ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.159
Committed: Fri Jan 30 16:44:14 2015 UTC (9 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.158: +5 -2 lines
Log Message:
reformat code sample

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4 jsr166 1.124 * http://creativecommons.org/publicdomain/zero/1.0/
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.156
9     import java.util.ArrayList;
10     import java.util.ConcurrentModificationException;
11     import java.util.HashSet;
12     import java.util.Iterator;
13     import java.util.List;
14 jsr166 1.157 import java.util.concurrent.atomic.AtomicInteger;
15     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
16     import java.util.concurrent.locks.Condition;
17     import java.util.concurrent.locks.ReentrantLock;
18 tim 1.1
19     /**
20 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
21 dl 1.28 * one of possibly several pooled threads, normally configured
22     * using {@link Executors} factory methods.
23 tim 1.1 *
24 dl 1.17 * <p>Thread pools address two different problems: they usually
25     * provide improved performance when executing large numbers of
26     * asynchronous tasks, due to reduced per-task invocation overhead,
27     * and they provide a means of bounding and managing the resources,
28     * including threads, consumed when executing a collection of tasks.
29 jsr166 1.116 * Each {@code ThreadPoolExecutor} also maintains some basic
30 dl 1.22 * statistics, such as the number of completed tasks.
31 dl 1.17 *
32 tim 1.1 * <p>To be useful across a wide range of contexts, this class
33 dl 1.24 * provides many adjustable parameters and extensibility
34     * hooks. However, programmers are urged to use the more convenient
35 dl 1.20 * {@link Executors} factory methods {@link
36     * Executors#newCachedThreadPool} (unbounded thread pool, with
37     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
38     * (fixed size thread pool) and {@link
39     * Executors#newSingleThreadExecutor} (single background thread), that
40 dl 1.22 * preconfigure settings for the most common usage
41     * scenarios. Otherwise, use the following guide when manually
42 dl 1.24 * configuring and tuning this class:
43 dl 1.17 *
44 tim 1.1 * <dl>
45 dl 1.2 *
46 dl 1.21 * <dt>Core and maximum pool sizes</dt>
47 dl 1.2 *
48 jsr166 1.116 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
49 jsr166 1.117 * pool size (see {@link #getPoolSize})
50     * according to the bounds set by
51     * corePoolSize (see {@link #getCorePoolSize}) and
52     * maximumPoolSize (see {@link #getMaximumPoolSize}).
53     *
54 jsr166 1.143 * When a new task is submitted in method {@link #execute(Runnable)},
55     * and fewer than corePoolSize threads are running, a new thread is
56     * created to handle the request, even if other worker threads are
57     * idle. If there are more than corePoolSize but less than
58     * maximumPoolSize threads running, a new thread will be created only
59     * if the queue is full. By setting corePoolSize and maximumPoolSize
60     * the same, you create a fixed-size thread pool. By setting
61     * maximumPoolSize to an essentially unbounded value such as {@code
62     * Integer.MAX_VALUE}, you allow the pool to accommodate an arbitrary
63     * number of concurrent tasks. Most typically, core and maximum pool
64     * sizes are set only upon construction, but they may also be changed
65     * dynamically using {@link #setCorePoolSize} and {@link
66     * #setMaximumPoolSize}. </dd>
67 dl 1.2 *
68 jsr166 1.93 * <dt>On-demand construction</dt>
69 dl 1.2 *
70 jsr166 1.142 * <dd>By default, even core threads are initially created and
71 dl 1.69 * started only when new tasks arrive, but this can be overridden
72 jsr166 1.117 * dynamically using method {@link #prestartCoreThread} or {@link
73     * #prestartAllCoreThreads}. You probably want to prestart threads if
74     * you construct the pool with a non-empty queue. </dd>
75 dl 1.2 *
76 tim 1.1 * <dt>Creating new threads</dt>
77 dl 1.2 *
78 jsr166 1.117 * <dd>New threads are created using a {@link ThreadFactory}. If not
79     * otherwise specified, a {@link Executors#defaultThreadFactory} is
80     * used, that creates threads to all be in the same {@link
81     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
82     * non-daemon status. By supplying a different ThreadFactory, you can
83     * alter the thread's name, thread group, priority, daemon status,
84     * etc. If a {@code ThreadFactory} fails to create a thread when asked
85     * by returning null from {@code newThread}, the executor will
86     * continue, but might not be able to execute any tasks. Threads
87     * should possess the "modifyThread" {@code RuntimePermission}. If
88     * worker threads or other threads using the pool do not possess this
89     * permission, service may be degraded: configuration changes may not
90     * take effect in a timely manner, and a shutdown pool may remain in a
91     * state in which termination is possible but not completed.</dd>
92 dl 1.2 *
93 dl 1.21 * <dt>Keep-alive times</dt>
94     *
95     * <dd>If the pool currently has more than corePoolSize threads,
96     * excess threads will be terminated if they have been idle for more
97 jsr166 1.143 * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
98     * This provides a means of reducing resource consumption when the
99     * pool is not being actively used. If the pool becomes more active
100     * later, new threads will be constructed. This parameter can also be
101     * changed dynamically using method {@link #setKeepAliveTime(long,
102     * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link
103     * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
104     * terminating prior to shut down. By default, the keep-alive policy
105 jsr166 1.151 * applies only when there are more than corePoolSize threads, but
106 jsr166 1.143 * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
107     * apply this time-out policy to core threads as well, so long as the
108 jsr166 1.117 * keepAliveTime value is non-zero. </dd>
109 dl 1.21 *
110 dl 1.48 * <dt>Queuing</dt>
111 dl 1.21 *
112     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
113     * submitted tasks. The use of this queue interacts with pool sizing:
114 dl 1.2 *
115 dl 1.21 * <ul>
116     *
117 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
118     * always prefers adding a new thread
119 dl 1.48 * rather than queuing.</li>
120 dl 1.21 *
121 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
122     * always prefers queuing a request rather than adding a new
123     * thread.</li>
124 jsr166 1.66 *
125 dl 1.21 * <li> If a request cannot be queued, a new thread is created unless
126     * this would exceed maximumPoolSize, in which case, the task will be
127     * rejected.</li>
128     *
129     * </ul>
130     *
131     * There are three general strategies for queuing:
132     * <ol>
133     *
134     * <li> <em> Direct handoffs.</em> A good default choice for a work
135     * queue is a {@link SynchronousQueue} that hands off tasks to threads
136     * without otherwise holding them. Here, an attempt to queue a task
137     * will fail if no threads are immediately available to run it, so a
138     * new thread will be constructed. This policy avoids lockups when
139     * handling sets of requests that might have internal dependencies.
140     * Direct handoffs generally require unbounded maximumPoolSizes to
141 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
142 dl 1.21 * possibility of unbounded thread growth when commands continue to
143     * arrive on average faster than they can be processed. </li>
144     *
145     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
146     * example a {@link LinkedBlockingQueue} without a predefined
147 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
148 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
149     * threads will ever be created. (And the value of the maximumPoolSize
150     * therefore doesn't have any effect.) This may be appropriate when
151     * each task is completely independent of others, so tasks cannot
152     * affect each others execution; for example, in a web page server.
153     * While this style of queuing can be useful in smoothing out
154     * transient bursts of requests, it admits the possibility of
155     * unbounded work queue growth when commands continue to arrive on
156     * average faster than they can be processed. </li>
157 dl 1.21 *
158     * <li><em>Bounded queues.</em> A bounded queue (for example, an
159     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
160     * used with finite maximumPoolSizes, but can be more difficult to
161     * tune and control. Queue sizes and maximum pool sizes may be traded
162     * off for each other: Using large queues and small pools minimizes
163     * CPU usage, OS resources, and context-switching overhead, but can
164 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
165 dl 1.21 * example if they are I/O bound), a system may be able to schedule
166     * time for more threads than you otherwise allow. Use of small queues
167 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
168     * may encounter unacceptable scheduling overhead, which also
169     * decreases throughput. </li>
170 dl 1.21 *
171     * </ol>
172     *
173     * </dd>
174     *
175     * <dt>Rejected tasks</dt>
176     *
177 jsr166 1.143 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
178     * <em>rejected</em> when the Executor has been shut down, and also when
179     * the Executor uses finite bounds for both maximum threads and work queue
180     * capacity, and is saturated. In either case, the {@code execute} method
181     * invokes the {@link
182     * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
183     * method of its {@link RejectedExecutionHandler}. Four predefined handler
184     * policies are provided:
185 dl 1.21 *
186     * <ol>
187     *
188 jsr166 1.117 * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the
189     * handler throws a runtime {@link RejectedExecutionException} upon
190     * rejection. </li>
191     *
192     * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
193     * that invokes {@code execute} itself runs the task. This provides a
194     * simple feedback control mechanism that will slow down the rate that
195     * new tasks are submitted. </li>
196     *
197     * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
198     * cannot be executed is simply dropped. </li>
199     *
200     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
201     * executor is not shut down, the task at the head of the work queue
202     * is dropped, and then execution is retried (which can fail again,
203     * causing this to be repeated.) </li>
204 dl 1.21 *
205     * </ol>
206     *
207     * It is possible to define and use other kinds of {@link
208     * RejectedExecutionHandler} classes. Doing so requires some care
209     * especially when policies are designed to work only under particular
210 dl 1.48 * capacity or queuing policies. </dd>
211 dl 1.21 *
212     * <dt>Hook methods</dt>
213     *
214 jsr166 1.143 * <dd>This class provides {@code protected} overridable
215     * {@link #beforeExecute(Thread, Runnable)} and
216     * {@link #afterExecute(Runnable, Throwable)} methods that are called
217 jsr166 1.117 * before and after execution of each task. These can be used to
218     * manipulate the execution environment; for example, reinitializing
219 jsr166 1.143 * ThreadLocals, gathering statistics, or adding log entries.
220     * Additionally, method {@link #terminated} can be overridden to perform
221     * any special processing that needs to be done once the Executor has
222     * fully terminated.
