ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.156
Committed: Wed Dec 3 21:55:44 2014 UTC (9 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.155: +6 -1 lines
Log Message:
never use wildcard imports

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4 jsr166 1.124 * http://creativecommons.org/publicdomain/zero/1.0/
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.156
9 jsr166 1.127 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
10     import java.util.concurrent.locks.Condition;
11     import java.util.concurrent.locks.ReentrantLock;
12     import java.util.concurrent.atomic.AtomicInteger;
13 jsr166 1.156 import java.util.ArrayList;
14     import java.util.ConcurrentModificationException;
15     import java.util.HashSet;
16     import java.util.Iterator;
17     import java.util.List;
18 tim 1.1
19     /**
20 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
21 dl 1.28 * one of possibly several pooled threads, normally configured
22     * using {@link Executors} factory methods.
23 tim 1.1 *
24 dl 1.17 * <p>Thread pools address two different problems: they usually
25     * provide improved performance when executing large numbers of
26     * asynchronous tasks, due to reduced per-task invocation overhead,
27     * and they provide a means of bounding and managing the resources,
28     * including threads, consumed when executing a collection of tasks.
29 jsr166 1.116 * Each {@code ThreadPoolExecutor} also maintains some basic
30 dl 1.22 * statistics, such as the number of completed tasks.
31 dl 1.17 *
32 tim 1.1 * <p>To be useful across a wide range of contexts, this class
33 dl 1.24 * provides many adjustable parameters and extensibility
34     * hooks. However, programmers are urged to use the more convenient
35 dl 1.20 * {@link Executors} factory methods {@link
36     * Executors#newCachedThreadPool} (unbounded thread pool, with
37     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
38     * (fixed size thread pool) and {@link
39     * Executors#newSingleThreadExecutor} (single background thread), that
40 dl 1.22 * preconfigure settings for the most common usage
41     * scenarios. Otherwise, use the following guide when manually
42 dl 1.24 * configuring and tuning this class:
43 dl 1.17 *
44 tim 1.1 * <dl>
45 dl 1.2 *
46 dl 1.21 * <dt>Core and maximum pool sizes</dt>
47 dl 1.2 *
48 jsr166 1.116 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
49 jsr166 1.117 * pool size (see {@link #getPoolSize})
50     * according to the bounds set by
51     * corePoolSize (see {@link #getCorePoolSize}) and
52     * maximumPoolSize (see {@link #getMaximumPoolSize}).
53     *
54 jsr166 1.143 * When a new task is submitted in method {@link #execute(Runnable)},
55     * and fewer than corePoolSize threads are running, a new thread is
56     * created to handle the request, even if other worker threads are
57     * idle. If there are more than corePoolSize but less than
58     * maximumPoolSize threads running, a new thread will be created only
59     * if the queue is full. By setting corePoolSize and maximumPoolSize
60     * the same, you create a fixed-size thread pool. By setting
61     * maximumPoolSize to an essentially unbounded value such as {@code
62     * Integer.MAX_VALUE}, you allow the pool to accommodate an arbitrary
63     * number of concurrent tasks. Most typically, core and maximum pool
64     * sizes are set only upon construction, but they may also be changed
65     * dynamically using {@link #setCorePoolSize} and {@link
66     * #setMaximumPoolSize}. </dd>
67 dl 1.2 *
68 jsr166 1.93 * <dt>On-demand construction</dt>
69 dl 1.2 *
70 jsr166 1.142 * <dd>By default, even core threads are initially created and
71 dl 1.69 * started only when new tasks arrive, but this can be overridden
72 jsr166 1.117 * dynamically using method {@link #prestartCoreThread} or {@link
73     * #prestartAllCoreThreads}. You probably want to prestart threads if
74     * you construct the pool with a non-empty queue. </dd>
75 dl 1.2 *
76 tim 1.1 * <dt>Creating new threads</dt>
77 dl 1.2 *
78 jsr166 1.117 * <dd>New threads are created using a {@link ThreadFactory}. If not
79     * otherwise specified, a {@link Executors#defaultThreadFactory} is
80     * used, that creates threads to all be in the same {@link
81     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
82     * non-daemon status. By supplying a different ThreadFactory, you can
83     * alter the thread's name, thread group, priority, daemon status,
84     * etc. If a {@code ThreadFactory} fails to create a thread when asked
85     * by returning null from {@code newThread}, the executor will
86     * continue, but might not be able to execute any tasks. Threads
87     * should possess the "modifyThread" {@code RuntimePermission}. If
88     * worker threads or other threads using the pool do not possess this
89     * permission, service may be degraded: configuration changes may not
90     * take effect in a timely manner, and a shutdown pool may remain in a
91     * state in which termination is possible but not completed.</dd>
92 dl 1.2 *
93 dl 1.21 * <dt>Keep-alive times</dt>
94     *
95     * <dd>If the pool currently has more than corePoolSize threads,
96     * excess threads will be terminated if they have been idle for more
97 jsr166 1.143 * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
98     * This provides a means of reducing resource consumption when the
99     * pool is not being actively used. If the pool becomes more active
100     * later, new threads will be constructed. This parameter can also be
101     * changed dynamically using method {@link #setKeepAliveTime(long,
102     * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link
103     * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
104     * terminating prior to shut down. By default, the keep-alive policy
105 jsr166 1.151 * applies only when there are more than corePoolSize threads, but
106 jsr166 1.143 * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
107     * apply this time-out policy to core threads as well, so long as the
108 jsr166 1.117 * keepAliveTime value is non-zero. </dd>
109 dl 1.21 *
110 dl 1.48 * <dt>Queuing</dt>
111 dl 1.21 *
112     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
113     * submitted tasks. The use of this queue interacts with pool sizing:
114 dl 1.2 *
115 dl 1.21 * <ul>
116     *
117 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
118     * always prefers adding a new thread
119 dl 1.48 * rather than queuing.</li>
120 dl 1.21 *
121 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
122     * always prefers queuing a request rather than adding a new
123     * thread.</li>
124 jsr166 1.66 *
125 dl 1.21 * <li> If a request cannot be queued, a new thread is created unless
126     * this would exceed maximumPoolSize, in which case, the task will be
127     * rejected.</li>
128     *
129     * </ul>
130     *
131     * There are three general strategies for queuing:
132     * <ol>
133     *
134     * <li> <em> Direct handoffs.</em> A good default choice for a work
135     * queue is a {@link SynchronousQueue} that hands off tasks to threads
136     * without otherwise holding them. Here, an attempt to queue a task
137     * will fail if no threads are immediately available to run it, so a
138     * new thread will be constructed. This policy avoids lockups when
139     * handling sets of requests that might have internal dependencies.
140     * Direct handoffs generally require unbounded maximumPoolSizes to
141 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
142 dl 1.21 * possibility of unbounded thread growth when commands continue to
143     * arrive on average faster than they can be processed. </li>
144     *
145     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
146     * example a {@link LinkedBlockingQueue} without a predefined
147 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
148 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
149     * threads will ever be created. (And the value of the maximumPoolSize
150     * therefore doesn't have any effect.) This may be appropriate when
151     * each task is completely independent of others, so tasks cannot
152     * affect each others execution; for example, in a web page server.
153     * While this style of queuing can be useful in smoothing out
154     * transient bursts of requests, it admits the possibility of
155     * unbounded work queue growth when commands continue to arrive on
156     * average faster than they can be processed. </li>
157 dl 1.21 *
158     * <li><em>Bounded queues.</em> A bounded queue (for example, an
159     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
160     * used with finite maximumPoolSizes, but can be more difficult to
161     * tune and control. Queue sizes and maximum pool sizes may be traded
162     * off for each other: Using large queues and small pools minimizes
163     * CPU usage, OS resources, and context-switching overhead, but can
164 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
165 dl 1.21 * example if they are I/O bound), a system may be able to schedule
166     * time for more threads than you otherwise allow. Use of small queues
167 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
168     * may encounter unacceptable scheduling overhead, which also
169     * decreases throughput. </li>
170 dl 1.21 *
171     * </ol>
172     *
173     * </dd>
174     *
175     * <dt>Rejected tasks</dt>
176     *
177 jsr166 1.143 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
178     * <em>rejected</em> when the Executor has been shut down, and also when
179     * the Executor uses finite bounds for both maximum threads and work queue
180     * capacity, and is saturated. In either case, the {@code execute} method
181     * invokes the {@link
182     * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
183     * method of its {@link RejectedExecutionHandler}. Four predefined handler
184     * policies are provided:
185 dl 1.21 *
186     * <ol>
187     *
188 jsr166 1.117 * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
189     * handler throws a runtime {@link RejectedExecutionException} upon
190     * rejection. </li>
191     *
192     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
193     * that invokes {@code execute} itself runs the task. This provides a
194     * simple feedback control mechanism that will slow down the rate that
195     * new tasks are submitted. </li>
196     *
197     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
198     * cannot be executed is simply dropped. </li>
199     *
200     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
201     * executor is not shut down, the task at the head of the work queue
202     * is dropped, and then execution is retried (which can fail again,
203     * causing this to be repeated.) </li>
204 dl 1.21 *
205     * </ol>
206     *
207     * It is possible to define and use other kinds of {@link
208     * RejectedExecutionHandler} classes. Doing so requires some care
209     * especially when policies are designed to work only under particular
210 dl 1.48 * capacity or queuing policies. </dd>
211 dl 1.21 *
212     * <dt>Hook methods</dt>
213     *
214 jsr166 1.143 * <dd>This class provides {@code protected} overridable
215     * {@link #beforeExecute(Thread, Runnable)} and
216     * {@link #afterExecute(Runnable, Throwable)} methods that are called
217 jsr166 1.117 * before and after execution of each task. These can be used to
218     * manipulate the execution environment; for example, reinitializing
219 jsr166 1.143 * ThreadLocals, gathering statistics, or adding log entries.
220     * Additionally, method {@link #terminated} can be overridden to perform
221     * any special processing that needs to be done once the Executor has
222     * fully terminated.
