
1567 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1568 dl 1.16 * overrides the default policy of starting core threads only when
1569 jsr166 1.66 * new tasks are executed.
1570 jsr166 1.116 *
1571 jsr166 1.88 * @return the number of threads started
1572 jsr166 1.66 */
1573 dl 1.16 public int prestartAllCoreThreads() {
1574     int n = 0;
1575 dl 1.107 while (addWorker(null, true))
1576 dl 1.16 ++n;
1577     return n;
1578 dl 1.2 }
1579 tim 1.1
1580     /**
1581 dl 1.62 * Returns true if this pool allows core threads to time out and
1582     * terminate if no tasks arrive within the keepAlive time, being
1583     * replaced if needed when new tasks arrive. When true, the same
1584     * keep-alive policy applying to non-core threads applies also to
1585     * core threads. When false (the default), core threads are never
1586     * terminated due to lack of incoming tasks.
1587 jsr166 1.116 *
1588     * @return {@code true} if core threads are allowed to time out,
1589     * else {@code false}
1590 jsr166 1.72 *
1591     * @since 1.6
1592 dl 1.62 */
1593     public boolean allowsCoreThreadTimeOut() {
1594     return allowCoreThreadTimeOut;
1595     }
1596    
1597     /**
1598     * Sets the policy governing whether core threads may time out and
1599     * terminate if no tasks arrive within the keep-alive time, being
1600     * replaced if needed when new tasks arrive. When false, core
1601     * threads are never terminated due to lack of incoming
1602     * tasks. When true, the same keep-alive policy applying to
1603     * non-core threads applies also to core threads. To avoid
1604     * continual thread replacement, the keep-alive time must be
1605 jsr166 1.116 * greater than zero when setting {@code true}. This method
1606 dl 1.64 * should in general be called before the pool is actively used.
1607 jsr166 1.116 *
1608     * @param value {@code true} if should time out, else {@code false}
1609     * @throws IllegalArgumentException if value is {@code true}
1610     * and the current keep-alive time is not greater than zero
1611 jsr166 1.72 *
1612     * @since 1.6
1613 dl 1.62 */
1614     public void allowCoreThreadTimeOut(boolean value) {
1615 dl 1.64 if (value && keepAliveTime <= 0)
1616     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1617 dl 1.107 if (value != allowCoreThreadTimeOut) {
1618     allowCoreThreadTimeOut = value;
1619     if (value)
1620 jsr166 1.113 interruptIdleWorkers();
1621 dl 1.107 }
1622 dl 1.62 }
1623    
1624     /**
1625 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1626 dl 1.2 * value set in the constructor. If the new value is smaller than
1627     * the current value, excess existing threads will be
1628     * terminated when they next become idle.
1629 tim 1.1 *
1630 dl 1.2 * @param maximumPoolSize the new maximum
1631 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1632     * less than or equal to zero, or
1633     * less than the {@linkplain #getCorePoolSize core pool size}
1634 tim 1.11 * @see #getMaximumPoolSize
1635 dl 1.2 */
1636     public void setMaximumPoolSize(int maximumPoolSize) {
1637     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1638     throw new IllegalArgumentException();
1639 dl 1.107 this.maximumPoolSize = maximumPoolSize;
1640     if (workerCountOf(ctl.get()) > maximumPoolSize)
1641 jsr166 1.113 interruptIdleWorkers();
1642 dl 1.2 }
1643 tim 1.1
1644     /**
1645     * Returns the maximum allowed number of threads.
1646     *
1647 dl 1.2 * @return the maximum allowed number of threads
1648 tim 1.11 * @see #setMaximumPoolSize
1649 tim 1.1 */
1650 tim 1.10 public int getMaximumPoolSize() {
1651 dl 1.2 return maximumPoolSize;
1652     }
1653 tim 1.1
1654     /**
1655     * Sets the time limit for which threads may remain idle before
1656 dl 1.2 * being terminated. If there are more than the core number of
1657 tim 1.1 * threads currently in the pool, after waiting this amount of
1658     * time without processing a task, excess threads will be
1659     * terminated. This overrides any value set in the constructor.