223 jsr166 1.117 *
224 dl 1.158 * <p>If hook, callback, or BlockingQueue methods throw exceptions,
225     * internal worker threads may in turn fail, abruptly terminate, and
226     * possibly be replaced.</dd>
227 dl 1.2 *
228 dl 1.21 * <dt>Queue maintenance</dt>
229 dl 1.2 *
230 jsr166 1.143 * <dd>Method {@link #getQueue()} allows access to the work queue
231     * for purposes of monitoring and debugging. Use of this method for
232     * any other purpose is strongly discouraged. Two supplied methods,
233     * {@link #remove(Runnable)} and {@link #purge} are available to
234     * assist in storage reclamation when large numbers of queued tasks
235     * become cancelled.</dd>
236 dl 1.79 *
237     * <dt>Finalization</dt>
238     *
239 jsr166 1.142 * <dd>A pool that is no longer referenced in a program <em>AND</em>
240 jsr166 1.117 * has no remaining threads will be {@code shutdown} automatically. If
241     * you would like to ensure that unreferenced pools are reclaimed even
242     * if users forget to call {@link #shutdown}, then you must arrange
243     * that unused threads eventually die, by setting appropriate
244     * keep-alive times, using a lower bound of zero core threads and/or
245     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
246     *
247     * </dl>
248 tim 1.1 *
249 jsr166 1.134 * <p><b>Extension example</b>. Most extensions of this class
250 dl 1.43 * override one or more of the protected hook methods. For example,
251     * here is a subclass that adds a simple pause/resume feature:
252     *
253 jsr166 1.116 * <pre> {@code
254 dl 1.43 * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
255     * private boolean isPaused;
256     * private ReentrantLock pauseLock = new ReentrantLock();
257     * private Condition unpaused = pauseLock.newCondition();
258     *
259     * public PausableThreadPoolExecutor(...) { super(...); }
260 jsr166 1.66 *
261 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
262     * super.beforeExecute(t, r);
263     * pauseLock.lock();
264     * try {
265     * while (isPaused) unpaused.await();
266 jsr166 1.66 * } catch (InterruptedException ie) {
267 dl 1.53 * t.interrupt();
268 dl 1.43 * } finally {
269 dl 1.53 * pauseLock.unlock();
270 dl 1.43 * }
271     * }
272 jsr166 1.66 *
273 dl 1.43 * public void pause() {
274     * pauseLock.lock();
275     * try {
276     * isPaused = true;
277     * } finally {
278 dl 1.53 * pauseLock.unlock();
279 dl 1.43 * }
280     * }
281 jsr166 1.66 *
282 dl 1.43 * public void resume() {
283     * pauseLock.lock();
284     * try {
285     * isPaused = false;
286     * unpaused.signalAll();
287     * } finally {
288 dl 1.53 * pauseLock.unlock();
289 dl 1.43 * }
290     * }
291 jsr166 1.116 * }}</pre>
292     *
293 tim 1.1 * @since 1.5
294 dl 1.8 * @author Doug Lea
295 tim 1.1 */
296 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
297 dl 1.86 /**
298 dl 1.107 * The main pool control state, ctl, is an atomic integer packing
299     * two conceptual fields
300     * workerCount, indicating the effective number of threads
301     * runState, indicating whether running, shutting down etc
302     *
303     * In order to pack them into one int, we limit workerCount to
304 jsr166 1.117 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
305 dl 1.107 * billion) otherwise representable. If this is ever an issue in
306     * the future, the variable can be changed to be an AtomicLong,
307     * and the shift/mask constants below adjusted. But until the need
308     * arises, this code is a bit faster and simpler using an int.
309     *
310     * The workerCount is the number of workers that have been
311     * permitted to start and not permitted to stop. The value may be
312 jsr166 1.110 * transiently different from the actual number of live threads,
313 dl 1.107 * for example when a ThreadFactory fails to create a thread when
314     * asked, and when exiting threads are still performing
315     * bookkeeping before terminating. The user-visible pool size is
316     * reported as the current size of the workers set.
317     *
318 jsr166 1.131 * The runState provides the main lifecycle control, taking on values:
319 dl 1.86 *
320 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
321     * SHUTDOWN: Don't accept new tasks, but process queued tasks
322 jsr166 1.91 * STOP: Don't accept new tasks, don't process queued tasks,
323 dl 1.85 * and interrupt in-progress tasks
324 jsr166 1.117 * TIDYING: All tasks have terminated, workerCount is zero,
325     * the thread transitioning to state TIDYING
326     * will run the terminated() hook method
327     * TERMINATED: terminated() has completed
328 dl 1.86 *
329     * The numerical order among these values matters, to allow
330     * ordered comparisons. The runState monotonically increases over
331     * time, but need not hit each state. The transitions are:
332 jsr166 1.87 *
333     * RUNNING -> SHUTDOWN
334 jsr166 1.88 * On invocation of shutdown(), perhaps implicitly in finalize()
335 jsr166 1.87 * (RUNNING or SHUTDOWN) -> STOP
336 dl 1.86 * On invocation of shutdownNow()
337 jsr166 1.117 * SHUTDOWN -> TIDYING
338 dl 1.86 * When both queue and pool are empty
339 jsr166 1.117 * STOP -> TIDYING
340 dl 1.86 * When pool is empty
341 jsr166 1.117 * TIDYING -> TERMINATED
342     * When the terminated() hook method has completed
343     *
344     * Threads waiting in awaitTermination() will return when the
345     * state reaches TERMINATED.
346 dl 1.107 *
347 jsr166 1.117 * Detecting the transition from SHUTDOWN to TIDYING is less
348 dl 1.107 * straightforward than you'd like because the queue may become
349     * empty after non-empty and vice versa during SHUTDOWN state, but
350     * we can only terminate if, after seeing that it is empty, we see
351     * that workerCount is 0 (which sometimes entails a recheck -- see
352     * below).
353     */
354     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
355 jsr166 1.117 private static final int COUNT_BITS = Integer.SIZE - 3;
356 dl 1.107 private static final int CAPACITY = (1 << COUNT_BITS) - 1;
357    
358 jsr166 1.117 // runState is stored in the high-order bits
359     private static final int RUNNING = -1 << COUNT_BITS;
360     private static final int SHUTDOWN = 0 << COUNT_BITS;
361     private static final int STOP = 1 << COUNT_BITS;
362     private static final int TIDYING = 2 << COUNT_BITS;
363     private static final int TERMINATED = 3 << COUNT_BITS;
364 dl 1.107
365     // Packing and unpacking ctl
366 jsr166 1.117 private static int runStateOf(int c) { return c & ~CAPACITY; }
367     private static int workerCountOf(int c) { return c & CAPACITY; }
368     private static int ctlOf(int rs, int wc) { return rs | wc; }
369    
370     /*
371     * Bit field accessors that don't require unpacking ctl.
372     * These depend on the bit layout and on workerCount being never negative.
373     */
374    
375     private static boolean runStateLessThan(int c, int s) {
376 jsr166 1.121 return c < s;
377 jsr166 1.117 }
378    
379     private static boolean runStateAtLeast(int c, int s) {
380 jsr166 1.121 return c >= s;
381 jsr166 1.117 }
382    
383     private static boolean isRunning(int c) {
384 jsr166 1.121 return c < SHUTDOWN;
385 jsr166 1.117 }
386    
387     /**
388 jsr166 1.135 * Attempts to CAS-increment the workerCount field of ctl.
389 jsr166 1.117 */
390     private boolean compareAndIncrementWorkerCount(int expect) {
391 jsr166 1.121 return ctl.compareAndSet(expect, expect + 1);
392 jsr166 1.117 }
393    
394     /**
395 jsr166 1.135 * Attempts to CAS-decrement the workerCount field of ctl.
396 jsr166 1.117 */
397     private boolean compareAndDecrementWorkerCount(int expect) {
398 jsr166 1.121 return ctl.compareAndSet(expect, expect - 1);
399 jsr166 1.117 }
400    
401     /**
402     * Decrements the workerCount field of ctl. This is called only on
403     * abrupt termination of a thread (see processWorkerExit). Other
404     * decrements are performed within getTask.
405     */
406     private void decrementWorkerCount() {
407 jsr166 1.121 do {} while (! compareAndDecrementWorkerCount(ctl.get()));
408 jsr166 1.117 }
409 tim 1.41
410     /**
411 dl 1.86 * The queue used for holding tasks and handing off to worker
412 dl 1.107 * threads. We do not require that workQueue.poll() returning
413 jsr166 1.109 * null necessarily means that workQueue.isEmpty(), so rely
414 dl 1.107 * solely on isEmpty to see if the queue is empty (which we must
415     * do for example when deciding whether to transition from
416 jsr166 1.117 * SHUTDOWN to TIDYING). This accommodates special-purpose
417 dl 1.107 * queues such as DelayQueues for which poll() is allowed to
418     * return null even if it may later return non-null when delays
419     * expire.
420 tim 1.10 */
421 dl 1.2 private final BlockingQueue<Runnable> workQueue;
422    
423     /**
424 dl 1.107 * Lock held on access to workers set and related bookkeeping.
425     * While we could use a concurrent set of some sort, it turns out
426     * to be generally preferable to use a lock. Among the reasons is
427     * that this serializes interruptIdleWorkers, which avoids
428     * unnecessary interrupt storms, especially during shutdown.
429     * Otherwise exiting threads would concurrently interrupt those
430     * that have not yet interrupted. It also simplifies some of the
431     * associated statistics bookkeeping of largestPoolSize etc. We
432     * also hold mainLock on shutdown and shutdownNow, for the sake of
433     * ensuring workers set is stable while separately checking
434     * permission to interrupt and actually interrupting.
435 tim 1.10 */
436 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
437    
438     /**
439 dl 1.107 * Set containing all worker threads in pool. Accessed only when
440     * holding mainLock.
441     */
442 jsr166 1.153 private final HashSet<Worker> workers = new HashSet<>();
443 dl 1.107
444     /**
445 dl 1.2 * Wait condition to support awaitTermination
446 tim 1.10 */
447 dl 1.46 private final Condition termination = mainLock.newCondition();
448 dl 1.2
449     /**
450 dl 1.107 * Tracks largest attained pool size. Accessed only under
451     * mainLock.
452     */
453     private int largestPoolSize;
454    
455     /**
456     * Counter for completed tasks. Updated only on termination of
457     * worker threads. Accessed only under mainLock.
458     */
459     private long completedTaskCount;
460    
461     /*
462     * All user control parameters are declared as volatiles so that
463     * ongoing actions are based on freshest values, but without need
464     * for locking, since no internal invariants depend on them
465     * changing synchronously with respect to other actions.
466     */
467    
468     /**
469     * Factory for new threads. All threads are created using this
470     * factory (via method addWorker). All callers must be prepared
471     * for addWorker to fail, which may reflect a system or user's
472     * policy limiting the number of threads. Even though it is not
473     * treated as an error, failure to create threads may result in
474     * new tasks being rejected or existing ones remaining stuck in
475 jsr166 1.128 * the queue.