223 jsr166 1.117 *
224     * <p>If hook or callback methods throw exceptions, internal worker
225     * threads may in turn fail and abruptly terminate.</dd>
226 dl 1.2 *
227 dl 1.21 * <dt>Queue maintenance</dt>
228 dl 1.2 *
229 jsr166 1.143 * <dd>Method {@link #getQueue()} allows access to the work queue
230     * for purposes of monitoring and debugging. Use of this method for
231     * any other purpose is strongly discouraged. Two supplied methods,
232     * {@link #remove(Runnable)} and {@link #purge} are available to
233     * assist in storage reclamation when large numbers of queued tasks
234     * become cancelled.</dd>
235 dl 1.79 *
236     * <dt>Finalization</dt>
237     *
238 jsr166 1.142 * <dd>A pool that is no longer referenced in a program <em>AND</em>
239 jsr166 1.117 * has no remaining threads will be {@code shutdown} automatically. If
240     * you would like to ensure that unreferenced pools are reclaimed even
241     * if users forget to call {@link #shutdown}, then you must arrange
242     * that unused threads eventually die, by setting appropriate
243     * keep-alive times, using a lower bound of zero core threads and/or
244     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
245     *
246     * </dl>
247 tim 1.1 *
248 jsr166 1.134 * <p><b>Extension example</b>. Most extensions of this class
249 dl 1.43 * override one or more of the protected hook methods. For example,
250     * here is a subclass that adds a simple pause/resume feature:
251     *
252 jsr166 1.116 * <pre> {@code
253 dl 1.43 * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
254     * private boolean isPaused;
255     * private ReentrantLock pauseLock = new ReentrantLock();
256     * private Condition unpaused = pauseLock.newCondition();
257     *
258     * public PausableThreadPoolExecutor(...) { super(...); }
259 jsr166 1.66 *
260 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
261     * super.beforeExecute(t, r);
262     * pauseLock.lock();
263     * try {
264     * while (isPaused) unpaused.await();
265 jsr166 1.66 * } catch (InterruptedException ie) {
266 dl 1.53 * t.interrupt();
267 dl 1.43 * } finally {
268 dl 1.53 * pauseLock.unlock();
269 dl 1.43 * }
270     * }
271 jsr166 1.66 *
272 dl 1.43 * public void pause() {
273     * pauseLock.lock();
274     * try {
275     * isPaused = true;
276     * } finally {
277 dl 1.53 * pauseLock.unlock();
278 dl 1.43 * }
279     * }
280 jsr166 1.66 *
281 dl 1.43 * public void resume() {
282     * pauseLock.lock();
283     * try {
284     * isPaused = false;
285     * unpaused.signalAll();
286     * } finally {
287 dl 1.53 * pauseLock.unlock();
288 dl 1.43 * }
289     * }
290 jsr166 1.116 * }}</pre>
291     *
292 tim 1.1 * @since 1.5
293 dl 1.8 * @author Doug Lea
294 tim 1.1 */
295 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
296 dl 1.86 /**
297 dl 1.107 * The main pool control state, ctl, is an atomic integer packing
298     * two conceptual fields
299     * workerCount, indicating the effective number of threads
300     * runState, indicating whether running, shutting down etc
301     *
302     * In order to pack them into one int, we limit workerCount to
303 jsr166 1.117 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
304 dl 1.107 * billion) otherwise representable. If this is ever an issue in
305     * the future, the variable can be changed to be an AtomicLong,
306     * and the shift/mask constants below adjusted. But until the need
307     * arises, this code is a bit faster and simpler using an int.
308     *
309     * The workerCount is the number of workers that have been
310     * permitted to start and not permitted to stop. The value may be
311 jsr166 1.110 * transiently different from the actual number of live threads,
312 dl 1.107 * for example when a ThreadFactory fails to create a thread when
313     * asked, and when exiting threads are still performing
314     * bookkeeping before terminating. The user-visible pool size is
315     * reported as the current size of the workers set.
316     *
317 jsr166 1.131 * The runState provides the main lifecycle control, taking on values:
318 dl 1.86 *
319 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
320     * SHUTDOWN: Don't accept new tasks, but process queued tasks
321 jsr166 1.91 * STOP: Don't accept new tasks, don't process queued tasks,
322 dl 1.85 * and interrupt in-progress tasks
323 jsr166 1.117 * TIDYING: All tasks have terminated, workerCount is zero,
324     * the thread transitioning to state TIDYING
325     * will run the terminated() hook method
326     * TERMINATED: terminated() has completed
327 dl 1.86 *
328     * The numerical order among these values matters, to allow
329     * ordered comparisons. The runState monotonically increases over
330     * time, but need not hit each state. The transitions are:
331 jsr166 1.87 *
332     * RUNNING -> SHUTDOWN
333 jsr166 1.88 * On invocation of shutdown(), perhaps implicitly in finalize()
334 jsr166 1.87 * (RUNNING or SHUTDOWN) -> STOP
335 dl 1.86 * On invocation of shutdownNow()
336 jsr166 1.117 * SHUTDOWN -> TIDYING
337 dl 1.86 * When both queue and pool are empty
338 jsr166 1.117 * STOP -> TIDYING
339 dl 1.86 * When pool is empty
340 jsr166 1.117 * TIDYING -> TERMINATED
341     * When the terminated() hook method has completed
342     *
343     * Threads waiting in awaitTermination() will return when the
344     * state reaches TERMINATED.
345 dl 1.107 *
346 jsr166 1.117 * Detecting the transition from SHUTDOWN to TIDYING is less
347 dl 1.107 * straightforward than you'd like because the queue may become
348     * empty after non-empty and vice versa during SHUTDOWN state, but
349     * we can only terminate if, after seeing that it is empty, we see
350     * that workerCount is 0 (which sometimes entails a recheck -- see
351     * below).
352     */
353     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
354 jsr166 1.117 private static final int COUNT_BITS = Integer.SIZE - 3;
355 dl 1.107 private static final int CAPACITY = (1 << COUNT_BITS) - 1;
356    
357 jsr166 1.117 // runState is stored in the high-order bits
358     private static final int RUNNING = -1 << COUNT_BITS;
359     private static final int SHUTDOWN = 0 << COUNT_BITS;
360     private static final int STOP = 1 << COUNT_BITS;
361     private static final int TIDYING = 2 << COUNT_BITS;
362     private static final int TERMINATED = 3 << COUNT_BITS;
363 dl 1.107
364     // Packing and unpacking ctl
365 jsr166 1.117 private static int runStateOf(int c) { return c & ~CAPACITY; }
366     private static int workerCountOf(int c) { return c & CAPACITY; }
367     private static int ctlOf(int rs, int wc) { return rs | wc; }
368    
369     /*
370     * Bit field accessors that don't require unpacking ctl.
371     * These depend on the bit layout and on workerCount being never negative.
372     */
373    
374     private static boolean runStateLessThan(int c, int s) {
375 jsr166 1.121 return c < s;
376 jsr166 1.117 }
377    
378     private static boolean runStateAtLeast(int c, int s) {
379 jsr166 1.121 return c >= s;
380 jsr166 1.117 }
381    
382     private static boolean isRunning(int c) {
383 jsr166 1.121 return c < SHUTDOWN;
384 jsr166 1.117 }
385    
386     /**
387 jsr166 1.135 * Attempts to CAS-increment the workerCount field of ctl.
388 jsr166 1.117 */
389     private boolean compareAndIncrementWorkerCount(int expect) {
390 jsr166 1.121 return ctl.compareAndSet(expect, expect + 1);
391 jsr166 1.117 }
392    
393     /**
394 jsr166 1.135 * Attempts to CAS-decrement the workerCount field of ctl.
395 jsr166 1.117 */
396     private boolean compareAndDecrementWorkerCount(int expect) {
397 jsr166 1.121 return ctl.compareAndSet(expect, expect - 1);
398 jsr166 1.117 }
399    
400     /**
401     * Decrements the workerCount field of ctl. This is called only on
402     * abrupt termination of a thread (see processWorkerExit). Other
403     * decrements are performed within getTask.
404     */
405     private void decrementWorkerCount() {
406 jsr166 1.121 do {} while (! compareAndDecrementWorkerCount(ctl.get()));
407 jsr166 1.117 }
408 tim 1.41
409     /**
410 dl 1.86 * The queue used for holding tasks and handing off to worker
411 dl 1.107 * threads. We do not require that workQueue.poll() returning
412 jsr166 1.109 * null necessarily means that workQueue.isEmpty(), so rely
413 dl 1.107 * solely on isEmpty to see if the queue is empty (which we must
414     * do for example when deciding whether to transition from
415 jsr166 1.117 * SHUTDOWN to TIDYING). This accommodates special-purpose
416 dl 1.107 * queues such as DelayQueues for which poll() is allowed to
417     * return null even if it may later return non-null when delays
418     * expire.
419 tim 1.10 */
420 dl 1.2 private final BlockingQueue<Runnable> workQueue;
421    
422     /**
423 dl 1.107 * Lock held on access to workers set and related bookkeeping.
424     * While we could use a concurrent set of some sort, it turns out
425     * to be generally preferable to use a lock. Among the reasons is
426     * that this serializes interruptIdleWorkers, which avoids
427     * unnecessary interrupt storms, especially during shutdown.
428     * Otherwise exiting threads would concurrently interrupt those
429     * that have not yet interrupted. It also simplifies some of the
430     * associated statistics bookkeeping of largestPoolSize etc. We
431     * also hold mainLock on shutdown and shutdownNow, for the sake of
432     * ensuring workers set is stable while separately checking
433     * permission to interrupt and actually interrupting.
434 tim 1.10 */
435 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
436    
437     /**
438 dl 1.107 * Set containing all worker threads in pool. Accessed only when
439     * holding mainLock.
440     */
441 jsr166 1.153 private final HashSet<Worker> workers = new HashSet<>();
442 dl 1.107
443     /**
444 dl 1.2 * Wait condition to support awaitTermination
445 tim 1.10 */
446 dl 1.46 private final Condition termination = mainLock.newCondition();
447 dl 1.2
448     /**
449 dl 1.107 * Tracks largest attained pool size. Accessed only under
450     * mainLock.
451     */
452     private int largestPoolSize;
453    
454     /**
455     * Counter for completed tasks. Updated only on termination of
456     * worker threads. Accessed only under mainLock.
457     */
458     private long completedTaskCount;
459    
460     /*
461     * All user control parameters are declared as volatiles so that
462     * ongoing actions are based on freshest values, but without need
463     * for locking, since no internal invariants depend on them
464     * changing synchronously with respect to other actions.
465     */
466    
467     /**
468     * Factory for new threads. All threads are created using this
469     * factory (via method addWorker). All callers must be prepared
470     * for addWorker to fail, which may reflect a system or user's
471     * policy limiting the number of threads. Even though it is not
472     * treated as an error, failure to create threads may result in
473     * new tasks being rejected or existing ones remaining stuck in
474 jsr166 1.128 * the queue.