1660 jsr166 1.116 *
1661 tim 1.1 * @param time the time to wait. A time value of zero will cause
1662 jsr166 1.116 * excess threads to terminate immediately after executing tasks.
1663     * @param unit the time unit of the {@code time} argument
1664     * @throws IllegalArgumentException if {@code time} less than zero or
1665     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1666 tim 1.11 * @see #getKeepAliveTime
1667 tim 1.1 */
1668 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1669     if (time < 0)
1670     throw new IllegalArgumentException();
1671 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1672     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1673 dl 1.107 long keepAliveTime = unit.toNanos(time);
1674     long delta = keepAliveTime - this.keepAliveTime;
1675     this.keepAliveTime = keepAliveTime;
1676     if (delta < 0)
1677 jsr166 1.113 interruptIdleWorkers();
1678 dl 1.2 }
1679 tim 1.1
1680     /**
1681     * Returns the thread keep-alive time, which is the amount of time
1682 jsr166 1.93 * that threads in excess of the core pool size may remain
1683 tim 1.10 * idle before being terminated.
1684 tim 1.1 *
1685 dl 1.2 * @param unit the desired time unit of the result
1686 tim 1.1 * @return the time limit
1687 tim 1.11 * @see #setKeepAliveTime
1688 tim 1.1 */
1689 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1690 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1691     }
1692 tim 1.1
1693 dl 1.86 /* User-level queue utilities */
1694    
1695     /**
1696     * Returns the task queue used by this executor. Access to the
1697     * task queue is intended primarily for debugging and monitoring.
1698     * This queue may be in active use. Retrieving the task queue
1699     * does not prevent queued tasks from executing.
1700     *
1701     * @return the task queue
1702     */
1703     public BlockingQueue<Runnable> getQueue() {
1704     return workQueue;
1705     }
1706    
1707     /**
1708     * Removes this task from the executor's internal queue if it is
1709     * present, thus causing it not to be run if it has not already
1710     * started.
1711     *
1712     * <p> This method may be useful as one part of a cancellation
1713     * scheme. It may fail to remove tasks that have been converted
1714     * into other forms before being placed on the internal queue. For
1715 jsr166 1.116 * example, a task entered using {@code submit} might be
1716     * converted into a form that maintains {@code Future} status.
1717 jsr166 1.117 * However, in such cases, method {@link #purge} may be used to
1718     * remove those Futures that have been cancelled.
1719 dl 1.86 *
1720     * @param task the task to remove
1721     * @return true if the task was removed
1722     */
1723     public boolean remove(Runnable task) {
1724 jsr166 1.116 boolean removed = workQueue.remove(task);
1725     tryTerminate(); // In case SHUTDOWN and now empty
1726 dl 1.107 return removed;
1727 dl 1.86 }
1728    
1729     /**
1730     * Tries to remove from the work queue all {@link Future}
1731     * tasks that have been cancelled. This method can be useful as a
1732     * storage reclamation operation, that has no other impact on
1733     * functionality. Cancelled tasks are never executed, but may
1734     * accumulate in work queues until worker threads can actively
1735     * remove them. Invoking this method instead tries to remove them now.
1736     * However, this method may fail to remove tasks in
1737     * the presence of interference by other threads.
1738     */
1739     public void purge() {
1740 jsr166 1.111 final BlockingQueue<Runnable> q = workQueue;
1741 dl 1.86 try {
1742 dl 1.107 Iterator<Runnable> it = q.iterator();
1743 dl 1.86 while (it.hasNext()) {
1744     Runnable r = it.next();
1745 jsr166 1.111 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1746 jsr166 1.121 it.remove();
1747 dl 1.107 }
1748 jsr166 1.111 } catch (ConcurrentModificationException fallThrough) {
1749 jsr166 1.121 // Take slow path if we encounter interference during traversal.
1750 jsr166 1.111 // Make copy for traversal and call remove for cancelled entries.
1751 jsr166 1.121 // The slow path is more likely to be O(N*N).