476     *
477     * We go further and preserve pool invariants even in the face of
478     * errors such as OutOfMemoryError, that might be thrown while
479     * trying to create threads. Such errors are rather common due to
480 jsr166 1.145 * the need to allocate a native stack in Thread.start, and users
481 jsr166 1.128 * will want to perform clean pool shutdown to clean up. There
482     * will likely be enough memory available for the cleanup code to
483     * complete without encountering yet another OutOfMemoryError.
484 dl 1.107 */
485     private volatile ThreadFactory threadFactory;
486    
487     /**
488     * Handler called when saturated or shutdown in execute.
489 tim 1.10 */
490 dl 1.107 private volatile RejectedExecutionHandler handler;
491 dl 1.2
492     /**
493 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
494 dl 1.86 * Threads use this timeout when there are more than corePoolSize
495     * present or if allowCoreThreadTimeOut. Otherwise they wait
496     * forever for new work.
497 tim 1.10 */
498 dl 1.107 private volatile long keepAliveTime;
499 dl 1.2
500     /**
501 jsr166 1.101 * If false (default), core threads stay alive even when idle.
502     * If true, core threads use keepAliveTime to time out waiting
503     * for work.
504 dl 1.62 */
505 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
506 dl 1.62
507     /**
508 dl 1.107 * Core pool size is the minimum number of workers to keep alive
509     * (and not allow to time out etc) unless allowCoreThreadTimeOut
510 jsr166 1.109 * is set, in which case the minimum is zero.
511 dl 1.107 */
512     private volatile int corePoolSize;
513    
514     /**
515     * Maximum pool size. Note that the actual maximum is internally
516     * bounded by CAPACITY.
517     */
518     private volatile int maximumPoolSize;
519    
520     /**
521     * The default rejected execution handler
522     */
523     private static final RejectedExecutionHandler defaultHandler =
524     new AbortPolicy();
525    
526     /**
527     * Permission required for callers of shutdown and shutdownNow.
528     * We additionally require (see checkShutdownAccess) that callers
529     * have permission to actually interrupt threads in the worker set
530     * (as governed by Thread.interrupt, which relies on
531     * ThreadGroup.checkAccess, which in turn relies on
532     * SecurityManager.checkAccess). Shutdowns are attempted only if
533     * these checks pass.
534     *
535     * All actual invocations of Thread.interrupt (see
536     * interruptIdleWorkers and interruptWorkers) ignore
537     * SecurityExceptions, meaning that the attempted interrupts
538     * silently fail. In the case of shutdown, they should not fail
539     * unless the SecurityManager has inconsistent policies, sometimes
540     * allowing access to a thread and sometimes not. In such cases,
541     * failure to actually interrupt threads may disable or delay full
542     * termination. Other uses of interruptIdleWorkers are advisory,
543     * and failure to actually interrupt will merely delay response to
544     * configuration changes so is not handled exceptionally.
545     */
546     private static final RuntimePermission shutdownPerm =
547     new RuntimePermission("modifyThread");
548    
549     /**
550 jsr166 1.108 * Class Worker mainly maintains interrupt control state for
551 jsr166 1.120 * threads running tasks, along with other minor bookkeeping.
552     * This class opportunistically extends AbstractQueuedSynchronizer
553     * to simplify acquiring and releasing a lock surrounding each
554     * task execution. This protects against interrupts that are
555     * intended to wake up a worker thread waiting for a task from
556     * instead interrupting a task being run. We implement a simple
557 dl 1.130 * non-reentrant mutual exclusion lock rather than use
558     * ReentrantLock because we do not want worker tasks to be able to
559     * reacquire the lock when they invoke pool control methods like
560     * setCorePoolSize. Additionally, to suppress interrupts until
561     * the thread actually starts running tasks, we initialize lock
562     * state to a negative value, and clear it upon start (in
563     * runWorker).
564 jsr166 1.120 */
565     private final class Worker
566 jsr166 1.121 extends AbstractQueuedSynchronizer
567     implements Runnable
568 jsr166 1.120 {
569 jsr166 1.121 /**
570     * This class will never be serialized, but we provide a
571     * serialVersionUID to suppress a javac warning.
572     */
573     private static final long serialVersionUID = 6138294804551838833L;
574 jsr166 1.116
575 jsr166 1.108 /** Thread this worker is running in. Null if factory fails. */
576 dl 1.107 final Thread thread;
577 jsr166 1.108 /** Initial task to run. Possibly null. */
578 dl 1.107 Runnable firstTask;
579     /** Per-thread task counter */
580     volatile long completedTasks;
581    
582     /**
583 jsr166 1.108 * Creates with given first task and thread from ThreadFactory.
584     * @param firstTask the first task (null if none)
585 dl 1.107 */
586     Worker(Runnable firstTask) {
587 dl 1.130 setState(-1); // inhibit interrupts until runWorker
588 dl 1.107 this.firstTask = firstTask;
589 jsr166 1.121 this.thread = getThreadFactory().newThread(this);
590 dl 1.107 }
591    
592 jsr166 1.148 /** Delegates main run loop to outer runWorker. */
593 dl 1.107 public void run() {
594     runWorker(this);
595     }
596 jsr166 1.120
597 jsr166 1.121 // Lock methods
598     //
599     // The value 0 represents the unlocked state.
600     // The value 1 represents the locked state.
601    
602     protected boolean isHeldExclusively() {
603 dl 1.130 return getState() != 0;
604 jsr166 1.121 }
605    
606     protected boolean tryAcquire(int unused) {
607     if (compareAndSetState(0, 1)) {
608     setExclusiveOwnerThread(Thread.currentThread());
609     return true;
610     }
611     return false;
612     }
613    
614     protected boolean tryRelease(int unused) {
615     setExclusiveOwnerThread(null);
616     setState(0);
617     return true;
618     }
619    
620     public void lock() { acquire(1); }
621     public boolean tryLock() { return tryAcquire(1); }
622     public void unlock() { release(1); }
623     public boolean isLocked() { return isHeldExclusively(); }
624 dl 1.130
625     void interruptIfStarted() {
626     Thread t;
627     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
628     try {
629     t.interrupt();
630     } catch (SecurityException ignore) {
631     }
632     }
633     }
634 dl 1.107 }
635    
636     /*
637     * Methods for setting control state
638     */
639    
640     /**
641     * Transitions runState to given target, or leaves it alone if
642     * already at least the given target.
643 jsr166 1.116 *
644 jsr166 1.117 * @param targetState the desired state, either SHUTDOWN or STOP
645     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
646 dl 1.107 */
647     private void advanceRunState(int targetState) {
648 jsr166 1.155 // assert targetState == SHUTDOWN || targetState == STOP;
649 dl 1.107 for (;;) {
650     int c = ctl.get();
651 jsr166 1.117 if (runStateAtLeast(c, targetState) ||
652 dl 1.107 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
653     break;
654     }
655     }
656    
657     /**
658     * Transitions to TERMINATED state if either (SHUTDOWN and pool
659     * and queue empty) or (STOP and pool empty). If otherwise
660     * eligible to terminate but workerCount is nonzero, interrupts an
661     * idle worker to ensure that shutdown signals propagate. This
662     * method must be called following any action that might make
663     * termination possible -- reducing worker count or removing tasks
664     * from the queue during shutdown. The method is non-private to
665 jsr166 1.110 * allow access from ScheduledThreadPoolExecutor.
666 dl 1.107 */
667     final void tryTerminate() {
668     for (;;) {
669     int c = ctl.get();
670 jsr166 1.121 if (isRunning(c) ||
671     runStateAtLeast(c, TIDYING) ||
672     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
673     return;
674 dl 1.107 if (workerCountOf(c) != 0) { // Eligible to terminate
675 jsr166 1.113 interruptIdleWorkers(ONLY_ONE);
676 dl 1.107 return;
677     }
678 jsr166 1.119
679 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
680     mainLock.lock();
681     try {
682     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
683     try {
684     terminated();
685     } finally {
686     ctl.set(ctlOf(TERMINATED, 0));
687     termination.signalAll();
688     }
689     return;
690     }
691     } finally {
692     mainLock.unlock();
693     }
694 dl 1.107 // else retry on failed CAS
695     }
696     }
697    
698 jsr166 1.116 /*
699 dl 1.107 * Methods for controlling interrupts to worker threads.
700     */
701    
702     /**
703     * If there is a security manager, makes sure caller has
704     * permission to shut down threads in general (see shutdownPerm).
705     * If this passes, additionally makes sure the caller is allowed
706     * to interrupt each worker thread. This might not be true even if
707     * first check passed, if the SecurityManager treats some threads
708     * specially.
709     */
710     private void checkShutdownAccess() {
711     SecurityManager security = System.getSecurityManager();
712     if (security != null) {
713     security.checkPermission(shutdownPerm);
714     final ReentrantLock mainLock = this.mainLock;
715     mainLock.lock();
716     try {
717     for (Worker w : workers)
718     security.checkAccess(w.thread);
719     } finally {
720     mainLock.unlock();
721     }
722     }
723     }
724    
725     /**
726 jsr166 1.116 * Interrupts all threads, even if active. Ignores SecurityExceptions
727     * (in which case some threads may remain uninterrupted).
728 dl 1.107 */
729     private void interruptWorkers() {
730     final ReentrantLock mainLock = this.mainLock;
731     mainLock.lock();
732     try {
733 dl 1.130 for (Worker w : workers)
734     w.interruptIfStarted();
735 dl 1.107 } finally {
736     mainLock.unlock();
737     }
738     }
739    
740     /**
741     * Interrupts threads that might be waiting for tasks (as
742     * indicated by not being locked) so they can check for
743     * termination or configuration changes. Ignores
744     * SecurityExceptions (in which case some threads may remain
745     * uninterrupted).
746     *
747     * @param onlyOne If true, interrupt at most one worker. This is
748     * called only from tryTerminate when termination is otherwise
749     * enabled but there are still other workers. In this case, at
750     * most one waiting worker is interrupted to propagate shutdown
751 jsr166 1.113 * signals in case all threads are currently waiting.
752 dl 1.107 * Interrupting any arbitrary thread ensures that newly arriving
753     * workers since shutdown began will also eventually exit.
754 jsr166 1.113 * To guarantee eventual termination, it suffices to always
755     * interrupt only one idle worker, but shutdown() interrupts all
756     * idle workers so that redundant workers exit promptly, not
757     * waiting for a straggler task to finish.