475     *
476     * We go further and preserve pool invariants even in the face of
477     * errors such as OutOfMemoryError, that might be thrown while
478     * trying to create threads. Such errors are rather common due to
479 jsr166 1.145 * the need to allocate a native stack in Thread.start, and users
480 jsr166 1.128 * will want to perform clean pool shutdown to clean up. There
481     * will likely be enough memory available for the cleanup code to
482     * complete without encountering yet another OutOfMemoryError.
483 dl 1.107 */
484     private volatile ThreadFactory threadFactory;
485    
486     /**
487     * Handler called when saturated or shutdown in execute.
488 tim 1.10 */
489 dl 1.107 private volatile RejectedExecutionHandler handler;
490 dl 1.2
491     /**
492 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
493 dl 1.86 * Threads use this timeout when there are more than corePoolSize
494     * present or if allowCoreThreadTimeOut. Otherwise they wait
495     * forever for new work.
496 tim 1.10 */
497 dl 1.107 private volatile long keepAliveTime;
498 dl 1.2
499     /**
500 jsr166 1.101 * If false (default), core threads stay alive even when idle.
501     * If true, core threads use keepAliveTime to time out waiting
502     * for work.
503 dl 1.62 */
504 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
505 dl 1.62
506     /**
507 dl 1.107 * Core pool size is the minimum number of workers to keep alive
508     * (and not allow to time out etc) unless allowCoreThreadTimeOut
509 jsr166 1.109 * is set, in which case the minimum is zero.
510 dl 1.107 */
511     private volatile int corePoolSize;
512    
513     /**
514     * Maximum pool size. Note that the actual maximum is internally
515     * bounded by CAPACITY.
516     */
517     private volatile int maximumPoolSize;
518    
519     /**
520     * The default rejected execution handler
521     */
522     private static final RejectedExecutionHandler defaultHandler =
523     new AbortPolicy();
524    
525     /**
526     * Permission required for callers of shutdown and shutdownNow.
527     * We additionally require (see checkShutdownAccess) that callers
528     * have permission to actually interrupt threads in the worker set
529     * (as governed by Thread.interrupt, which relies on
530     * ThreadGroup.checkAccess, which in turn relies on
531     * SecurityManager.checkAccess). Shutdowns are attempted only if
532     * these checks pass.
533     *
534     * All actual invocations of Thread.interrupt (see
535     * interruptIdleWorkers and interruptWorkers) ignore
536     * SecurityExceptions, meaning that the attempted interrupts
537     * silently fail. In the case of shutdown, they should not fail
538     * unless the SecurityManager has inconsistent policies, sometimes
539     * allowing access to a thread and sometimes not. In such cases,
540     * failure to actually interrupt threads may disable or delay full
541     * termination. Other uses of interruptIdleWorkers are advisory,
542     * and failure to actually interrupt will merely delay response to
543     * configuration changes so is not handled exceptionally.
544     */
545     private static final RuntimePermission shutdownPerm =
546     new RuntimePermission("modifyThread");
547    
548     /**
549 jsr166 1.108 * Class Worker mainly maintains interrupt control state for
550 jsr166 1.120 * threads running tasks, along with other minor bookkeeping.
551     * This class opportunistically extends AbstractQueuedSynchronizer
552     * to simplify acquiring and releasing a lock surrounding each
553     * task execution. This protects against interrupts that are
554     * intended to wake up a worker thread waiting for a task from
555     * instead interrupting a task being run. We implement a simple
556 dl 1.130 * non-reentrant mutual exclusion lock rather than use
557     * ReentrantLock because we do not want worker tasks to be able to
558     * reacquire the lock when they invoke pool control methods like
559     * setCorePoolSize. Additionally, to suppress interrupts until
560     * the thread actually starts running tasks, we initialize lock
561     * state to a negative value, and clear it upon start (in
562     * runWorker).
563 jsr166 1.120 */
564     private final class Worker
565 jsr166 1.121 extends AbstractQueuedSynchronizer
566     implements Runnable
567 jsr166 1.120 {
568 jsr166 1.121 /**
569     * This class will never be serialized, but we provide a
570     * serialVersionUID to suppress a javac warning.
571     */
572     private static final long serialVersionUID = 6138294804551838833L;
573 jsr166 1.116
574 jsr166 1.108 /** Thread this worker is running in. Null if factory fails. */
575 dl 1.107 final Thread thread;
576 jsr166 1.108 /** Initial task to run. Possibly null. */
577 dl 1.107 Runnable firstTask;
578     /** Per-thread task counter */
579     volatile long completedTasks;
580    
581     /**
582 jsr166 1.108 * Creates with given first task and thread from ThreadFactory.
583     * @param firstTask the first task (null if none)
584 dl 1.107 */
585     Worker(Runnable firstTask) {
586 dl 1.130 setState(-1); // inhibit interrupts until runWorker
587 dl 1.107 this.firstTask = firstTask;
588 jsr166 1.121 this.thread = getThreadFactory().newThread(this);
589 dl 1.107 }
590    
591 jsr166 1.148 /** Delegates main run loop to outer runWorker. */
592 dl 1.107 public void run() {
593     runWorker(this);
594     }
595 jsr166 1.120
596 jsr166 1.121 // Lock methods
597     //
598     // The value 0 represents the unlocked state.
599     // The value 1 represents the locked state.
600    
601     protected boolean isHeldExclusively() {
602 dl 1.130 return getState() != 0;
603 jsr166 1.121 }
604    
605     protected boolean tryAcquire(int unused) {
606     if (compareAndSetState(0, 1)) {
607     setExclusiveOwnerThread(Thread.currentThread());
608     return true;
609     }
610     return false;
611     }
612    
613     protected boolean tryRelease(int unused) {
614     setExclusiveOwnerThread(null);
615     setState(0);
616     return true;
617     }
618    
619     public void lock() { acquire(1); }
620     public boolean tryLock() { return tryAcquire(1); }
621     public void unlock() { release(1); }
622     public boolean isLocked() { return isHeldExclusively(); }
623 dl 1.130
624     void interruptIfStarted() {
625     Thread t;
626     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
627     try {
628     t.interrupt();
629     } catch (SecurityException ignore) {
630     }
631     }
632     }
633 dl 1.107 }
634    
635     /*
636     * Methods for setting control state
637     */
638    
639     /**
640     * Transitions runState to given target, or leaves it alone if
641     * already at least the given target.
642 jsr166 1.116 *
643 jsr166 1.117 * @param targetState the desired state, either SHUTDOWN or STOP
644     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
645 dl 1.107 */
646     private void advanceRunState(int targetState) {
647 jsr166 1.155 // assert targetState == SHUTDOWN || targetState == STOP;
648 dl 1.107 for (;;) {
649     int c = ctl.get();
650 jsr166 1.117 if (runStateAtLeast(c, targetState) ||
651 dl 1.107 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
652     break;
653     }
654     }
655    
656     /**
657     * Transitions to TERMINATED state if either (SHUTDOWN and pool
658     * and queue empty) or (STOP and pool empty). If otherwise
659     * eligible to terminate but workerCount is nonzero, interrupts an
660     * idle worker to ensure that shutdown signals propagate. This
661     * method must be called following any action that might make
662     * termination possible -- reducing worker count or removing tasks
663     * from the queue during shutdown. The method is non-private to
664 jsr166 1.110 * allow access from ScheduledThreadPoolExecutor.
665 dl 1.107 */
666     final void tryTerminate() {
667     for (;;) {
668     int c = ctl.get();
669 jsr166 1.121 if (isRunning(c) ||
670     runStateAtLeast(c, TIDYING) ||
671     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
672     return;
673 dl 1.107 if (workerCountOf(c) != 0) { // Eligible to terminate
674 jsr166 1.113 interruptIdleWorkers(ONLY_ONE);
675 dl 1.107 return;
676     }
677 jsr166 1.119
678 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
679     mainLock.lock();
680     try {
681     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
682     try {
683     terminated();
684     } finally {
685     ctl.set(ctlOf(TERMINATED, 0));
686     termination.signalAll();
687     }
688     return;
689     }
690     } finally {
691     mainLock.unlock();
692     }
693 dl 1.107 // else retry on failed CAS
694     }
695     }
696    
697 jsr166 1.116 /*
698 dl 1.107 * Methods for controlling interrupts to worker threads.
699     */
700    
701     /**
702     * If there is a security manager, makes sure caller has
703     * permission to shut down threads in general (see shutdownPerm).
704     * If this passes, additionally makes sure the caller is allowed
705     * to interrupt each worker thread. This might not be true even if
706     * first check passed, if the SecurityManager treats some threads
707     * specially.
708     */
709     private void checkShutdownAccess() {
710     SecurityManager security = System.getSecurityManager();
711     if (security != null) {
712     security.checkPermission(shutdownPerm);
713     final ReentrantLock mainLock = this.mainLock;
714     mainLock.lock();
715     try {
716     for (Worker w : workers)
717     security.checkAccess(w.thread);
718     } finally {
719     mainLock.unlock();
720     }
721     }
722     }
723    
724     /**
725 jsr166 1.116 * Interrupts all threads, even if active. Ignores SecurityExceptions
726     * (in which case some threads may remain uninterrupted).
727 dl 1.107 */
728     private void interruptWorkers() {
729     final ReentrantLock mainLock = this.mainLock;
730     mainLock.lock();
731     try {
732 dl 1.130 for (Worker w : workers)
733     w.interruptIfStarted();
734 dl 1.107 } finally {
735     mainLock.unlock();
736     }
737     }
738    
739     /**
740     * Interrupts threads that might be waiting for tasks (as
741     * indicated by not being locked) so they can check for
742     * termination or configuration changes. Ignores
743     * SecurityExceptions (in which case some threads may remain
744     * uninterrupted).
745     *
746     * @param onlyOne If true, interrupt at most one worker. This is
747     * called only from tryTerminate when termination is otherwise
748     * enabled but there are still other workers. In this case, at
749     * most one waiting worker is interrupted to propagate shutdown
750 jsr166 1.113 * signals in case all threads are currently waiting.
751 dl 1.107 * Interrupting any arbitrary thread ensures that newly arriving
752     * workers since shutdown began will also eventually exit.
753 jsr166 1.113 * To guarantee eventual termination, it suffices to always
754     * interrupt only one idle worker, but shutdown() interrupts all
755     * idle workers so that redundant workers exit promptly, not
756     * waiting for a straggler task to finish.