1752 jsr166 1.111 for (Object r : q.toArray())
1753     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1754 jsr166 1.121 q.remove(r);
1755 dl 1.86 }
1756 dl 1.107
1757     tryTerminate(); // In case SHUTDOWN and now empty
1758 dl 1.86 }
1759    
1760 tim 1.1 /* Statistics */
1761    
1762     /**
1763     * Returns the current number of threads in the pool.
1764     *
1765     * @return the number of threads
1766     */
1767 tim 1.10 public int getPoolSize() {
1768 dl 1.107 final ReentrantLock mainLock = this.mainLock;
1769     mainLock.lock();
1770     try {
1771 jsr166 1.121 // Remove rare and surprising possibility of
1772     // isTerminated() && getPoolSize() > 0
1773 jsr166 1.117 return runStateAtLeast(ctl.get(), TIDYING) ? 0
1774 jsr166 1.121 : workers.size();
1775 dl 1.107 } finally {
1776     mainLock.unlock();
1777     }
1778 dl 1.2 }
1779 tim 1.1
1780     /**
1781 dl 1.2 * Returns the approximate number of threads that are actively
1782 tim 1.1 * executing tasks.
1783     *
1784     * @return the number of threads
1785     */
1786 tim 1.10 public int getActiveCount() {
1787 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1788 dl 1.2 mainLock.lock();
1789     try {
1790     int n = 0;
1791 jsr166 1.116 for (Worker w : workers)
1792 dl 1.107 if (w.isLocked())
1793 dl 1.2 ++n;
1794     return n;
1795 tim 1.14 } finally {
1796 dl 1.2 mainLock.unlock();
1797     }
1798     }
1799 tim 1.1
1800     /**
1801 dl 1.2 * Returns the largest number of threads that have ever
1802     * simultaneously been in the pool.
1803 tim 1.1 *
1804     * @return the number of threads
1805     */
1806 tim 1.10 public int getLargestPoolSize() {
1807 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1808 dl 1.2 mainLock.lock();
1809     try {
1810     return largestPoolSize;
1811 tim 1.14 } finally {
1812 dl 1.2 mainLock.unlock();
1813     }
1814     }
1815 tim 1.1
1816     /**
1817 dl 1.85 * Returns the approximate total number of tasks that have ever been
1818 dl 1.2 * scheduled for execution. Because the states of tasks and
1819     * threads may change dynamically during computation, the returned
1820 dl 1.97 * value is only an approximation.
1821 tim 1.1 *
1822     * @return the number of tasks
1823     */
1824 tim 1.10 public long getTaskCount() {
1825 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1826 dl 1.2 mainLock.lock();
1827     try {
1828     long n = completedTaskCount;
1829 tim 1.39 for (Worker w : workers) {
1830 dl 1.2 n += w.completedTasks;
1831 dl 1.107 if (w.isLocked())
1832 dl 1.2 ++n;
1833     }
1834     return n + workQueue.size();
1835 tim 1.14 } finally {
1836 dl 1.2 mainLock.unlock();
1837     }
1838     }
1839 tim 1.1
1840     /**
1841 dl 1.2 * Returns the approximate total number of tasks that have
1842     * completed execution. Because the states of tasks and threads
1843     * may change dynamically during computation, the returned value
1844 dl 1.17 * is only an approximation, but one that does not ever decrease
1845     * across successive calls.
1846 tim 1.1 *
1847     * @return the number of tasks
1848     */
1849 tim 1.10 public long getCompletedTaskCount() {
1850 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1851 dl 1.2 mainLock.lock();
1852     try {
1853     long n = completedTaskCount;
1854 tim 1.39 for (Worker w : workers)
1855     n += w.completedTasks;
1856 dl 1.2 return n;
1857 tim 1.14 } finally {
1858 dl 1.2 mainLock.unlock();
1859     }
1860     }
1861 tim 1.1
1862 dl 1.123 /**
1863     * Returns a string identifying this pool, as well as its state,
1864     * including indications of run state and estimated worker and
1865     * task counts.