758 tim 1.10 */
759 dl 1.107 private void interruptIdleWorkers(boolean onlyOne) {
760 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
761 dl 1.107 mainLock.lock();
762     try {
763 jsr166 1.121 for (Worker w : workers) {
764 dl 1.107 Thread t = w.thread;
765 jsr166 1.121 if (!t.isInterrupted() && w.tryLock()) {
766 dl 1.107 try {
767     t.interrupt();
768     } catch (SecurityException ignore) {
769     } finally {
770     w.unlock();
771     }
772     }
773     if (onlyOne)
774     break;
775     }
776     } finally {
777     mainLock.unlock();
778     }
779     }
780    
781 dl 1.118 /**
782     * Common form of interruptIdleWorkers, to avoid having to
783     * remember what the boolean argument means.
784     */
785 jsr166 1.119 private void interruptIdleWorkers() {
786     interruptIdleWorkers(false);
787 dl 1.118 }
788    
789 jsr166 1.113 private static final boolean ONLY_ONE = true;
790    
791 dl 1.107 /*
792     * Misc utilities, most of which are also exported to
793     * ScheduledThreadPoolExecutor
794     */
795    
796     /**
797     * Invokes the rejected execution handler for the given command.
798     * Package-protected for use by ScheduledThreadPoolExecutor.
799     */
800     final void reject(Runnable command) {
801     handler.rejectedExecution(command, this);
802     }
803 dl 1.2
804     /**
805 dl 1.107 * Performs any further cleanup following run state transition on
806     * invocation of shutdown. A no-op here, but used by
807     * ScheduledThreadPoolExecutor to cancel delayed tasks.
808 tim 1.10 */
809 dl 1.107 void onShutdown() {
810     }
811 dl 1.2
812     /**
813 dl 1.107 * State check needed by ScheduledThreadPoolExecutor to
814 jsr166 1.117 * enable running tasks during shutdown.
815     *
816 dl 1.107 * @param shutdownOK true if should return true if SHUTDOWN
817 tim 1.10 */
818 dl 1.107 final boolean isRunningOrShutdown(boolean shutdownOK) {
819     int rs = runStateOf(ctl.get());
820     return rs == RUNNING || (rs == SHUTDOWN && shutdownOK);
821     }
822 dl 1.2
823     /**
824 dl 1.107 * Drains the task queue into a new list, normally using
825     * drainTo. But if the queue is a DelayQueue or any other kind of
826     * queue for which poll or drainTo may fail to remove some
827     * elements, it deletes them one by one.
828     */
829     private List<Runnable> drainQueue() {
830     BlockingQueue<Runnable> q = workQueue;
831 jsr166 1.153 ArrayList<Runnable> taskList = new ArrayList<>();
832 dl 1.107 q.drainTo(taskList);
833     if (!q.isEmpty()) {
834     for (Runnable r : q.toArray(new Runnable[0])) {
835     if (q.remove(r))
836     taskList.add(r);
837     }
838     }
839     return taskList;
840     }
841    
842     /*
843     * Methods for creating, running and cleaning up after workers
844 tim 1.10 */
845 dl 1.2
846     /**
847 dl 1.107 * Checks if a new worker can be added with respect to current
848 jsr166 1.116 * pool state and the given bound (either core or maximum). If so,
849 dl 1.107 * the worker count is adjusted accordingly, and, if possible, a
850 jsr166 1.128 * new worker is created and started, running firstTask as its
851 jsr166 1.117 * first task. This method returns false if the pool is stopped or
852 dl 1.107 * eligible to shut down. It also returns false if the thread
853 jsr166 1.128 * factory fails to create a thread when asked. If the thread
854     * creation fails, either due to the thread factory returning
855     * null, or due to an exception (typically OutOfMemoryError in
856 jsr166 1.146 * Thread.start()), we roll back cleanly.
857 dl 1.107 *
858     * @param firstTask the task the new thread should run first (or
859     * null if none). Workers are created with an initial first task
860     * (in method execute()) to bypass queuing when there are fewer
861     * than corePoolSize threads (in which case we always start one),
862 jsr166 1.110 * or when the queue is full (in which case we must bypass queue).
863 dl 1.107 * Initially idle threads are usually created via
864     * prestartCoreThread or to replace other dying workers.
865     *
866     * @param core if true use corePoolSize as bound, else
867 jsr166 1.110 * maximumPoolSize. (A boolean indicator is used here rather than a
868 dl 1.107 * value to ensure reads of fresh values after checking other pool
869     * state).
870     * @return true if successful
871 tim 1.10 */
872 dl 1.107 private boolean addWorker(Runnable firstTask, boolean core) {
873 jsr166 1.121 retry:
874 dl 1.107 for (;;) {
875 jsr166 1.121 int c = ctl.get();
876     int rs = runStateOf(c);
877 jsr166 1.119
878 jsr166 1.121 // Check if queue empty only if necessary.
879 jsr166 1.119 if (rs >= SHUTDOWN &&
880 jsr166 1.121 ! (rs == SHUTDOWN &&
881     firstTask == null &&
882     ! workQueue.isEmpty()))
883     return false;
884    
885     for (;;) {
886     int wc = workerCountOf(c);
887     if (wc >= CAPACITY ||
888     wc >= (core ? corePoolSize : maximumPoolSize))
889     return false;
890     if (compareAndIncrementWorkerCount(c))
891     break retry;
892     c = ctl.get(); // Re-read ctl
893     if (runStateOf(c) != rs)
894     continue retry;
895     // else CAS failed due to workerCount change; retry inner loop
896     }
897 dl 1.107 }
898    
899 jsr166 1.128 boolean workerStarted = false;
900 dl 1.130 boolean workerAdded = false;
901 jsr166 1.128 Worker w = null;
902     try {
903     w = new Worker(firstTask);
904     final Thread t = w.thread;
905 dl 1.130 if (t != null) {
906 jsr166 1.132 final ReentrantLock mainLock = this.mainLock;
907 dl 1.130 mainLock.lock();
908     try {
909     // Recheck while holding lock.
910     // Back out on ThreadFactory failure or if
911     // shut down before lock acquired.
912 jsr166 1.133 int rs = runStateOf(ctl.get());
913 dl 1.130
914     if (rs < SHUTDOWN ||
915     (rs == SHUTDOWN && firstTask == null)) {
916     if (t.isAlive()) // precheck that t is startable
917     throw new IllegalThreadStateException();
918     workers.add(w);
919     int s = workers.size();
920     if (s > largestPoolSize)
921     largestPoolSize = s;
922     workerAdded = true;
923     }
924     } finally {
925     mainLock.unlock();
926     }
927     if (workerAdded) {
928     t.start();
929     workerStarted = true;
930     }
931 jsr166 1.121 }
932 jsr166 1.128 } finally {
933     if (! workerStarted)
934     addWorkerFailed(w);
935     }
936 dl 1.130 return workerStarted;
937 jsr166 1.128 }
938    
939     /**
940     * Rolls back the worker thread creation.
941     * - removes worker from workers, if present
942     * - decrements worker count
943     * - rechecks for termination, in case the existence of this
944     * worker was holding up termination
945     */
946     private void addWorkerFailed(Worker w) {
947     final ReentrantLock mainLock = this.mainLock;
948     mainLock.lock();
949     try {
950     if (w != null)
951     workers.remove(w);
952     decrementWorkerCount();
953     tryTerminate();
954 dl 1.107 } finally {
955     mainLock.unlock();
956     }
957     }
958 dl 1.2
959     /**
960 dl 1.107 * Performs cleanup and bookkeeping for a dying worker. Called
961     * only from worker threads. Unless completedAbruptly is set,
962     * assumes that workerCount has already been adjusted to account
963     * for exit. This method removes thread from worker set, and
964     * possibly terminates the pool or replaces the worker if either
965     * it exited due to user task exception or if fewer than
966     * corePoolSize workers are running or queue is non-empty but
967     * there are no workers.
968     *
969     * @param w the worker
970     * @param completedAbruptly if the worker died due to user exception
971 tim 1.10 */
972 dl 1.107 private void processWorkerExit(Worker w, boolean completedAbruptly) {
973     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
974     decrementWorkerCount();
975    
976     final ReentrantLock mainLock = this.mainLock;
977     mainLock.lock();
978     try {
979     completedTaskCount += w.completedTasks;
980     workers.remove(w);
981     } finally {
982     mainLock.unlock();
983     }
984    
985     tryTerminate();
986    
987 jsr166 1.121 int c = ctl.get();
988     if (runStateLessThan(c, STOP)) {
989     if (!completedAbruptly) {
990     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
991     if (min == 0 && ! workQueue.isEmpty())
992     min = 1;
993     if (workerCountOf(c) >= min)
994     return; // replacement not needed
995     }
996     addWorker(null, false);
997     }
998 dl 1.107 }
999 dl 1.2
1000     /**
1001 dl 1.107 * Performs blocking or timed wait for a task, depending on
1002     * current configuration settings, or returns null if this worker
1003     * must exit because of any of:
1004     * 1. There are more than maximumPoolSize workers (due to
1005     * a call to setMaximumPoolSize).
1006 jsr166 1.110 * 2. The pool is stopped.
1007 jsr166 1.119 * 3. The pool is shutdown and the queue is empty.
1008     * 4. This worker timed out waiting for a task, and timed-out
1009     * workers are subject to termination (that is,
1010     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1011 jsr166 1.139 * both before and after the timed wait, and if the queue is
1012     * non-empty, this worker is not the last thread in the pool.
1013 dl 1.107 *
1014     * @return task, or null if the worker must exit, in which case
1015 jsr166 1.116 * workerCount is decremented
1016 tim 1.10 */
1017 dl 1.107 private Runnable getTask() {
1018 jsr166 1.121 boolean timedOut = false; // Did the last poll() time out?
1019 jsr166 1.119
1020 jsr166 1.121 for (;;) {
1021 dl 1.107 int c = ctl.get();
1022 jsr166 1.121 int rs = runStateOf(c);
1023    
1024     // Check if queue empty only if necessary.
1025     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
1026     decrementWorkerCount();
1027     return null;
1028     }
1029 jsr166 1.119
1030 jsr166 1.139 int wc = workerCountOf(c);
1031 jsr166 1.121
1032 jsr166 1.139 // Are workers subject to culling?
1033     boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
1034 jsr166 1.121
1035 jsr166 1.139 if ((wc > maximumPoolSize || (timed && timedOut))
1036     && (wc > 1 || workQueue.isEmpty())) {
1037 jsr166 1.121 if (compareAndDecrementWorkerCount(c))
1038     return null;
1039 jsr166 1.139 continue;
1040 dl 1.107 }
1041    
1042     try {
1043 jsr166 1.110 Runnable r = timed ?