757 tim 1.10 */
758 dl 1.107 private void interruptIdleWorkers(boolean onlyOne) {
759 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
760 dl 1.107 mainLock.lock();
761     try {
762 jsr166 1.121 for (Worker w : workers) {
763 dl 1.107 Thread t = w.thread;
764 jsr166 1.121 if (!t.isInterrupted() && w.tryLock()) {
765 dl 1.107 try {
766     t.interrupt();
767     } catch (SecurityException ignore) {
768     } finally {
769     w.unlock();
770     }
771     }
772     if (onlyOne)
773     break;
774     }
775     } finally {
776     mainLock.unlock();
777     }
778     }
779    
780 dl 1.118 /**
781     * Common form of interruptIdleWorkers, to avoid having to
782     * remember what the boolean argument means.
783     */
784 jsr166 1.119 private void interruptIdleWorkers() {
785     interruptIdleWorkers(false);
786 dl 1.118 }
787    
788 jsr166 1.113 private static final boolean ONLY_ONE = true;
789    
790 dl 1.107 /*
791     * Misc utilities, most of which are also exported to
792     * ScheduledThreadPoolExecutor
793     */
794    
795     /**
796     * Invokes the rejected execution handler for the given command.
797     * Package-protected for use by ScheduledThreadPoolExecutor.
798     */
799     final void reject(Runnable command) {
800     handler.rejectedExecution(command, this);
801     }
802 dl 1.2
803     /**
804 dl 1.107 * Performs any further cleanup following run state transition on
805     * invocation of shutdown. A no-op here, but used by
806     * ScheduledThreadPoolExecutor to cancel delayed tasks.
807 tim 1.10 */
808 dl 1.107 void onShutdown() {
809     }
810 dl 1.2
811     /**
812 dl 1.107 * State check needed by ScheduledThreadPoolExecutor to
813 jsr166 1.117 * enable running tasks during shutdown.
814     *
815 dl 1.107 * @param shutdownOK true if should return true if SHUTDOWN
816 tim 1.10 */
817 dl 1.107 final boolean isRunningOrShutdown(boolean shutdownOK) {
818     int rs = runStateOf(ctl.get());
819     return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
820     }
821 dl 1.2
822     /**
823 dl 1.107 * Drains the task queue into a new list, normally using
824     * drainTo. But if the queue is a DelayQueue or any other kind of
825     * queue for which poll or drainTo may fail to remove some
826     * elements, it deletes them one by one.
827     */
828     private List<Runnable> drainQueue() {
829     BlockingQueue<Runnable> q = workQueue;
830 jsr166 1.153 ArrayList<Runnable> taskList = new ArrayList<>();
831 dl 1.107 q.drainTo(taskList);
832     if (!q.isEmpty()) {
833     for (Runnable r : q.toArray(new Runnable[0])) {
834     if (q.remove(r))
835     taskList.add(r);
836     }
837     }
838     return taskList;
839     }
840    
841     /*
842     * Methods for creating, running and cleaning up after workers
843 tim 1.10 */
844 dl 1.2
845     /**
846 dl 1.107 * Checks if a new worker can be added with respect to current
847 jsr166 1.116 * pool state and the given bound (either core or maximum). If so,
848 dl 1.107 * the worker count is adjusted accordingly, and, if possible, a
849 jsr166 1.128 * new worker is created and started, running firstTask as its
850 jsr166 1.117 * first task. This method returns false if the pool is stopped or
851 dl 1.107 * eligible to shut down. It also returns false if the thread
852 jsr166 1.128 * factory fails to create a thread when asked. If the thread
853     * creation fails, either due to the thread factory returning
854     * null, or due to an exception (typically OutOfMemoryError in
855 jsr166 1.146 * Thread.start()), we roll back cleanly.
856 dl 1.107 *
857     * @param firstTask the task the new thread should run first (or
858     * null if none). Workers are created with an initial first task
859     * (in method execute()) to bypass queuing when there are fewer
860     * than corePoolSize threads (in which case we always start one),
861 jsr166 1.110 * or when the queue is full (in which case we must bypass queue).
862 dl 1.107 * Initially idle threads are usually created via
863     * prestartCoreThread or to replace other dying workers.
864     *
865     * @param core if true use corePoolSize as bound, else
866 jsr166 1.110 * maximumPoolSize. (A boolean indicator is used here rather than a
867 dl 1.107 * value to ensure reads of fresh values after checking other pool
868     * state).
869     * @return true if successful
870 tim 1.10 */
871 dl 1.107 private boolean addWorker(Runnable firstTask, boolean core) {
872 jsr166 1.121 retry:
873 dl 1.107 for (;;) {
874 jsr166 1.121 int c = ctl.get();
875     int rs = runStateOf(c);
876 jsr166 1.119
877 jsr166 1.121 // Check if queue empty only if necessary.
878 jsr166 1.119 if (rs >= SHUTDOWN &&
879 jsr166 1.121 ! (rs == SHUTDOWN &&
880     firstTask == null &&
881     ! workQueue.isEmpty()))
882     return false;
883    
884     for (;;) {
885     int wc = workerCountOf(c);
886     if (wc >= CAPACITY ||
887     wc >= (core ? corePoolSize : maximumPoolSize))
888     return false;
889     if (compareAndIncrementWorkerCount(c))
890     break retry;
891     c = ctl.get(); // Re-read ctl
892     if (runStateOf(c) != rs)
893     continue retry;
894     // else CAS failed due to workerCount change; retry inner loop
895     }
896 dl 1.107 }
897    
898 jsr166 1.128 boolean workerStarted = false;
899 dl 1.130 boolean workerAdded = false;
900 jsr166 1.128 Worker w = null;
901     try {
902     w = new Worker(firstTask);
903     final Thread t = w.thread;
904 dl 1.130 if (t != null) {
905 jsr166 1.132 final ReentrantLock mainLock = this.mainLock;
906 dl 1.130 mainLock.lock();
907     try {
908     // Recheck while holding lock.
909     // Back out on ThreadFactory failure or if
910     // shut down before lock acquired.
911 jsr166 1.133 int rs = runStateOf(ctl.get());
912 dl 1.130
913     if (rs < SHUTDOWN ||
914     (rs == SHUTDOWN && firstTask == null)) {
915     if (t.isAlive()) // precheck that t is startable
916     throw new IllegalThreadStateException();
917     workers.add(w);
918     int s = workers.size();
919     if (s > largestPoolSize)
920     largestPoolSize = s;
921     workerAdded = true;
922     }
923     } finally {
924     mainLock.unlock();
925     }
926     if (workerAdded) {
927     t.start();
928     workerStarted = true;
929     }
930 jsr166 1.121 }
931 jsr166 1.128 } finally {
932     if (! workerStarted)
933     addWorkerFailed(w);
934     }
935 dl 1.130 return workerStarted;
936 jsr166 1.128 }
937    
938     /**
939     * Rolls back the worker thread creation.
940     * - removes worker from workers, if present
941     * - decrements worker count
942     * - rechecks for termination, in case the existence of this
943     * worker was holding up termination
944     */
945     private void addWorkerFailed(Worker w) {
946     final ReentrantLock mainLock = this.mainLock;
947     mainLock.lock();
948     try {
949     if (w != null)
950     workers.remove(w);
951     decrementWorkerCount();
952     tryTerminate();
953 dl 1.107 } finally {
954     mainLock.unlock();
955     }
956     }
957 dl 1.2
958     /**
959 dl 1.107 * Performs cleanup and bookkeeping for a dying worker. Called
960     * only from worker threads. Unless completedAbruptly is set,
961     * assumes that workerCount has already been adjusted to account
962     * for exit. This method removes thread from worker set, and
963     * possibly terminates the pool or replaces the worker if either
964     * it exited due to user task exception or if fewer than
965     * corePoolSize workers are running or queue is non-empty but
966     * there are no workers.
967     *
968     * @param w the worker
969     * @param completedAbruptly if the worker died due to user exception
970 tim 1.10 */
971 dl 1.107 private void processWorkerExit(Worker w, boolean completedAbruptly) {
972     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
973     decrementWorkerCount();
974    
975     final ReentrantLock mainLock = this.mainLock;
976     mainLock.lock();
977     try {
978     completedTaskCount += w.completedTasks;
979     workers.remove(w);
980     } finally {
981     mainLock.unlock();
982     }
983    
984     tryTerminate();
985    
986 jsr166 1.121 int c = ctl.get();
987     if (runStateLessThan(c, STOP)) {
988     if (!completedAbruptly) {
989     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
990     if (min == 0 && ! workQueue.isEmpty())
991     min = 1;
992     if (workerCountOf(c) >= min)
993     return; // replacement not needed
994     }
995     addWorker(null, false);
996     }
997 dl 1.107 }
998 dl 1.2
999     /**
1000 dl 1.107 * Performs blocking or timed wait for a task, depending on
1001     * current configuration settings, or returns null if this worker
1002     * must exit because of any of:
1003     * 1. There are more than maximumPoolSize workers (due to
1004     * a call to setMaximumPoolSize).
1005 jsr166 1.110 * 2. The pool is stopped.
1006 jsr166 1.119 * 3. The pool is shutdown and the queue is empty.
1007     * 4. This worker timed out waiting for a task, and timed-out
1008     * workers are subject to termination (that is,
1009     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1010 jsr166 1.139 * both before and after the timed wait, and if the queue is
1011     * non-empty, this worker is not the last thread in the pool.
1012 dl 1.107 *
1013     * @return task, or null if the worker must exit, in which case
1014 jsr166 1.116 * workerCount is decremented
1015 tim 1.10 */
1016 dl 1.107 private Runnable getTask() {
1017 jsr166 1.121 boolean timedOut = false; // Did the last poll() time out?
1018 jsr166 1.119
1019 jsr166 1.121 for (;;) {
1020 dl 1.107 int c = ctl.get();
1021 jsr166 1.121 int rs = runStateOf(c);
1022    
1023     // Check if queue empty only if necessary.
1024     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
1025     decrementWorkerCount();
1026     return null;
1027     }
1028 jsr166 1.119
1029 jsr166 1.139 int wc = workerCountOf(c);
1030 jsr166 1.121
1031 jsr166 1.139 // Are workers subject to culling?
1032     boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
1033 jsr166 1.121
1034 jsr166 1.139 if ((wc > maximumPoolSize || (timed && timedOut))
1035     && (wc > 1 || workQueue.isEmpty())) {
1036 jsr166 1.121 if (compareAndDecrementWorkerCount(c))
1037     return null;
1038 jsr166 1.139 continue;
1039 dl 1.107 }
1040    
1041     try {
1042 jsr166 1.110 Runnable r = timed ?