1866     *
1867     * @return a string identifying this pool, as well as its state
1868     */
1869     public String toString() {
1870     long ncompleted;
1871     int nworkers, nactive;
1872     final ReentrantLock mainLock = this.mainLock;
1873     mainLock.lock();
1874     try {
1875     ncompleted = completedTaskCount;
1876     nactive = 0;
1877     nworkers = workers.size();
1878     for (Worker w : workers) {
1879     ncompleted += w.completedTasks;
1880     if (w.isLocked())
1881     ++nactive;
1882     }
1883     } finally {
1884     mainLock.unlock();
1885     }
1886     int c = ctl.get();
1887     String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" :
1888     (runStateAtLeast(c, TERMINATED) ? "Terminated" :
1889     "Shutting down"));
1890     return super.toString() +
1891     "[" + rs +
1892     ", pool size = " + nworkers +
1893     ", active threads = " + nactive +
1894     ", queued tasks = " + workQueue.size() +
1895     ", completed tasks = " + ncompleted +
1896     "]";
1897     }
1898    
1899 dl 1.86 /* Extension hooks */
1900    
1901 tim 1.1 /**
1902 dl 1.17 * Method invoked prior to executing the given Runnable in the
1903 jsr166 1.116 * given thread. This method is invoked by thread {@code t} that
1904     * will execute task {@code r}, and may be used to re-initialize
1905 jsr166 1.73 * ThreadLocals, or to perform logging.
1906     *
1907     * <p>This implementation does nothing, but may be customized in
1908     * subclasses. Note: To properly nest multiple overridings, subclasses
1909 jsr166 1.116 * should generally invoke {@code super.beforeExecute} at the end of
1910 jsr166 1.73 * this method.
1911 tim 1.1 *
1912 jsr166 1.116 * @param t the thread that will run task {@code r}
1913     * @param r the task that will be executed
1914 tim 1.1 */
1915 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1916 tim 1.1
1917     /**
1918 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1919     * This method is invoked by the thread that executed the task. If
1920 jsr166 1.116 * non-null, the Throwable is the uncaught {@code RuntimeException}
1921     * or {@code Error} that caused execution to terminate abruptly.
1922 dl 1.69 *
1923 dl 1.107 * <p>This implementation does nothing, but may be customized in
1924     * subclasses. Note: To properly nest multiple overridings, subclasses
1925 jsr166 1.116 * should generally invoke {@code super.afterExecute} at the
1926 dl 1.107 * beginning of this method.
1927     *
1928 dl 1.69 * <p><b>Note:</b> When actions are enclosed in tasks (such as
1929     * {@link FutureTask}) either explicitly or via methods such as
1930 jsr166 1.116 * {@code submit}, these task objects catch and maintain
1931 dl 1.69 * computational exceptions, and so they do not cause abrupt
1932 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1933 dl 1.107 * passed to this method. If you would like to trap both kinds of
1934     * failures in this method, you can further probe for such cases,
1935     * as in this sample subclass that prints either the direct cause
1936     * or the underlying exception if a task has been aborted:
1937     *
1938 jsr166 1.116 * <pre> {@code
1939 dl 1.107 * class ExtendedExecutor extends ThreadPoolExecutor {
1940     * // ...
1941     * protected void afterExecute(Runnable r, Throwable t) {
1942     * super.afterExecute(r, t);
1943 jsr166 1.116 * if (t == null && r instanceof Future<?>) {
1944 dl 1.107 * try {
1945 jsr166 1.116 * Object result = ((Future<?>) r).get();
1946 dl 1.107 * } catch (CancellationException ce) {
1947     * t = ce;
1948     * } catch (ExecutionException ee) {
1949     * t = ee.getCause();
1950     * } catch (InterruptedException ie) {
1951     * Thread.currentThread().interrupt(); // ignore/reset
1952     * }
1953     * }
1954     * if (t != null)
1955     * System.out.println(t);
1956     * }
1957 jsr166 1.116 * }}</pre>
1958 tim 1.1 *
1959 jsr166 1.116 * @param r the runnable that has completed
1960 dl 1.24 * @param t the exception that caused termination, or null if
1961 jsr166 1.116 * execution completed normally
1962 tim 1.1 */
1963 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1964 tim 1.1
1965 dl 1.2 /**
1966     * Method invoked when the Executor has terminated. Default
1967 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1968     * overridings, subclasses should generally invoke
1969 jsr166 1.116 * {@code super.terminated} within this method.