1044 dl 1.107 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1045     workQueue.take();
1046     if (r != null)
1047     return r;
1048 jsr166 1.121 timedOut = true;
1049 jsr166 1.108 } catch (InterruptedException retry) {
1050 jsr166 1.121 timedOut = false;
1051 dl 1.107 }
1052     }
1053     }
1054 jsr166 1.66
1055 dl 1.8 /**
1056 dl 1.107 * Main worker run loop. Repeatedly gets tasks from queue and
1057     * executes them, while coping with a number of issues:
1058     *
1059     * 1. We may start out with an initial task, in which case we
1060     * don't need to get the first one. Otherwise, as long as pool is
1061     * running, we get tasks from getTask. If it returns null then the
1062     * worker exits due to changed pool state or configuration
1063     * parameters. Other exits result from exception throws in
1064     * external code, in which case completedAbruptly holds, which
1065     * usually leads processWorkerExit to replace this thread.
1066     *
1067     * 2. Before running any task, the lock is acquired to prevent
1068 jsr166 1.137 * other pool interrupts while the task is executing, and then we
1069     * ensure that unless pool is stopping, this thread does not have
1070     * its interrupt set.
1071 dl 1.107 *
1072     * 3. Each task run is preceded by a call to beforeExecute, which
1073     * might throw an exception, in which case we cause thread to die
1074     * (breaking loop with completedAbruptly true) without processing
1075     * the task.
1076     *
1077     * 4. Assuming beforeExecute completes normally, we run the task,
1078 jsr166 1.136 * gathering any of its thrown exceptions to send to afterExecute.
1079     * We separately handle RuntimeException, Error (both of which the
1080     * specs guarantee that we trap) and arbitrary Throwables.
1081     * Because we cannot rethrow Throwables within Runnable.run, we
1082     * wrap them within Errors on the way out (to the thread's
1083     * UncaughtExceptionHandler). Any thrown exception also
1084 dl 1.107 * conservatively causes thread to die.
1085     *
1086     * 5. After task.run completes, we call afterExecute, which may
1087     * also throw an exception, which will also cause thread to
1088     * die. According to JLS Sec 14.20, this exception is the one that
1089     * will be in effect even if task.run throws.
1090     *
1091     * The net effect of the exception mechanics is that afterExecute
1092     * and the thread's UncaughtExceptionHandler have as accurate
1093     * information as we can provide about any problems encountered by
1094     * user code.
1095     *
1096     * @param w the worker
1097 dl 1.8 */
1098 dl 1.107 final void runWorker(Worker w) {
1099 dl 1.130 Thread wt = Thread.currentThread();
1100 dl 1.107 Runnable task = w.firstTask;
1101     w.firstTask = null;
1102 dl 1.130 w.unlock(); // allow interrupts
1103 dl 1.107 boolean completedAbruptly = true;
1104     try {
1105     while (task != null || (task = getTask()) != null) {
1106     w.lock();
1107 dl 1.130 // If pool is stopping, ensure thread is interrupted;
1108     // if not, ensure thread is not interrupted. This
1109     // requires a recheck in second case to deal with
1110     // shutdownNow race while clearing interrupt
1111     if ((runStateAtLeast(ctl.get(), STOP) ||
1112     (Thread.interrupted() &&
1113     runStateAtLeast(ctl.get(), STOP))) &&
1114     !wt.isInterrupted())
1115     wt.interrupt();
1116 dl 1.107 try {
1117 dl 1.130 beforeExecute(wt, task);
1118 dl 1.107 Throwable thrown = null;
1119     try {
1120     task.run();
1121     } catch (RuntimeException x) {
1122     thrown = x; throw x;
1123     } catch (Error x) {
1124     thrown = x; throw x;
1125     } catch (Throwable x) {
1126     thrown = x; throw new Error(x);
1127     } finally {
1128     afterExecute(task, thrown);
1129     }
1130     } finally {
1131     task = null;
1132     w.completedTasks++;
1133     w.unlock();
1134     }
1135     }
1136     completedAbruptly = false;
1137     } finally {
1138     processWorkerExit(w, completedAbruptly);
1139     }
1140     }
1141 dl 1.2
1142 dl 1.107 // Public constructors and methods
1143 dl 1.86
1144 dl 1.2 /**
1145 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1146 dl 1.86 * parameters and default thread factory and rejected execution handler.
1147     * It may be more convenient to use one of the {@link Executors} factory
1148     * methods instead of this general purpose constructor.
1149     *
1150 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1151     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1152 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1153 jsr166 1.116 * pool
1154 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1155 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1156     * will wait for new tasks before terminating.
1157     * @param unit the time unit for the {@code keepAliveTime} argument
1158     * @param workQueue the queue to use for holding tasks before they are
1159     * executed. This queue will hold only the {@code Runnable}
1160     * tasks submitted by the {@code execute} method.
1161     * @throws IllegalArgumentException if one of the following holds:<br>
1162     * {@code corePoolSize < 0}<br>
1163     * {@code keepAliveTime < 0}<br>
1164     * {@code maximumPoolSize <= 0}<br>
1165     * {@code maximumPoolSize < corePoolSize}
1166     * @throws NullPointerException if {@code workQueue} is null
1167 dl 1.86 */
1168     public ThreadPoolExecutor(int corePoolSize,
1169     int maximumPoolSize,
1170     long keepAliveTime,
1171     TimeUnit unit,
1172     BlockingQueue<Runnable> workQueue) {
1173     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1174     Executors.defaultThreadFactory(), defaultHandler);
1175     }
1176    
1177     /**
1178 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1179 dl 1.86 * parameters and default rejected execution handler.
1180     *
1181 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1182     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1183 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1184 jsr166 1.116 * pool
1185 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1186 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1187     * will wait for new tasks before terminating.
1188     * @param unit the time unit for the {@code keepAliveTime} argument
1189     * @param workQueue the queue to use for holding tasks before they are
1190     * executed. This queue will hold only the {@code Runnable}
1191     * tasks submitted by the {@code execute} method.
1192 dl 1.86 * @param threadFactory the factory to use when the executor
1193 jsr166 1.116 * creates a new thread
1194     * @throws IllegalArgumentException if one of the following holds:<br>
1195     * {@code corePoolSize < 0}<br>
1196     * {@code keepAliveTime < 0}<br>
1197     * {@code maximumPoolSize <= 0}<br>
1198     * {@code maximumPoolSize < corePoolSize}
1199     * @throws NullPointerException if {@code workQueue}
1200     * or {@code threadFactory} is null
1201 dl 1.86 */
1202     public ThreadPoolExecutor(int corePoolSize,
1203     int maximumPoolSize,
1204     long keepAliveTime,
1205     TimeUnit unit,
1206     BlockingQueue<Runnable> workQueue,
1207     ThreadFactory threadFactory) {
1208     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1209     threadFactory, defaultHandler);
1210     }
1211    
1212     /**
1213 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1214 dl 1.86 * parameters and default thread factory.
1215     *
1216 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1217     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1218 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1219 jsr166 1.116 * pool
1220 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1221 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1222     * will wait for new tasks before terminating.
1223     * @param unit the time unit for the {@code keepAliveTime} argument
1224     * @param workQueue the queue to use for holding tasks before they are
1225     * executed. This queue will hold only the {@code Runnable}
1226     * tasks submitted by the {@code execute} method.
1227 dl 1.86 * @param handler the handler to use when execution is blocked
1228 jsr166 1.116 * because the thread bounds and queue capacities are reached
1229     * @throws IllegalArgumentException if one of the following holds:<br>
1230     * {@code corePoolSize < 0}<br>
1231     * {@code keepAliveTime < 0}<br>
1232     * {@code maximumPoolSize <= 0}<br>
1233     * {@code maximumPoolSize < corePoolSize}
1234     * @throws NullPointerException if {@code workQueue}
1235     * or {@code handler} is null
1236 dl 1.86 */
1237     public ThreadPoolExecutor(int corePoolSize,
1238     int maximumPoolSize,
1239     long keepAliveTime,
1240     TimeUnit unit,
1241     BlockingQueue<Runnable> workQueue,
1242     RejectedExecutionHandler handler) {
1243     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1244     Executors.defaultThreadFactory(), handler);
1245     }
1246    
1247     /**
1248 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1249 dl 1.86 * parameters.
1250     *
1251 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1252     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1253 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1254 jsr166 1.116 * pool
1255 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1256 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1257     * will wait for new tasks before terminating.
1258     * @param unit the time unit for the {@code keepAliveTime} argument
1259     * @param workQueue the queue to use for holding tasks before they are
1260     * executed. This queue will hold only the {@code Runnable}
1261     * tasks submitted by the {@code execute} method.
1262 dl 1.86 * @param threadFactory the factory to use when the executor
1263 jsr166 1.116 * creates a new thread
1264 dl 1.86 * @param handler the handler to use when execution is blocked
1265 jsr166 1.116 * because the thread bounds and queue capacities are reached
1266     * @throws IllegalArgumentException if one of the following holds:<br>
1267     * {@code corePoolSize < 0}<br>
1268     * {@code keepAliveTime < 0}<br>
1269     * {@code maximumPoolSize <= 0}<br>
1270     * {@code maximumPoolSize < corePoolSize}
1271     * @throws NullPointerException if {@code workQueue}
1272     * or {@code threadFactory} or {@code handler} is null
1273 dl 1.86 */
1274     public ThreadPoolExecutor(int corePoolSize,
1275     int maximumPoolSize,
1276     long keepAliveTime,
1277     TimeUnit unit,
1278     BlockingQueue<Runnable> workQueue,
1279     ThreadFactory threadFactory,
1280     RejectedExecutionHandler handler) {
1281     if (corePoolSize < 0 ||
1282     maximumPoolSize <= 0 ||
1283     maximumPoolSize < corePoolSize ||
1284     keepAliveTime < 0)
1285     throw new IllegalArgumentException();
1286     if (workQueue == null || threadFactory == null || handler == null)
1287     throw new NullPointerException();
1288     this.corePoolSize = corePoolSize;
1289     this.maximumPoolSize = maximumPoolSize;
1290     this.workQueue = workQueue;
1291     this.keepAliveTime = unit.toNanos(keepAliveTime);
1292     this.threadFactory = threadFactory;
1293     this.handler = handler;
1294     }
1295    
1296     /**
1297     * Executes the given task sometime in the future. The task
1298     * may execute in a new thread or in an existing pooled thread.
1299     *
1300     * If the task cannot be submitted for execution, either because this
1301     * executor has been shutdown or because its capacity has been reached,
1302 jsr166 1.116 * the task is handled by the current {@code RejectedExecutionHandler}.