1043 dl 1.107 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1044     workQueue.take();
1045     if (r != null)
1046     return r;
1047 jsr166 1.121 timedOut = true;
1048 jsr166 1.108 } catch (InterruptedException retry) {
1049 jsr166 1.121 timedOut = false;
1050 dl 1.107 }
1051     }
1052     }
1053 jsr166 1.66
1054 dl 1.8 /**
1055 dl 1.107 * Main worker run loop. Repeatedly gets tasks from queue and
1056     * executes them, while coping with a number of issues:
1057     *
1058     * 1. We may start out with an initial task, in which case we
1059     * don't need to get the first one. Otherwise, as long as pool is
1060     * running, we get tasks from getTask. If it returns null then the
1061     * worker exits due to changed pool state or configuration
1062     * parameters. Other exits result from exception throws in
1063     * external code, in which case completedAbruptly holds, which
1064     * usually leads processWorkerExit to replace this thread.
1065     *
1066     * 2. Before running any task, the lock is acquired to prevent
1067 jsr166 1.137 * other pool interrupts while the task is executing, and then we
1068     * ensure that unless pool is stopping, this thread does not have
1069     * its interrupt set.
1070 dl 1.107 *
1071     * 3. Each task run is preceded by a call to beforeExecute, which
1072     * might throw an exception, in which case we cause thread to die
1073     * (breaking loop with completedAbruptly true) without processing
1074     * the task.
1075     *
1076     * 4. Assuming beforeExecute completes normally, we run the task,
1077 jsr166 1.136 * gathering any of its thrown exceptions to send to afterExecute.
1078     * We separately handle RuntimeException, Error (both of which the
1079     * specs guarantee that we trap) and arbitrary Throwables.
1080     * Because we cannot rethrow Throwables within Runnable.run, we
1081     * wrap them within Errors on the way out (to the thread's
1082     * UncaughtExceptionHandler). Any thrown exception also
1083 dl 1.107 * conservatively causes thread to die.
1084     *
1085     * 5. After task.run completes, we call afterExecute, which may
1086     * also throw an exception, which will also cause thread to
1087     * die. According to JLS Sec 14.20, this exception is the one that
1088     * will be in effect even if task.run throws.
1089     *
1090     * The net effect of the exception mechanics is that afterExecute
1091     * and the thread's UncaughtExceptionHandler have as accurate
1092     * information as we can provide about any problems encountered by
1093     * user code.
1094     *
1095     * @param w the worker
1096 dl 1.8 */
1097 dl 1.107 final void runWorker(Worker w) {
1098 dl 1.130 Thread wt = Thread.currentThread();
1099 dl 1.107 Runnable task = w.firstTask;
1100     w.firstTask = null;
1101 dl 1.130 w.unlock(); // allow interrupts
1102 dl 1.107 boolean completedAbruptly = true;
1103     try {
1104     while (task != null || (task = getTask()) != null) {
1105     w.lock();
1106 dl 1.130 // If pool is stopping, ensure thread is interrupted;
1107     // if not, ensure thread is not interrupted. This
1108     // requires a recheck in second case to deal with
1109     // shutdownNow race while clearing interrupt
1110     if ((runStateAtLeast(ctl.get(), STOP) ||
1111     (Thread.interrupted() &&
1112     runStateAtLeast(ctl.get(), STOP))) &&
1113     !wt.isInterrupted())
1114     wt.interrupt();
1115 dl 1.107 try {
1116 dl 1.130 beforeExecute(wt, task);
1117 dl 1.107 Throwable thrown = null;
1118     try {
1119     task.run();
1120     } catch (RuntimeException x) {
1121     thrown = x; throw x;
1122     } catch (Error x) {
1123     thrown = x; throw x;
1124     } catch (Throwable x) {
1125     thrown = x; throw new Error(x);
1126     } finally {
1127     afterExecute(task, thrown);
1128     }
1129     } finally {
1130     task = null;
1131     w.completedTasks++;
1132     w.unlock();
1133     }
1134     }
1135     completedAbruptly = false;
1136     } finally {
1137     processWorkerExit(w, completedAbruptly);
1138     }
1139     }
1140 dl 1.2
1141 dl 1.107 // Public constructors and methods
1142 dl 1.86
1143 dl 1.2 /**
1144 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1145 dl 1.86 * parameters and default thread factory and rejected execution handler.
1146     * It may be more convenient to use one of the {@link Executors} factory
1147     * methods instead of this general purpose constructor.
1148     *
1149 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1150     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1151 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1152 jsr166 1.116 * pool
1153 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1154 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1155     * will wait for new tasks before terminating.
1156     * @param unit the time unit for the {@code keepAliveTime} argument
1157     * @param workQueue the queue to use for holding tasks before they are
1158     * executed. This queue will hold only the {@code Runnable}
1159     * tasks submitted by the {@code execute} method.
1160     * @throws IllegalArgumentException if one of the following holds:<br>
1161     * {@code corePoolSize < 0}<br>
1162     * {@code keepAliveTime < 0}<br>
1163     * {@code maximumPoolSize <= 0}<br>
1164     * {@code maximumPoolSize < corePoolSize}
1165     * @throws NullPointerException if {@code workQueue} is null
1166 dl 1.86 */
1167     public ThreadPoolExecutor(int corePoolSize,
1168     int maximumPoolSize,
1169     long keepAliveTime,
1170     TimeUnit unit,
1171     BlockingQueue<Runnable> workQueue) {
1172     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1173     Executors.defaultThreadFactory(), defaultHandler);
1174     }
1175    
1176     /**
1177 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1178 dl 1.86 * parameters and default rejected execution handler.
1179     *
1180 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1181     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1182 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1183 jsr166 1.116 * pool
1184 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1185 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1186     * will wait for new tasks before terminating.
1187     * @param unit the time unit for the {@code keepAliveTime} argument
1188     * @param workQueue the queue to use for holding tasks before they are
1189     * executed. This queue will hold only the {@code Runnable}
1190     * tasks submitted by the {@code execute} method.
1191 dl 1.86 * @param threadFactory the factory to use when the executor
1192 jsr166 1.116 * creates a new thread
1193     * @throws IllegalArgumentException if one of the following holds:<br>
1194     * {@code corePoolSize < 0}<br>
1195     * {@code keepAliveTime < 0}<br>
1196     * {@code maximumPoolSize <= 0}<br>
1197     * {@code maximumPoolSize < corePoolSize}
1198     * @throws NullPointerException if {@code workQueue}
1199     * or {@code threadFactory} is null
1200 dl 1.86 */
1201     public ThreadPoolExecutor(int corePoolSize,
1202     int maximumPoolSize,
1203     long keepAliveTime,
1204     TimeUnit unit,
1205     BlockingQueue<Runnable> workQueue,
1206     ThreadFactory threadFactory) {
1207     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1208     threadFactory, defaultHandler);
1209     }
1210    
1211     /**
1212 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1213 dl 1.86 * parameters and default thread factory.
1214     *
1215 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1216     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1217 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1218 jsr166 1.116 * pool
1219 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1220 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1221     * will wait for new tasks before terminating.
1222     * @param unit the time unit for the {@code keepAliveTime} argument
1223     * @param workQueue the queue to use for holding tasks before they are
1224     * executed. This queue will hold only the {@code Runnable}
1225     * tasks submitted by the {@code execute} method.
1226 dl 1.86 * @param handler the handler to use when execution is blocked
1227 jsr166 1.116 * because the thread bounds and queue capacities are reached
1228     * @throws IllegalArgumentException if one of the following holds:<br>
1229     * {@code corePoolSize < 0}<br>
1230     * {@code keepAliveTime < 0}<br>
1231     * {@code maximumPoolSize <= 0}<br>
1232     * {@code maximumPoolSize < corePoolSize}
1233     * @throws NullPointerException if {@code workQueue}
1234     * or {@code handler} is null
1235 dl 1.86 */
1236     public ThreadPoolExecutor(int corePoolSize,
1237     int maximumPoolSize,
1238     long keepAliveTime,
1239     TimeUnit unit,
1240     BlockingQueue<Runnable> workQueue,
1241     RejectedExecutionHandler handler) {
1242     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1243     Executors.defaultThreadFactory(), handler);
1244     }
1245    
1246     /**
1247 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1248 dl 1.86 * parameters.
1249     *
1250 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1251     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1252 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1253 jsr166 1.116 * pool
1254 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1255 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1256     * will wait for new tasks before terminating.
1257     * @param unit the time unit for the {@code keepAliveTime} argument
1258     * @param workQueue the queue to use for holding tasks before they are
1259     * executed. This queue will hold only the {@code Runnable}
1260     * tasks submitted by the {@code execute} method.
1261 dl 1.86 * @param threadFactory the factory to use when the executor
1262 jsr166 1.116 * creates a new thread
1263 dl 1.86 * @param handler the handler to use when execution is blocked
1264 jsr166 1.116 * because the thread bounds and queue capacities are reached
1265     * @throws IllegalArgumentException if one of the following holds:<br>
1266     * {@code corePoolSize < 0}<br>
1267     * {@code keepAliveTime < 0}<br>
1268     * {@code maximumPoolSize <= 0}<br>
1269     * {@code maximumPoolSize < corePoolSize}
1270     * @throws NullPointerException if {@code workQueue}
1271     * or {@code threadFactory} or {@code handler} is null
1272 dl 1.86 */
1273     public ThreadPoolExecutor(int corePoolSize,
1274     int maximumPoolSize,
1275     long keepAliveTime,
1276     TimeUnit unit,
1277     BlockingQueue<Runnable> workQueue,
1278     ThreadFactory threadFactory,
1279     RejectedExecutionHandler handler) {
1280     if (corePoolSize < 0 ||
1281     maximumPoolSize <= 0 ||
1282     maximumPoolSize < corePoolSize ||
1283     keepAliveTime < 0)
1284     throw new IllegalArgumentException();
1285     if (workQueue == null || threadFactory == null || handler == null)
1286     throw new NullPointerException();
1287     this.corePoolSize = corePoolSize;
1288     this.maximumPoolSize = maximumPoolSize;
1289     this.workQueue = workQueue;
1290     this.keepAliveTime = unit.toNanos(keepAliveTime);
1291     this.threadFactory = threadFactory;
1292     this.handler = handler;
1293     }
1294    
1295     /**
1296     * Executes the given task sometime in the future. The task
1297     * may execute in a new thread or in an existing pooled thread.
1298     *
1299     * If the task cannot be submitted for execution, either because this
1300     * executor has been shutdown or because its capacity has been reached,
1301 jsr166 1.116 * the task is handled by the current {@code RejectedExecutionHandler}.