1970 dl 1.2 */
1971     protected void terminated() { }
1972 tim 1.1
1973 dl 1.86 /* Predefined RejectedExecutionHandlers */
1974    
1975 tim 1.1 /**
1976 dl 1.21 * A handler for rejected tasks that runs the rejected task
1977 jsr166 1.116 * directly in the calling thread of the {@code execute} method,
1978 dl 1.21 * unless the executor has been shut down, in which case the task
1979     * is discarded.
1980 tim 1.1 */
1981 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1982 tim 1.1 /**
1983 jsr166 1.116 * Creates a {@code CallerRunsPolicy}.
1984 tim 1.1 */
1985     public CallerRunsPolicy() { }
1986    
1987 dl 1.24 /**
1988     * Executes task r in the caller's thread, unless the executor
1989     * has been shut down, in which case the task is discarded.
1990 jsr166 1.116 *
1991 dl 1.24 * @param r the runnable task requested to be executed
1992     * @param e the executor attempting to execute this task
1993     */
1994 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1995     if (!e.isShutdown()) {
1996 tim 1.1 r.run();
1997     }
1998     }
1999     }
2000    
2001     /**
2002 dl 1.21 * A handler for rejected tasks that throws a
2003 jsr166 1.116 * {@code RejectedExecutionException}.
2004 tim 1.1 */
2005 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
2006 tim 1.1 /**
2007 jsr166 1.116 * Creates an {@code AbortPolicy}.
2008 tim 1.1 */
2009     public AbortPolicy() { }
2010    
2011 dl 1.24 /**
2012 dl 1.54 * Always throws RejectedExecutionException.
2013 jsr166 1.116 *
2014 dl 1.24 * @param r the runnable task requested to be executed
2015     * @param e the executor attempting to execute this task
2016     * @throws RejectedExecutionException always.
2017     */
2018 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2019 dl 1.123 throw new RejectedExecutionException("Task " + r.toString() +
2020     " rejected from " +
2021     e.toString());
2022 tim 1.1 }
2023     }
2024    
2025     /**
2026 dl 1.21 * A handler for rejected tasks that silently discards the
2027     * rejected task.
2028 tim 1.1 */
2029 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
2030 tim 1.1 /**
2031 jsr166 1.116 * Creates a {@code DiscardPolicy}.
2032 tim 1.1 */
2033     public DiscardPolicy() { }
2034    
2035 dl 1.24 /**
2036     * Does nothing, which has the effect of discarding task r.
2037 jsr166 1.116 *
2038 dl 1.24 * @param r the runnable task requested to be executed
2039     * @param e the executor attempting to execute this task
2040     */
2041 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2042 tim 1.1 }
2043     }
2044    
2045     /**
2046 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
2047 jsr166 1.116 * request and then retries {@code execute}, unless the executor
2048 dl 1.21 * is shut down, in which case the task is discarded.
2049 tim 1.1 */
2050 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2051 tim 1.1 /**
2052 jsr166 1.116 * Creates a {@code DiscardOldestPolicy} for the given executor.
2053 tim 1.1 */
2054     public DiscardOldestPolicy() { }
2055    
2056 dl 1.24 /**
2057     * Obtains and ignores the next task that the executor
2058     * would otherwise execute, if one is immediately available,
2059     * and then retries execution of task r, unless the executor
2060     * is shut down, in which case task r is instead discarded.
2061 jsr166 1.116 *
2062 dl 1.24 * @param r the runnable task requested to be executed
2063     * @param e the executor attempting to execute this task
2064     */
2065 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2066     if (!e.isShutdown()) {
2067     e.getQueue().poll();
2068     e.execute(r);
2069 tim 1.1 }
2070     }
2071     }
2072     }