1303 dl 1.86 *
1304     * @param command the task to execute
1305     * @throws RejectedExecutionException at discretion of
1306 jsr166 1.116 * {@code RejectedExecutionHandler}, if the task
1307     * cannot be accepted for execution
1308     * @throws NullPointerException if {@code command} is null
1309 dl 1.13 */
1310 dl 1.86 public void execute(Runnable command) {
1311     if (command == null)
1312     throw new NullPointerException();
1313 dl 1.107 /*
1314     * Proceed in 3 steps:
1315     *
1316     * 1. If fewer than corePoolSize threads are running, try to
1317     * start a new thread with the given command as its first
1318     * task. The call to addWorker atomically checks runState and
1319     * workerCount, and so prevents false alarms that would add
1320     * threads when it shouldn't, by returning false.
1321     *
1322     * 2. If a task can be successfully queued, then we still need
1323     * to double-check whether we should have added a thread
1324     * (because existing ones died since last checking) or that
1325     * the pool shut down since entry into this method. So we
1326     * recheck state and if necessary roll back the enqueuing if
1327     * stopped, or start a new thread if there are none.
1328     *
1329     * 3. If we cannot queue task, then we try to add a new
1330     * thread. If it fails, we know we are shut down or saturated
1331     * and so reject the task.
1332     */
1333     int c = ctl.get();
1334     if (workerCountOf(c) < corePoolSize) {
1335     if (addWorker(command, true))
1336     return;
1337     c = ctl.get();
1338     }
1339 jsr166 1.117 if (isRunning(c) && workQueue.offer(command)) {
1340 dl 1.107 int recheck = ctl.get();
1341 jsr166 1.117 if (! isRunning(recheck) && remove(command))
1342 dl 1.107 reject(command);
1343     else if (workerCountOf(recheck) == 0)
1344     addWorker(null, false);
1345 dl 1.86 }
1346 dl 1.107 else if (!addWorker(command, false))
1347 dl 1.85 reject(command);
1348 tim 1.1 }
1349 dl 1.4
1350 dl 1.53 /**
1351     * Initiates an orderly shutdown in which previously submitted
1352 jsr166 1.116 * tasks are executed, but no new tasks will be accepted.
1353     * Invocation has no additional effect if already shut down.
1354     *
1355 jsr166 1.122 * <p>This method does not wait for previously submitted tasks to
1356     * complete execution. Use {@link #awaitTermination awaitTermination}
1357     * to do that.
1358     *
1359 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1360 dl 1.53 */
1361 dl 1.2 public void shutdown() {
1362 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1363 dl 1.2 mainLock.lock();
1364     try {
1365 dl 1.107 checkShutdownAccess();
1366     advanceRunState(SHUTDOWN);
1367 jsr166 1.113 interruptIdleWorkers();
1368 dl 1.107 onShutdown(); // hook for ScheduledThreadPoolExecutor
1369 tim 1.14 } finally {
1370 dl 1.2 mainLock.unlock();
1371     }
1372 dl 1.107 tryTerminate();
1373 tim 1.1 }
1374    
1375 dl 1.53 /**
1376     * Attempts to stop all actively executing tasks, halts the
1377 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1378 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1379     * from the task queue upon return from this method.
1380 jsr166 1.66 *
1381 jsr166 1.122 * <p>This method does not wait for actively executing tasks to
1382     * terminate. Use {@link #awaitTermination awaitTermination} to
1383     * do that.
1384     *
1385 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1386     * processing actively executing tasks. This implementation
1387     * cancels tasks via {@link Thread#interrupt}, so any task that
1388     * fails to respond to interrupts may never terminate.
1389 dl 1.53 *
1390 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1391 dl 1.53 */
1392 tim 1.39 public List<Runnable> shutdownNow() {
1393 dl 1.107 List<Runnable> tasks;
1394 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1395 dl 1.2 mainLock.lock();
1396     try {
1397 dl 1.107 checkShutdownAccess();
1398     advanceRunState(STOP);
1399     interruptWorkers();
1400     tasks = drainQueue();
1401 tim 1.14 } finally {
1402 dl 1.2 mainLock.unlock();
1403     }
1404 dl 1.107 tryTerminate();
1405     return tasks;
1406 dl 1.86 }
1407    
1408 dl 1.2 public boolean isShutdown() {
1409 jsr166 1.117 return ! isRunning(ctl.get());
1410 dl 1.16 }
1411    
1412 jsr166 1.66 /**
1413 dl 1.55 * Returns true if this executor is in the process of terminating
1414 jsr166 1.117 * after {@link #shutdown} or {@link #shutdownNow} but has not
1415 dl 1.16 * completely terminated. This method may be useful for
1416 jsr166 1.116 * debugging. A return of {@code true} reported a sufficient
1417 dl 1.16 * period after shutdown may indicate that submitted tasks have
1418     * ignored or suppressed interruption, causing this executor not
1419     * to properly terminate.
1420 jsr166 1.116 *
1421 jsr166 1.147 * @return {@code true} if terminating but not yet terminated
1422 dl 1.16 */
1423     public boolean isTerminating() {
1424 jsr166 1.117 int c = ctl.get();
1425     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1426 tim 1.1 }
1427    
1428 dl 1.2 public boolean isTerminated() {
1429 jsr166 1.117 return runStateAtLeast(ctl.get(), TERMINATED);
1430 dl 1.2 }
1431 tim 1.1
1432 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1433     throws InterruptedException {
1434 dl 1.50 long nanos = unit.toNanos(timeout);
1435 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1436 dl 1.2 mainLock.lock();
1437     try {
1438 dl 1.25 for (;;) {
1439 jsr166 1.117 if (runStateAtLeast(ctl.get(), TERMINATED))
1440 dl 1.25 return true;
1441     if (nanos <= 0)
1442     return false;
1443     nanos = termination.awaitNanos(nanos);
1444     }
1445 tim 1.14 } finally {
1446 dl 1.2 mainLock.unlock();
1447     }
1448 dl 1.15 }
1449    
1450     /**
1451 jsr166 1.116 * Invokes {@code shutdown} when this executor is no longer
1452     * referenced and it has no threads.
1453 jsr166 1.66 */
1454 dl 1.107 protected void finalize() {
1455 dl 1.15 shutdown();
1456 dl 1.2 }
1457 tim 1.10
1458 dl 1.2 /**
1459     * Sets the thread factory used to create new threads.
1460     *
1461     * @param threadFactory the new thread factory
1462 dl 1.30 * @throws NullPointerException if threadFactory is null
1463 tim 1.11 * @see #getThreadFactory
1464 dl 1.2 */
1465     public void setThreadFactory(ThreadFactory threadFactory) {
1466 dl 1.30 if (threadFactory == null)
1467     throw new NullPointerException();
1468 dl 1.2 this.threadFactory = threadFactory;
1469 tim 1.1 }
1470    
1471 dl 1.2 /**
1472     * Returns the thread factory used to create new threads.
1473     *
1474     * @return the current thread factory
1475 jsr166 1.144 * @see #setThreadFactory(ThreadFactory)
1476 dl 1.2 */
1477     public ThreadFactory getThreadFactory() {
1478     return threadFactory;
1479 tim 1.1 }
1480    
1481 dl 1.2 /**
1482     * Sets a new handler for unexecutable tasks.
1483     *
1484     * @param handler the new handler
1485 dl 1.31 * @throws NullPointerException if handler is null
1486 tim 1.11 * @see #getRejectedExecutionHandler
1487 dl 1.2 */
1488     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1489 dl 1.31 if (handler == null)
1490     throw new NullPointerException();
1491 dl 1.2 this.handler = handler;
1492     }
1493 tim 1.1
1494 dl 1.2 /**
1495     * Returns the current handler for unexecutable tasks.
1496     *
1497     * @return the current handler
1498 jsr166 1.144 * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
1499 dl 1.2 */
1500     public RejectedExecutionHandler getRejectedExecutionHandler() {
1501     return handler;
1502 tim 1.1 }
1503    
1504 dl 1.2 /**
1505     * Sets the core number of threads. This overrides any value set
1506     * in the constructor. If the new value is smaller than the
1507     * current value, excess existing threads will be terminated when
1508 jsr166 1.116 * they next become idle. If larger, new threads will, if needed,
1509 dl 1.34 * be started to execute any queued tasks.
1510 tim 1.1 *
1511 dl 1.2 * @param corePoolSize the new core size
1512 jsr166 1.116 * @throws IllegalArgumentException if {@code corePoolSize < 0}
1513 dl 1.152 * or {@code corePoolSize} is greater than the {@linkplain
1514     * #getMaximumPoolSize() maximum pool size}
1515 tim 1.11 * @see #getCorePoolSize
1516 tim 1.1 */
1517 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1518 dl 1.152 if (corePoolSize < 0 || maximumPoolSize < corePoolSize)
1519 dl 1.2 throw new IllegalArgumentException();
1520 dl 1.107 int delta = corePoolSize - this.corePoolSize;
1521     this.corePoolSize = corePoolSize;
1522     if (workerCountOf(ctl.get()) > corePoolSize)
1523 jsr166 1.113 interruptIdleWorkers();
1524 dl 1.107 else if (delta > 0) {
1525     // We don't really know how many new threads are "needed".
1526     // As a heuristic, prestart enough new workers (up to new
1527     // core size) to handle the current number of tasks in
1528     // queue, but stop if queue becomes empty while doing so.
1529     int k = Math.min(delta, workQueue.size());
1530     while (k-- > 0 && addWorker(null, true)) {
1531     if (workQueue.isEmpty())
1532     break;
1533 tim 1.38 }
1534 dl 1.2 }
1535     }
1536 tim 1.1
1537     /**
1538 dl 1.2 * Returns the core number of threads.
1539 tim 1.1 *
1540 dl 1.2 * @return the core number of threads
1541 tim 1.11 * @see #setCorePoolSize
1542 tim 1.1 */
1543 tim 1.10 public int getCorePoolSize() {
1544 dl 1.2 return corePoolSize;
1545 dl 1.16 }
1546    
1547     /**
1548 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1549 dl 1.16 * overrides the default policy of starting core threads only when
1550 jsr166 1.116 * new tasks are executed. This method will return {@code false}
1551 dl 1.16 * if all core threads have already been started.
1552 jsr166 1.116 *
1553     * @return {@code true} if a thread was started
1554 jsr166 1.66 */
1555 dl 1.16 public boolean prestartCoreThread() {
1556 dl 1.107 return workerCountOf(ctl.get()) < corePoolSize &&
1557     addWorker(null, true);
1558 dl 1.16 }
1559    
1560     /**
1561 dl 1.125 * Same as prestartCoreThread except arranges that at least one
1562     * thread is started even if corePoolSize is 0.