1302 dl 1.86 *
1303     * @param command the task to execute
1304     * @throws RejectedExecutionException at discretion of
1305 jsr166 1.116 * {@code RejectedExecutionHandler}, if the task
1306     * cannot be accepted for execution
1307     * @throws NullPointerException if {@code command} is null
1308 dl 1.13 */
1309 dl 1.86 public void execute(Runnable command) {
1310     if (command == null)
1311     throw new NullPointerException();
1312 dl 1.107 /*
1313     * Proceed in 3 steps:
1314     *
1315     * 1. If fewer than corePoolSize threads are running, try to
1316     * start a new thread with the given command as its first
1317     * task. The call to addWorker atomically checks runState and
1318     * workerCount, and so prevents false alarms that would add
1319     * threads when it shouldn't, by returning false.
1320     *
1321     * 2. If a task can be successfully queued, then we still need
1322     * to double-check whether we should have added a thread
1323     * (because existing ones died since last checking) or that
1324     * the pool shut down since entry into this method. So we
1325     * recheck state and if necessary roll back the enqueuing if
1326     * stopped, or start a new thread if there are none.
1327     *
1328     * 3. If we cannot queue task, then we try to add a new
1329     * thread. If it fails, we know we are shut down or saturated
1330     * and so reject the task.
1331     */
1332     int c = ctl.get();
1333     if (workerCountOf(c) < corePoolSize) {
1334     if (addWorker(command, true))
1335     return;
1336     c = ctl.get();
1337     }
1338 jsr166 1.117 if (isRunning(c) && workQueue.offer(command)) {
1339 dl 1.107 int recheck = ctl.get();
1340 jsr166 1.117 if (! isRunning(recheck) && remove(command))
1341 dl 1.107 reject(command);
1342     else if (workerCountOf(recheck) == 0)
1343     addWorker(null, false);
1344 dl 1.86 }
1345 dl 1.107 else if (!addWorker(command, false))
1346 dl 1.85 reject(command);
1347 tim 1.1 }
1348 dl 1.4
1349 dl 1.53 /**
1350     * Initiates an orderly shutdown in which previously submitted
1351 jsr166 1.116 * tasks are executed, but no new tasks will be accepted.
1352     * Invocation has no additional effect if already shut down.
1353     *
1354 jsr166 1.122 * <p>This method does not wait for previously submitted tasks to
1355     * complete execution. Use {@link #awaitTermination awaitTermination}
1356     * to do that.
1357     *
1358 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1359 dl 1.53 */
1360 dl 1.2 public void shutdown() {
1361 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1362 dl 1.2 mainLock.lock();
1363     try {
1364 dl 1.107 checkShutdownAccess();
1365     advanceRunState(SHUTDOWN);
1366 jsr166 1.113 interruptIdleWorkers();
1367 dl 1.107 onShutdown(); // hook for ScheduledThreadPoolExecutor
1368 tim 1.14 } finally {
1369 dl 1.2 mainLock.unlock();
1370     }
1371 dl 1.107 tryTerminate();
1372 tim 1.1 }
1373    
1374 dl 1.53 /**
1375     * Attempts to stop all actively executing tasks, halts the
1376 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1377 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1378     * from the task queue upon return from this method.
1379 jsr166 1.66 *
1380 jsr166 1.122 * <p>This method does not wait for actively executing tasks to
1381     * terminate. Use {@link #awaitTermination awaitTermination} to
1382     * do that.
1383     *
1384 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1385     * processing actively executing tasks. This implementation
1386     * cancels tasks via {@link Thread#interrupt}, so any task that
1387     * fails to respond to interrupts may never terminate.
1388 dl 1.53 *
1389 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1390 dl 1.53 */
1391 tim 1.39 public List<Runnable> shutdownNow() {
1392 dl 1.107 List<Runnable> tasks;
1393 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1394 dl 1.2 mainLock.lock();
1395     try {
1396 dl 1.107 checkShutdownAccess();
1397     advanceRunState(STOP);
1398     interruptWorkers();
1399     tasks = drainQueue();
1400 tim 1.14 } finally {
1401 dl 1.2 mainLock.unlock();
1402     }
1403 dl 1.107 tryTerminate();
1404     return tasks;
1405 dl 1.86 }
1406    
1407 dl 1.2 public boolean isShutdown() {
1408 jsr166 1.117 return ! isRunning(ctl.get());
1409 dl 1.16 }
1410    
1411 jsr166 1.66 /**
1412 dl 1.55 * Returns true if this executor is in the process of terminating
1413 jsr166 1.117 * after {@link #shutdown} or {@link #shutdownNow} but has not
1414 dl 1.16 * completely terminated. This method may be useful for
1415 jsr166 1.116 * debugging. A return of {@code true} reported a sufficient
1416 dl 1.16 * period after shutdown may indicate that submitted tasks have
1417     * ignored or suppressed interruption, causing this executor not
1418     * to properly terminate.
1419 jsr166 1.116 *
1420 jsr166 1.147 * @return {@code true} if terminating but not yet terminated
1421 dl 1.16 */
1422     public boolean isTerminating() {
1423 jsr166 1.117 int c = ctl.get();
1424     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1425 tim 1.1 }
1426    
1427 dl 1.2 public boolean isTerminated() {
1428 jsr166 1.117 return runStateAtLeast(ctl.get(), TERMINATED);
1429 dl 1.2 }
1430 tim 1.1
1431 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1432     throws InterruptedException {
1433 dl 1.50 long nanos = unit.toNanos(timeout);
1434 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1435 dl 1.2 mainLock.lock();
1436     try {
1437 dl 1.25 for (;;) {
1438 jsr166 1.117 if (runStateAtLeast(ctl.get(), TERMINATED))
1439 dl 1.25 return true;
1440     if (nanos <= 0)
1441     return false;
1442     nanos = termination.awaitNanos(nanos);
1443     }
1444 tim 1.14 } finally {
1445 dl 1.2 mainLock.unlock();
1446     }
1447 dl 1.15 }
1448    
1449     /**
1450 jsr166 1.116 * Invokes {@code shutdown} when this executor is no longer
1451     * referenced and it has no threads.
1452 jsr166 1.66 */
1453 dl 1.107 protected void finalize() {
1454 dl 1.15 shutdown();
1455 dl 1.2 }
1456 tim 1.10
1457 dl 1.2 /**
1458     * Sets the thread factory used to create new threads.
1459     *
1460     * @param threadFactory the new thread factory
1461 dl 1.30 * @throws NullPointerException if threadFactory is null
1462 tim 1.11 * @see #getThreadFactory
1463 dl 1.2 */
1464     public void setThreadFactory(ThreadFactory threadFactory) {
1465 dl 1.30 if (threadFactory == null)
1466     throw new NullPointerException();
1467 dl 1.2 this.threadFactory = threadFactory;
1468 tim 1.1 }
1469    
1470 dl 1.2 /**
1471     * Returns the thread factory used to create new threads.
1472     *
1473     * @return the current thread factory
1474 jsr166 1.144 * @see #setThreadFactory(ThreadFactory)
1475 dl 1.2 */
1476     public ThreadFactory getThreadFactory() {
1477     return threadFactory;
1478 tim 1.1 }
1479    
1480 dl 1.2 /**
1481     * Sets a new handler for unexecutable tasks.
1482     *
1483     * @param handler the new handler
1484 dl 1.31 * @throws NullPointerException if handler is null
1485 tim 1.11 * @see #getRejectedExecutionHandler
1486 dl 1.2 */
1487     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1488 dl 1.31 if (handler == null)
1489     throw new NullPointerException();
1490 dl 1.2 this.handler = handler;
1491     }
1492 tim 1.1
1493 dl 1.2 /**
1494     * Returns the current handler for unexecutable tasks.
1495     *
1496     * @return the current handler
1497 jsr166 1.144 * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
1498 dl 1.2 */
1499     public RejectedExecutionHandler getRejectedExecutionHandler() {
1500     return handler;
1501 tim 1.1 }
1502    
1503 dl 1.2 /**
1504     * Sets the core number of threads. This overrides any value set
1505     * in the constructor. If the new value is smaller than the
1506     * current value, excess existing threads will be terminated when
1507 jsr166 1.116 * they next become idle. If larger, new threads will, if needed,
1508 dl 1.34 * be started to execute any queued tasks.
1509 tim 1.1 *
1510 dl 1.2 * @param corePoolSize the new core size
1511 jsr166 1.116 * @throws IllegalArgumentException if {@code corePoolSize < 0}
1512 dl 1.152 * or {@code corePoolSize} is greater than the {@linkplain
1513     * #getMaximumPoolSize() maximum pool size}
1514 tim 1.11 * @see #getCorePoolSize
1515 tim 1.1 */
1516 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1517 dl 1.152 if (corePoolSize < 0 || maximumPoolSize < corePoolSize)
1518 dl 1.2 throw new IllegalArgumentException();
1519 dl 1.107 int delta = corePoolSize - this.corePoolSize;
1520     this.corePoolSize = corePoolSize;
1521     if (workerCountOf(ctl.get()) > corePoolSize)
1522 jsr166 1.113 interruptIdleWorkers();
1523 dl 1.107 else if (delta > 0) {
1524     // We don't really know how many new threads are "needed".
1525     // As a heuristic, prestart enough new workers (up to new
1526     // core size) to handle the current number of tasks in
1527     // queue, but stop if queue becomes empty while doing so.
1528     int k = Math.min(delta, workQueue.size());
1529     while (k-- > 0 && addWorker(null, true)) {
1530     if (workQueue.isEmpty())
1531     break;
1532 tim 1.38 }
1533 dl 1.2 }
1534     }
1535 tim 1.1
1536     /**
1537 dl 1.2 * Returns the core number of threads.
1538 tim 1.1 *
1539 dl 1.2 * @return the core number of threads
1540 tim 1.11 * @see #setCorePoolSize
1541 tim 1.1 */
1542 tim 1.10 public int getCorePoolSize() {
1543 dl 1.2 return corePoolSize;
1544 dl 1.16 }
1545    
1546     /**
1547 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1548 dl 1.16 * overrides the default policy of starting core threads only when
1549 jsr166 1.116 * new tasks are executed. This method will return {@code false}
1550 dl 1.16 * if all core threads have already been started.
1551 jsr166 1.116 *
1552     * @return {@code true} if a thread was started
1553 jsr166 1.66 */
1554 dl 1.16 public boolean prestartCoreThread() {
1555 dl 1.107 return workerCountOf(ctl.get()) < corePoolSize &&
1556     addWorker(null, true);
1557 dl 1.16 }
1558    
1559     /**
1560 dl 1.125 * Same as prestartCoreThread except arranges that at least one
1561     * thread is started even if corePoolSize is 0.
1562     */
1563     void ensurePrestart() {
1564     int wc = workerCountOf(ctl.get());
1565 dl 1.126 if (wc < corePoolSize)
1566     addWorker(null, true);
1567     else if (wc == 0)
1568 dl 1.125 addWorker(null, false);
1569     }
1570    
1571     /**
1572 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1573 dl 1.16 * overrides the default policy of starting core threads only when
1574 jsr166 1.66 * new tasks are executed.
1575 jsr166 1.116 *
1576 jsr166 1.88 * @return the number of threads started
1577 jsr166 1.66 */
1578 dl 1.16 public int prestartAllCoreThreads() {
1579     int n = 0;
1580 dl 1.107 while (addWorker(null, true))
1581 dl 1.16 ++n;
1582     return n;
1583 dl 1.2 }
1584 tim 1.1
1585     /**
1586 dl 1.62 * Returns true if this pool allows core threads to time out and
1587     * terminate if no tasks arrive within the keepAlive time, being
1588     * replaced if needed when new tasks arrive. When true, the same
1589     * keep-alive policy applying to non-core threads applies also to
1590     * core threads. When false (the default), core threads are never
1591     * terminated due to lack of incoming tasks.
1592 jsr166 1.116 *
1593     * @return {@code true} if core threads are allowed to time out,
1594     * else {@code false}
1595 jsr166 1.72 *
1596     * @since 1.6
1597 dl 1.62 */
1598     public boolean allowsCoreThreadTimeOut() {
1599     return allowCoreThreadTimeOut;
1600     }
1601    
1602     /**
1603     * Sets the policy governing whether core threads may time out and
1604     * terminate if no tasks arrive within the keep-alive time, being
1605     * replaced if needed when new tasks arrive. When false, core
1606     * threads are never terminated due to lack of incoming
1607     * tasks. When true, the same keep-alive policy applying to
1608     * non-core threads applies also to core threads. To avoid
1609     * continual thread replacement, the keep-alive time must be
1610 jsr166 1.116 * greater than zero when setting {@code true}. This method
1611 dl 1.64 * should in general be called before the pool is actively used.
1612 jsr166 1.116 *
1613     * @param value {@code true} if should time out, else {@code false}
1614     * @throws IllegalArgumentException if value is {@code true}
1615     * and the current keep-alive time is not greater than zero
1616 jsr166 1.72 *
1617     * @since 1.6
1618 dl 1.62 */
1619     public void allowCoreThreadTimeOut(boolean value) {
1620 dl 1.64 if (value && keepAliveTime <= 0)
1621     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1622 dl 1.107 if (value != allowCoreThreadTimeOut) {
1623     allowCoreThreadTimeOut = value;
1624     if (value)
1625 jsr166 1.113 interruptIdleWorkers();
1626 dl 1.107 }
1627 dl 1.62 }
1628    
1629     /**
1630 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1631 dl 1.2 * value set in the constructor. If the new value is smaller than
1632     * the current value, excess existing threads will be
1633     * terminated when they next become idle.
1634 tim 1.1 *
1635 dl 1.2 * @param maximumPoolSize the new maximum
1636 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1637     * less than or equal to zero, or
1638     * less than the {@linkplain #getCorePoolSize core pool size}
1639 tim 1.11 * @see #getMaximumPoolSize
1640 dl 1.2 */
1641     public void setMaximumPoolSize(int maximumPoolSize) {
1642     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1643     throw new IllegalArgumentException();
1644 dl 1.107 this.maximumPoolSize = maximumPoolSize;
1645     if (workerCountOf(ctl.get()) > maximumPoolSize)
1646 jsr166 1.113 interruptIdleWorkers();
1647 dl 1.2 }
1648 tim 1.1
1649     /**
1650     * Returns the maximum allowed number of threads.
1651     *
1652 dl 1.2 * @return the maximum allowed number of threads
1653 tim 1.11 * @see #setMaximumPoolSize
1654 tim 1.1 */
1655 tim 1.10 public int getMaximumPoolSize() {
1656 dl 1.2 return maximumPoolSize;
1657     }
1658 tim 1.1
1659     /**
1660 jsr166 1.151 * Sets the thread keep-alive time, which is the amount of time
1661     * that threads may remain idle before being terminated.
1662     * Threads that wait this amount of time without processing a
1663     * task will be terminated if there are more than the core
1664     * number of threads currently in the pool, or if this pool
1665     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1666     * This overrides any value set in the constructor.
1667 jsr166 1.116 *
1668 tim 1.1 * @param time the time to wait. A time value of zero will cause
1669 jsr166 1.116 * excess threads to terminate immediately after executing tasks.
1670     * @param unit the time unit of the {@code time} argument
1671     * @throws IllegalArgumentException if {@code time} less than zero or
1672     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1673 jsr166 1.144 * @see #getKeepAliveTime(TimeUnit)
1674 tim 1.1 */
1675 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1676     if (time < 0)
1677     throw new IllegalArgumentException();
1678 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1679     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1680 dl 1.107 long keepAliveTime = unit.toNanos(time);
1681     long delta = keepAliveTime - this.keepAliveTime;
1682     this.keepAliveTime = keepAliveTime;
1683     if (delta < 0)
1684 jsr166 1.113 interruptIdleWorkers();
1685 dl 1.2 }
1686 tim 1.1
1687     /**
1688     * Returns the thread keep-alive time, which is the amount of time
1689 jsr166 1.151 * that threads may remain idle before being terminated.
1690     * Threads that wait this amount of time without processing a
1691     * task will be terminated if there are more than the core
1692     * number of threads currently in the pool, or if this pool
1693     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1694 tim 1.1 *
1695 dl 1.2 * @param unit the desired time unit of the result
1696 tim 1.1 * @return the time limit
1697 jsr166 1.144 * @see #setKeepAliveTime(long, TimeUnit)
1698 tim 1.1 */
1699 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1700 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1701     }
1702 tim 1.1
1703 dl 1.86 /* User-level queue utilities */
1704    
1705     /**
1706     * Returns the task queue used by this executor. Access to the
1707     * task queue is intended primarily for debugging and monitoring.
1708     * This queue may be in active use. Retrieving the task queue
1709     * does not prevent queued tasks from executing.
1710     *
1711     * @return the task queue
1712     */
1713     public BlockingQueue<Runnable> getQueue() {
1714     return workQueue;
1715     }
1716    
1717     /**
1718     * Removes this task from the executor's internal queue if it is
1719     * present, thus causing it not to be run if it has not already
1720     * started.
1721     *
1722 jsr166 1.134 * <p>This method may be useful as one part of a cancellation
1723 dl 1.86 * scheme. It may fail to remove tasks that have been converted
1724 jsr166 1.149 * into other forms before being placed on the internal queue.
1725     * For example, a task entered using {@code submit} might be
1726 jsr166 1.116 * converted into a form that maintains {@code Future} status.
1727 jsr166 1.117 * However, in such cases, method {@link #purge} may be used to
1728     * remove those Futures that have been cancelled.
1729 dl 1.86 *
1730     * @param task the task to remove
1731 jsr166 1.147 * @return {@code true} if the task was removed
1732 dl 1.86 */
1733     public boolean remove(Runnable task) {
1734 jsr166 1.116 boolean removed = workQueue.remove(task);
1735     tryTerminate(); // In case SHUTDOWN and now empty
1736 dl 1.107 return removed;
1737 dl 1.86 }
1738    
1739     /**
1740     * Tries to remove from the work queue all {@link Future}
1741     * tasks that have been cancelled. This method can be useful as a
1742     * storage reclamation operation, that has no other impact on
1743     * functionality. Cancelled tasks are never executed, but may
1744     * accumulate in work queues until worker threads can actively
1745     * remove them. Invoking this method instead tries to remove them now.
1746     * However, this method may fail to remove tasks in
1747     * the presence of interference by other threads.
1748     */
1749     public void purge() {
1750 jsr166 1.111 final BlockingQueue<Runnable> q = workQueue;
1751 dl 1.86 try {
1752 dl 1.107 Iterator<Runnable> it = q.iterator();
1753 dl 1.86 while (it.hasNext()) {
1754     Runnable r = it.next();
1755 jsr166 1.111 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1756 jsr166 1.121 it.remove();
1757 dl 1.107 }
1758 jsr166 1.111 } catch (ConcurrentModificationException fallThrough) {
1759 jsr166 1.121 // Take slow path if we encounter interference during traversal.
1760 jsr166 1.111 // Make copy for traversal and call remove for cancelled entries.
1761 jsr166 1.121 // The slow path is more likely to be O(N*N).
1762 jsr166 1.111 for (Object r : q.toArray())
1763     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1764 jsr166 1.121 q.remove(r);
1765 dl 1.86 }
1766 dl 1.107
1767     tryTerminate(); // In case SHUTDOWN and now empty
1768 dl 1.86 }
1769    
1770 tim 1.1 /* Statistics */
1771    
1772     /**
1773     * Returns the current number of threads in the pool.
1774     *
1775     * @return the number of threads
1776     */
1777 tim 1.10 public int getPoolSize() {
1778 dl 1.107 final ReentrantLock mainLock = this.mainLock;
1779     mainLock.lock();
1780     try {
1781 jsr166 1.121 // Remove rare and surprising possibility of
1782     // isTerminated() && getPoolSize() > 0
1783 jsr166 1.117 return runStateAtLeast(ctl.get(), TIDYING) ? 0
1784 jsr166 1.121 : workers.size();
1785 dl 1.107 } finally {
1786     mainLock.unlock();
1787     }
1788 dl 1.2 }
1789 tim 1.1
1790     /**
1791 dl 1.2 * Returns the approximate number of threads that are actively
1792 tim 1.1 * executing tasks.
1793     *
1794     * @return the number of threads
1795     */
1796 tim 1.10 public int getActiveCount() {
1797 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1798 dl 1.2 mainLock.lock();
1799     try {
1800     int n = 0;
1801 jsr166 1.116 for (Worker w : workers)
1802 dl 1.107 if (w.isLocked())
1803 dl 1.2 ++n;
1804     return n;
1805 tim 1.14 } finally {
1806 dl 1.2 mainLock.unlock();
1807     }
1808     }
1809 tim 1.1
1810     /**
1811 dl 1.2 * Returns the largest number of threads that have ever
1812     * simultaneously been in the pool.