1563     */
1564     void ensurePrestart() {
1565     int wc = workerCountOf(ctl.get());
1566 dl 1.126 if (wc < corePoolSize)
1567     addWorker(null, true);
1568     else if (wc == 0)
1569 dl 1.125 addWorker(null, false);
1570     }
1571    
1572     /**
1573 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1574 dl 1.16 * overrides the default policy of starting core threads only when
1575 jsr166 1.66 * new tasks are executed.
1576 jsr166 1.116 *
1577 jsr166 1.88 * @return the number of threads started
1578 jsr166 1.66 */
1579 dl 1.16 public int prestartAllCoreThreads() {
1580     int n = 0;
1581 dl 1.107 while (addWorker(null, true))
1582 dl 1.16 ++n;
1583     return n;
1584 dl 1.2 }
1585 tim 1.1
1586     /**
1587 dl 1.62 * Returns true if this pool allows core threads to time out and
1588     * terminate if no tasks arrive within the keepAlive time, being
1589     * replaced if needed when new tasks arrive. When true, the same
1590     * keep-alive policy applying to non-core threads applies also to
1591     * core threads. When false (the default), core threads are never
1592     * terminated due to lack of incoming tasks.
1593 jsr166 1.116 *
1594     * @return {@code true} if core threads are allowed to time out,
1595     * else {@code false}
1596 jsr166 1.72 *
1597     * @since 1.6
1598 dl 1.62 */
1599     public boolean allowsCoreThreadTimeOut() {
1600     return allowCoreThreadTimeOut;
1601     }
1602    
1603     /**
1604     * Sets the policy governing whether core threads may time out and
1605     * terminate if no tasks arrive within the keep-alive time, being
1606     * replaced if needed when new tasks arrive. When false, core
1607     * threads are never terminated due to lack of incoming
1608     * tasks. When true, the same keep-alive policy applying to
1609     * non-core threads applies also to core threads. To avoid
1610     * continual thread replacement, the keep-alive time must be
1611 jsr166 1.116 * greater than zero when setting {@code true}. This method
1612 dl 1.64 * should in general be called before the pool is actively used.
1613 jsr166 1.116 *
1614     * @param value {@code true} if should time out, else {@code false}
1615     * @throws IllegalArgumentException if value is {@code true}
1616     * and the current keep-alive time is not greater than zero
1617 jsr166 1.72 *
1618     * @since 1.6
1619 dl 1.62 */
1620     public void allowCoreThreadTimeOut(boolean value) {
1621 dl 1.64 if (value && keepAliveTime <= 0)
1622     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1623 dl 1.107 if (value != allowCoreThreadTimeOut) {
1624     allowCoreThreadTimeOut = value;
1625     if (value)
1626 jsr166 1.113 interruptIdleWorkers();
1627 dl 1.107 }
1628 dl 1.62 }
1629    
1630     /**
1631 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1632 dl 1.2 * value set in the constructor. If the new value is smaller than
1633     * the current value, excess existing threads will be
1634     * terminated when they next become idle.
1635 tim 1.1 *
1636 dl 1.2 * @param maximumPoolSize the new maximum
1637 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1638     * less than or equal to zero, or
1639     * less than the {@linkplain #getCorePoolSize core pool size}
1640 tim 1.11 * @see #getMaximumPoolSize
1641 dl 1.2 */
1642     public void setMaximumPoolSize(int maximumPoolSize) {
1643     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1644     throw new IllegalArgumentException();
1645 dl 1.107 this.maximumPoolSize = maximumPoolSize;
1646     if (workerCountOf(ctl.get()) > maximumPoolSize)
1647 jsr166 1.113 interruptIdleWorkers();
1648 dl 1.2 }
1649 tim 1.1
1650     /**
1651     * Returns the maximum allowed number of threads.
1652     *
1653 dl 1.2 * @return the maximum allowed number of threads
1654 tim 1.11 * @see #setMaximumPoolSize
1655 tim 1.1 */
1656 tim 1.10 public int getMaximumPoolSize() {
1657 dl 1.2 return maximumPoolSize;
1658     }
1659 tim 1.1
1660     /**
1661 jsr166 1.151 * Sets the thread keep-alive time, which is the amount of time
1662     * that threads may remain idle before being terminated.
1663     * Threads that wait this amount of time without processing a
1664     * task will be terminated if there are more than the core
1665     * number of threads currently in the pool, or if this pool
1666     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1667     * This overrides any value set in the constructor.
1668 jsr166 1.116 *
1669 tim 1.1 * @param time the time to wait. A time value of zero will cause
1670 jsr166 1.116 * excess threads to terminate immediately after executing tasks.
1671     * @param unit the time unit of the {@code time} argument
1672     * @throws IllegalArgumentException if {@code time} less than zero or
1673     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1674 jsr166 1.144 * @see #getKeepAliveTime(TimeUnit)
1675 tim 1.1 */
1676 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1677     if (time < 0)
1678     throw new IllegalArgumentException();
1679 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1680     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1681 dl 1.107 long keepAliveTime = unit.toNanos(time);
1682     long delta = keepAliveTime - this.keepAliveTime;
1683     this.keepAliveTime = keepAliveTime;
1684     if (delta < 0)
1685 jsr166 1.113 interruptIdleWorkers();
1686 dl 1.2 }
1687 tim 1.1
1688     /**
1689     * Returns the thread keep-alive time, which is the amount of time
1690 jsr166 1.151 * that threads may remain idle before being terminated.
1691     * Threads that wait this amount of time without processing a
1692     * task will be terminated if there are more than the core
1693     * number of threads currently in the pool, or if this pool
1694     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1695 tim 1.1 *
1696 dl 1.2 * @param unit the desired time unit of the result
1697 tim 1.1 * @return the time limit
1698 jsr166 1.144 * @see #setKeepAliveTime(long, TimeUnit)
1699 tim 1.1 */
1700 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1701 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1702     }
1703 tim 1.1
1704 dl 1.86 /* User-level queue utilities */
1705    
1706     /**
1707     * Returns the task queue used by this executor. Access to the
1708     * task queue is intended primarily for debugging and monitoring.
1709     * This queue may be in active use. Retrieving the task queue
1710     * does not prevent queued tasks from executing.
1711     *
1712     * @return the task queue
1713     */
1714     public BlockingQueue<Runnable> getQueue() {
1715     return workQueue;
1716     }
1717    
1718     /**
1719     * Removes this task from the executor's internal queue if it is
1720     * present, thus causing it not to be run if it has not already
1721     * started.
1722     *
1723 jsr166 1.134 * <p>This method may be useful as one part of a cancellation
1724 dl 1.86 * scheme. It may fail to remove tasks that have been converted
1725 jsr166 1.149 * into other forms before being placed on the internal queue.
1726     * For example, a task entered using {@code submit} might be
1727 jsr166 1.116 * converted into a form that maintains {@code Future} status.
1728 jsr166 1.117 * However, in such cases, method {@link #purge} may be used to
1729     * remove those Futures that have been cancelled.
1730 dl 1.86 *
1731     * @param task the task to remove
1732 jsr166 1.147 * @return {@code true} if the task was removed
1733 dl 1.86 */
1734     public boolean remove(Runnable task) {
1735 jsr166 1.116 boolean removed = workQueue.remove(task);
1736     tryTerminate(); // In case SHUTDOWN and now empty
1737 dl 1.107 return removed;
1738 dl 1.86 }
1739    
1740     /**
1741     * Tries to remove from the work queue all {@link Future}
1742     * tasks that have been cancelled. This method can be useful as a
1743     * storage reclamation operation, that has no other impact on
1744     * functionality. Cancelled tasks are never executed, but may
1745     * accumulate in work queues until worker threads can actively
1746     * remove them. Invoking this method instead tries to remove them now.
1747     * However, this method may fail to remove tasks in
1748     * the presence of interference by other threads.
1749     */
1750     public void purge() {
1751 jsr166 1.111 final BlockingQueue<Runnable> q = workQueue;
1752 dl 1.86 try {
1753 dl 1.107 Iterator<Runnable> it = q.iterator();
1754 dl 1.86 while (it.hasNext()) {
1755     Runnable r = it.next();
1756 jsr166 1.111 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1757 jsr166 1.121 it.remove();
1758 dl 1.107 }
1759 jsr166 1.111 } catch (ConcurrentModificationException fallThrough) {
1760 jsr166 1.121 // Take slow path if we encounter interference during traversal.
1761 jsr166 1.111 // Make copy for traversal and call remove for cancelled entries.
1762 jsr166 1.121 // The slow path is more likely to be O(N*N).
1763 jsr166 1.111 for (Object r : q.toArray())
1764     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1765 jsr166 1.121 q.remove(r);
1766 dl 1.86 }
1767 dl 1.107
1768     tryTerminate(); // In case SHUTDOWN and now empty
1769 dl 1.86 }
1770    
1771 tim 1.1 /* Statistics */
1772    
1773     /**
1774     * Returns the current number of threads in the pool.
1775     *
1776     * @return the number of threads
1777     */
1778 tim 1.10 public int getPoolSize() {
1779 dl 1.107 final ReentrantLock mainLock = this.mainLock;
1780     mainLock.lock();
1781     try {
1782 jsr166 1.121 // Remove rare and surprising possibility of
1783     // isTerminated() && getPoolSize() > 0
1784 jsr166 1.117 return runStateAtLeast(ctl.get(), TIDYING) ? 0
1785 jsr166 1.121 : workers.size();
1786 dl 1.107 } finally {
1787     mainLock.unlock();
1788     }
1789 dl 1.2 }
1790 tim 1.1
1791     /**
1792 dl 1.2 * Returns the approximate number of threads that are actively
1793 tim 1.1 * executing tasks.
1794     *
1795     * @return the number of threads
1796     */
1797 tim 1.10 public int getActiveCount() {
1798 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1799 dl 1.2 mainLock.lock();
1800     try {
1801     int n = 0;
1802 jsr166 1.116 for (Worker w : workers)
1803 dl 1.107 if (w.isLocked())
1804 dl 1.2 ++n;
1805     return n;
1806 tim 1.14 } finally {
1807 dl 1.2 mainLock.unlock();
1808     }
1809     }
1810 tim 1.1
1811     /**
1812 dl 1.2 * Returns the largest number of threads that have ever
1813     * simultaneously been in the pool.