1813 tim 1.1 *
1814     * @return the number of threads
1815     */
1816 tim 1.10 public int getLargestPoolSize() {
1817 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1818 dl 1.2 mainLock.lock();
1819     try {
1820     return largestPoolSize;
1821 tim 1.14 } finally {
1822 dl 1.2 mainLock.unlock();
1823     }
1824     }
1825 tim 1.1
1826     /**
1827 dl 1.85 * Returns the approximate total number of tasks that have ever been
1828 dl 1.2 * scheduled for execution. Because the states of tasks and
1829     * threads may change dynamically during computation, the returned
1830 dl 1.97 * value is only an approximation.
1831 tim 1.1 *
1832     * @return the number of tasks
1833     */
1834 tim 1.10 public long getTaskCount() {
1835 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1836 dl 1.2 mainLock.lock();
1837     try {
1838     long n = completedTaskCount;
1839 tim 1.39 for (Worker w : workers) {
1840 dl 1.2 n += w.completedTasks;
1841 dl 1.107 if (w.isLocked())
1842 dl 1.2 ++n;
1843     }
1844     return n + workQueue.size();
1845 tim 1.14 } finally {
1846 dl 1.2 mainLock.unlock();
1847     }
1848     }
1849 tim 1.1
1850     /**
1851 dl 1.2 * Returns the approximate total number of tasks that have
1852     * completed execution. Because the states of tasks and threads
1853     * may change dynamically during computation, the returned value
1854 dl 1.17 * is only an approximation, but one that does not ever decrease
1855     * across successive calls.
1856 tim 1.1 *
1857     * @return the number of tasks
1858     */
1859 tim 1.10 public long getCompletedTaskCount() {
1860 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1861 dl 1.2 mainLock.lock();
1862     try {
1863     long n = completedTaskCount;
1864 tim 1.39 for (Worker w : workers)
1865     n += w.completedTasks;
1866 dl 1.2 return n;
1867 tim 1.14 } finally {
1868 dl 1.2 mainLock.unlock();
1869     }
1870     }
1871 tim 1.1
1872 dl 1.123 /**
1873     * Returns a string identifying this pool, as well as its state,
1874     * including indications of run state and estimated worker and
1875     * task counts.
1876     *
1877     * @return a string identifying this pool, as well as its state
1878     */
1879     public String toString() {
1880     long ncompleted;
1881     int nworkers, nactive;
1882     final ReentrantLock mainLock = this.mainLock;
1883     mainLock.lock();
1884     try {
1885     ncompleted = completedTaskCount;
1886     nactive = 0;
1887     nworkers = workers.size();
1888     for (Worker w : workers) {
1889     ncompleted += w.completedTasks;
1890     if (w.isLocked())
1891     ++nactive;
1892     }
1893     } finally {
1894     mainLock.unlock();
1895     }
1896     int c = ctl.get();
1897 jsr166 1.150 String runState =
1898     runStateLessThan(c, SHUTDOWN) ? "Running" :
1899     runStateAtLeast(c, TERMINATED) ? "Terminated" :
1900     "Shutting down";
1901 dl 1.123 return super.toString() +
1902 jsr166 1.150 "[" + runState +
1903 dl 1.123 ", pool size = " + nworkers +
1904     ", active threads = " + nactive +
1905     ", queued tasks = " + workQueue.size() +
1906     ", completed tasks = " + ncompleted +
1907     "]";
1908     }
1909    
1910 dl 1.86 /* Extension hooks */
1911    
1912 tim 1.1 /**
1913 dl 1.17 * Method invoked prior to executing the given Runnable in the
1914 jsr166 1.116 * given thread. This method is invoked by thread {@code t} that
1915     * will execute task {@code r}, and may be used to re-initialize
1916 jsr166 1.73 * ThreadLocals, or to perform logging.
1917     *
1918     * <p>This implementation does nothing, but may be customized in
1919     * subclasses. Note: To properly nest multiple overridings, subclasses
1920 jsr166 1.116 * should generally invoke {@code super.beforeExecute} at the end of
1921 jsr166 1.73 * this method.
1922 tim 1.1 *
1923 jsr166 1.116 * @param t the thread that will run task {@code r}
1924     * @param r the task that will be executed
1925 tim 1.1 */
1926 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1927 tim 1.1
1928     /**
1929 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1930     * This method is invoked by the thread that executed the task. If
1931 jsr166 1.116 * non-null, the Throwable is the uncaught {@code RuntimeException}
1932     * or {@code Error} that caused execution to terminate abruptly.
1933 dl 1.69 *
1934 dl 1.107 * <p>This implementation does nothing, but may be customized in
1935     * subclasses. Note: To properly nest multiple overridings, subclasses
1936 jsr166 1.116 * should generally invoke {@code super.afterExecute} at the
1937 dl 1.107 * beginning of this method.
1938     *
1939 dl 1.69 * <p><b>Note:</b> When actions are enclosed in tasks (such as
1940     * {@link FutureTask}) either explicitly or via methods such as
1941 jsr166 1.116 * {@code submit}, these task objects catch and maintain
1942 dl 1.69 * computational exceptions, and so they do not cause abrupt
1943 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1944 dl 1.107 * passed to this method. If you would like to trap both kinds of
1945     * failures in this method, you can further probe for such cases,
1946     * as in this sample subclass that prints either the direct cause
1947     * or the underlying exception if a task has been aborted:
1948     *
1949 jsr166 1.116 * <pre> {@code
1950 dl 1.107 * class ExtendedExecutor extends ThreadPoolExecutor {
1951     * // ...
1952     * protected void afterExecute(Runnable r, Throwable t) {
1953     * super.afterExecute(r, t);
1954 jsr166 1.116 * if (t == null && r instanceof Future<?>) {
1955 dl 1.107 * try {
1956 jsr166 1.116 * Object result = ((Future<?>) r).get();
1957 dl 1.107 * } catch (CancellationException ce) {
1958 jsr166 1.154 * t = ce;
1959 dl 1.107 * } catch (ExecutionException ee) {
1960 jsr166 1.154 * t = ee.getCause();
1961 dl 1.107 * } catch (InterruptedException ie) {
1962 jsr166 1.154 * Thread.currentThread().interrupt(); // ignore/reset
1963 dl 1.107 * }
1964     * }
1965     * if (t != null)
1966     * System.out.println(t);
1967     * }
1968 jsr166 1.116 * }}</pre>
1969 tim 1.1 *
1970 jsr166 1.116 * @param r the runnable that has completed
1971 dl 1.24 * @param t the exception that caused termination, or null if
1972 jsr166 1.116 * execution completed normally
1973 tim 1.1 */
1974 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1975 tim 1.1
1976 dl 1.2 /**
1977     * Method invoked when the Executor has terminated. Default
1978 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1979     * overridings, subclasses should generally invoke
1980 jsr166 1.116 * {@code super.terminated} within this method.
1981 dl 1.2 */
1982     protected void terminated() { }
1983 tim 1.1
1984 dl 1.86 /* Predefined RejectedExecutionHandlers */
1985    
1986 tim 1.1 /**
1987 dl 1.21 * A handler for rejected tasks that runs the rejected task
1988 jsr166 1.116 * directly in the calling thread of the {@code execute} method,
1989 dl 1.21 * unless the executor has been shut down, in which case the task
1990     * is discarded.
1991 tim 1.1 */
1992 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1993 tim 1.1 /**
1994 jsr166 1.116 * Creates a {@code CallerRunsPolicy}.
1995 tim 1.1 */
1996     public CallerRunsPolicy() { }
1997    
1998 dl 1.24 /**
1999     * Executes task r in the caller's thread, unless the executor
2000     * has been shut down, in which case the task is discarded.
2001 jsr166 1.116 *
2002 dl 1.24 * @param r the runnable task requested to be executed
2003     * @param e the executor attempting to execute this task
2004     */
2005 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2006     if (!e.isShutdown()) {
2007 tim 1.1 r.run();
2008     }
2009     }
2010     }
2011    
2012     /**
2013 dl 1.21 * A handler for rejected tasks that throws a
2014 jsr166 1.116 * {@code RejectedExecutionException}.
2015 tim 1.1 */
2016 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
2017 tim 1.1 /**
2018 jsr166 1.116 * Creates an {@code AbortPolicy}.
2019 tim 1.1 */
2020     public AbortPolicy() { }
2021    
2022 dl 1.24 /**
2023 dl 1.54 * Always throws RejectedExecutionException.
2024 jsr166 1.116 *
2025 dl 1.24 * @param r the runnable task requested to be executed
2026     * @param e the executor attempting to execute this task
2027 jsr166 1.141 * @throws RejectedExecutionException always
2028 dl 1.24 */
2029 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2030 dl 1.123 throw new RejectedExecutionException("Task " + r.toString() +
2031     " rejected from " +
2032     e.toString());
2033 tim 1.1 }
2034     }
2035    
2036     /**
2037 dl 1.21 * A handler for rejected tasks that silently discards the
2038     * rejected task.
2039 tim 1.1 */
2040 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
2041 tim 1.1 /**
2042 jsr166 1.116 * Creates a {@code DiscardPolicy}.
2043 tim 1.1 */
2044     public DiscardPolicy() { }
2045    
2046 dl 1.24 /**
2047     * Does nothing, which has the effect of discarding task r.
2048 jsr166 1.116 *
2049 dl 1.24 * @param r the runnable task requested to be executed
2050     * @param e the executor attempting to execute this task
2051     */
2052 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2053 tim 1.1 }
2054     }
2055    
2056     /**
2057 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
2058 jsr166 1.116 * request and then retries {@code execute}, unless the executor
2059 dl 1.21 * is shut down, in which case the task is discarded.
2060 tim 1.1 */
2061 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2062 tim 1.1 /**
2063 jsr166 1.116 * Creates a {@code DiscardOldestPolicy} for the given executor.
2064 tim 1.1 */
2065     public DiscardOldestPolicy() { }
2066    
2067 dl 1.24 /**
2068     * Obtains and ignores the next task that the executor
2069     * would otherwise execute, if one is immediately available,
2070     * and then retries execution of task r, unless the executor
2071     * is shut down, in which case task r is instead discarded.
2072 jsr166 1.116 *
2073 dl 1.24 * @param r the runnable task requested to be executed
2074     * @param e the executor attempting to execute this task
2075     */
2076 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2077     if (!e.isShutdown()) {
2078     e.getQueue().poll();
2079     e.execute(r);
2080 tim 1.1 }
2081     }
2082     }
2083     }