1814 tim 1.1 *
1815     * @return the number of threads
1816     */
1817 tim 1.10 public int getLargestPoolSize() {
1818 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1819 dl 1.2 mainLock.lock();
1820     try {
1821     return largestPoolSize;
1822 tim 1.14 } finally {
1823 dl 1.2 mainLock.unlock();
1824     }
1825     }
1826 tim 1.1
1827     /**
1828 dl 1.85 * Returns the approximate total number of tasks that have ever been
1829 dl 1.2 * scheduled for execution. Because the states of tasks and
1830     * threads may change dynamically during computation, the returned
1831 dl 1.97 * value is only an approximation.
1832 tim 1.1 *
1833     * @return the number of tasks
1834     */
1835 tim 1.10 public long getTaskCount() {
1836 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1837 dl 1.2 mainLock.lock();
1838     try {
1839     long n = completedTaskCount;
1840 tim 1.39 for (Worker w : workers) {
1841 dl 1.2 n += w.completedTasks;
1842 dl 1.107 if (w.isLocked())
1843 dl 1.2 ++n;
1844     }
1845     return n + workQueue.size();
1846 tim 1.14 } finally {
1847 dl 1.2 mainLock.unlock();
1848     }
1849     }
1850 tim 1.1
1851     /**
1852 dl 1.2 * Returns the approximate total number of tasks that have
1853     * completed execution. Because the states of tasks and threads
1854     * may change dynamically during computation, the returned value
1855 dl 1.17 * is only an approximation, but one that does not ever decrease
1856     * across successive calls.
1857 tim 1.1 *
1858     * @return the number of tasks
1859     */
1860 tim 1.10 public long getCompletedTaskCount() {
1861 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1862 dl 1.2 mainLock.lock();
1863     try {
1864     long n = completedTaskCount;
1865 tim 1.39 for (Worker w : workers)
1866     n += w.completedTasks;
1867 dl 1.2 return n;
1868 tim 1.14 } finally {
1869 dl 1.2 mainLock.unlock();
1870     }
1871     }
1872 tim 1.1
1873 dl 1.123 /**
1874     * Returns a string identifying this pool, as well as its state,
1875     * including indications of run state and estimated worker and
1876     * task counts.
1877     *
1878     * @return a string identifying this pool, as well as its state
1879     */
1880     public String toString() {
1881     long ncompleted;
1882     int nworkers, nactive;
1883     final ReentrantLock mainLock = this.mainLock;
1884     mainLock.lock();
1885     try {
1886     ncompleted = completedTaskCount;
1887     nactive = 0;
1888     nworkers = workers.size();
1889     for (Worker w : workers) {
1890     ncompleted += w.completedTasks;
1891     if (w.isLocked())
1892     ++nactive;
1893     }
1894     } finally {
1895     mainLock.unlock();
1896     }
1897     int c = ctl.get();
1898 jsr166 1.150 String runState =
1899     runStateLessThan(c, SHUTDOWN) ? "Running" :
1900     runStateAtLeast(c, TERMINATED) ? "Terminated" :
1901     "Shutting down";
1902 dl 1.123 return super.toString() +
1903 jsr166 1.150 "[" + runState +
1904 dl 1.123 ", pool size = " + nworkers +
1905     ", active threads = " + nactive +
1906     ", queued tasks = " + workQueue.size() +
1907     ", completed tasks = " + ncompleted +
1908     "]";
1909     }
1910    
1911 dl 1.86 /* Extension hooks */
1912    
1913 tim 1.1 /**
1914 dl 1.17 * Method invoked prior to executing the given Runnable in the
1915 jsr166 1.116 * given thread. This method is invoked by thread {@code t} that
1916     * will execute task {@code r}, and may be used to re-initialize
1917 jsr166 1.73 * ThreadLocals, or to perform logging.
1918     *
1919     * <p>This implementation does nothing, but may be customized in
1920     * subclasses. Note: To properly nest multiple overridings, subclasses
1921 jsr166 1.116 * should generally invoke {@code super.beforeExecute} at the end of
1922 jsr166 1.73 * this method.
1923 tim 1.1 *
1924 jsr166 1.116 * @param t the thread that will run task {@code r}
1925     * @param r the task that will be executed
1926 tim 1.1 */
1927 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1928 tim 1.1
1929     /**
1930 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1931     * This method is invoked by the thread that executed the task. If
1932 jsr166 1.116 * non-null, the Throwable is the uncaught {@code RuntimeException}
1933     * or {@code Error} that caused execution to terminate abruptly.
1934 dl 1.69 *
1935 dl 1.107 * <p>This implementation does nothing, but may be customized in
1936     * subclasses. Note: To properly nest multiple overridings, subclasses
1937 jsr166 1.116 * should generally invoke {@code super.afterExecute} at the
1938 dl 1.107 * beginning of this method.
1939     *
1940 dl 1.69 * <p><b>Note:</b> When actions are enclosed in tasks (such as
1941     * {@link FutureTask}) either explicitly or via methods such as
1942 jsr166 1.116 * {@code submit}, these task objects catch and maintain
1943 dl 1.69 * computational exceptions, and so they do not cause abrupt
1944 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1945 dl 1.107 * passed to this method. If you would like to trap both kinds of
1946     * failures in this method, you can further probe for such cases,
1947     * as in this sample subclass that prints either the direct cause
1948     * or the underlying exception if a task has been aborted:
1949     *
1950 jsr166 1.116 * <pre> {@code
1951 dl 1.107 * class ExtendedExecutor extends ThreadPoolExecutor {
1952     * // ...
1953     * protected void afterExecute(Runnable r, Throwable t) {
1954     * super.afterExecute(r, t);
1955 jsr166 1.159 * if (t == null
1956     * && r instanceof Future<?>
1957     * && ((Future<?>)r).isDone()) {
1958 dl 1.107 * try {
1959 jsr166 1.116 * Object result = ((Future<?>) r).get();
1960 dl 1.107 * } catch (CancellationException ce) {
1961 jsr166 1.154 * t = ce;
1962 dl 1.107 * } catch (ExecutionException ee) {
1963 jsr166 1.154 * t = ee.getCause();
1964 dl 1.107 * } catch (InterruptedException ie) {
1965 jsr166 1.159 * // ignore/reset
1966     * Thread.currentThread().interrupt();
1967 dl 1.107 * }
1968     * }
1969     * if (t != null)
1970     * System.out.println(t);
1971     * }
1972 jsr166 1.116 * }}</pre>
1973 tim 1.1 *
1974 jsr166 1.116 * @param r the runnable that has completed
1975 dl 1.24 * @param t the exception that caused termination, or null if
1976 jsr166 1.116 * execution completed normally
1977 tim 1.1 */
1978 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1979 tim 1.1
1980 dl 1.2 /**
1981     * Method invoked when the Executor has terminated. Default
1982 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1983     * overridings, subclasses should generally invoke
1984 jsr166 1.116 * {@code super.terminated} within this method.
1985 dl 1.2 */
1986     protected void terminated() { }
1987 tim 1.1
1988 dl 1.86 /* Predefined RejectedExecutionHandlers */
1989    
1990 tim 1.1 /**
1991 dl 1.21 * A handler for rejected tasks that runs the rejected task
1992 jsr166 1.116 * directly in the calling thread of the {@code execute} method,
1993 dl 1.21 * unless the executor has been shut down, in which case the task
1994     * is discarded.
1995 tim 1.1 */
1996 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1997 tim 1.1 /**
1998 jsr166 1.116 * Creates a {@code CallerRunsPolicy}.
1999 tim 1.1 */
2000     public CallerRunsPolicy() { }
2001    
2002 dl 1.24 /**
2003     * Executes task r in the caller's thread, unless the executor
2004     * has been shut down, in which case the task is discarded.
2005 jsr166 1.116 *
2006 dl 1.24 * @param r the runnable task requested to be executed
2007     * @param e the executor attempting to execute this task
2008     */
2009 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2010     if (!e.isShutdown()) {
2011 tim 1.1 r.run();
2012     }
2013     }
2014     }
2015    
2016     /**
2017 dl 1.21 * A handler for rejected tasks that throws a
2018 jsr166 1.116 * {@code RejectedExecutionException}.
2019 tim 1.1 */
2020 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
2021 tim 1.1 /**
2022 jsr166 1.116 * Creates an {@code AbortPolicy}.
2023 tim 1.1 */
2024     public AbortPolicy() { }
2025    
2026 dl 1.24 /**
2027 dl 1.54 * Always throws RejectedExecutionException.
2028 jsr166 1.116 *
2029 dl 1.24 * @param r the runnable task requested to be executed
2030     * @param e the executor attempting to execute this task
2031 jsr166 1.141 * @throws RejectedExecutionException always
2032 dl 1.24 */
2033 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2034 dl 1.123 throw new RejectedExecutionException("Task " + r.toString() +
2035     " rejected from " +
2036     e.toString());
2037 tim 1.1 }
2038     }
2039    
2040     /**
2041 dl 1.21 * A handler for rejected tasks that silently discards the
2042     * rejected task.
2043 tim 1.1 */
2044 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
2045 tim 1.1 /**
2046 jsr166 1.116 * Creates a {@code DiscardPolicy}.
2047 tim 1.1 */
2048     public DiscardPolicy() { }
2049    
2050 dl 1.24 /**
2051     * Does nothing, which has the effect of discarding task r.
2052 jsr166 1.116 *
2053 dl 1.24 * @param r the runnable task requested to be executed
2054     * @param e the executor attempting to execute this task
2055     */
2056 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2057 tim 1.1 }
2058     }
2059    
2060     /**
2061 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
2062 jsr166 1.116 * request and then retries {@code execute}, unless the executor
2063 dl 1.21 * is shut down, in which case the task is discarded.
2064 tim 1.1 */
2065 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2066 tim 1.1 /**
2067 jsr166 1.116 * Creates a {@code DiscardOldestPolicy} for the given executor.
2068 tim 1.1 */
2069     public DiscardOldestPolicy() { }
2070    
2071 dl 1.24 /**
2072     * Obtains and ignores the next task that the executor
2073     * would otherwise execute, if one is immediately available,
2074     * and then retries execution of task r, unless the executor
2075     * is shut down, in which case task r is instead discarded.
2076 jsr166 1.116 *
2077 dl 1.24 * @param r the runnable task requested to be executed
2078     * @param e the executor attempting to execute this task
2079     */
2080 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2081     if (!e.isShutdown()) {
2082     e.getQueue().poll();
2083     e.execute(r);
2084 tim 1.1 }
2085     }
2086     }
2087     }