ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.178
Committed: Fri Sep 8 02:42:22 2017 UTC (6 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.177: +16 -19 lines
Log Message:
improve readability of runstate checking

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4 jsr166 1.124 * http://creativecommons.org/publicdomain/zero/1.0/
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.156
9 jsr166 1.175 import java.security.AccessControlContext;
10     import java.security.AccessController;
11     import java.security.PrivilegedAction;
12 jsr166 1.156 import java.util.ArrayList;
13     import java.util.ConcurrentModificationException;
14     import java.util.HashSet;
15     import java.util.Iterator;
16     import java.util.List;
17 jsr166 1.157 import java.util.concurrent.atomic.AtomicInteger;
18     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
19     import java.util.concurrent.locks.Condition;
20     import java.util.concurrent.locks.ReentrantLock;
21 tim 1.1
22     /**
23 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
24 dl 1.28 * one of possibly several pooled threads, normally configured
25     * using {@link Executors} factory methods.
26 tim 1.1 *
27 dl 1.17 * <p>Thread pools address two different problems: they usually
28     * provide improved performance when executing large numbers of
29     * asynchronous tasks, due to reduced per-task invocation overhead,
30     * and they provide a means of bounding and managing the resources,
31     * including threads, consumed when executing a collection of tasks.
32 jsr166 1.116 * Each {@code ThreadPoolExecutor} also maintains some basic
33 dl 1.22 * statistics, such as the number of completed tasks.
34 dl 1.17 *
35 tim 1.1 * <p>To be useful across a wide range of contexts, this class
36 dl 1.24 * provides many adjustable parameters and extensibility
37     * hooks. However, programmers are urged to use the more convenient
38 dl 1.20 * {@link Executors} factory methods {@link
39     * Executors#newCachedThreadPool} (unbounded thread pool, with
40     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
41     * (fixed size thread pool) and {@link
42     * Executors#newSingleThreadExecutor} (single background thread), that
43 dl 1.22 * preconfigure settings for the most common usage
44     * scenarios. Otherwise, use the following guide when manually
45 dl 1.24 * configuring and tuning this class:
46 dl 1.17 *
47 tim 1.1 * <dl>
48 dl 1.2 *
49 dl 1.21 * <dt>Core and maximum pool sizes</dt>
50 dl 1.2 *
51 jsr166 1.168 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
52 jsr166 1.117 * pool size (see {@link #getPoolSize})
53     * according to the bounds set by
54     * corePoolSize (see {@link #getCorePoolSize}) and
55     * maximumPoolSize (see {@link #getMaximumPoolSize}).
56     *
57 jsr166 1.143 * When a new task is submitted in method {@link #execute(Runnable)},
58 jsr166 1.169 * if fewer than corePoolSize threads are running, a new thread is
59 jsr166 1.143 * created to handle the request, even if other worker threads are
60 jsr166 1.169 * idle. Else if fewer than maximumPoolSize threads are running, a
61     * new thread will be created to handle the request only if the queue
62     * is full. By setting corePoolSize and maximumPoolSize the same, you
63     * create a fixed-size thread pool. By setting maximumPoolSize to an
64     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
65     * allow the pool to accommodate an arbitrary number of concurrent
66     * tasks. Most typically, core and maximum pool sizes are set only
67     * upon construction, but they may also be changed dynamically using
68     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
69 dl 1.2 *
70 jsr166 1.93 * <dt>On-demand construction</dt>
71 dl 1.2 *
72 jsr166 1.168 * <dd>By default, even core threads are initially created and
73 dl 1.69 * started only when new tasks arrive, but this can be overridden
74 jsr166 1.117 * dynamically using method {@link #prestartCoreThread} or {@link
75     * #prestartAllCoreThreads}. You probably want to prestart threads if
76     * you construct the pool with a non-empty queue. </dd>
77 dl 1.2 *
78 tim 1.1 * <dt>Creating new threads</dt>
79 dl 1.2 *
80 jsr166 1.168 * <dd>New threads are created using a {@link ThreadFactory}. If not
81 jsr166 1.117 * otherwise specified, a {@link Executors#defaultThreadFactory} is
82     * used, that creates threads to all be in the same {@link
83     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
84     * non-daemon status. By supplying a different ThreadFactory, you can
85     * alter the thread's name, thread group, priority, daemon status,
86     * etc. If a {@code ThreadFactory} fails to create a thread when asked
87     * by returning null from {@code newThread}, the executor will
88     * continue, but might not be able to execute any tasks. Threads
89     * should possess the "modifyThread" {@code RuntimePermission}. If
90     * worker threads or other threads using the pool do not possess this
91     * permission, service may be degraded: configuration changes may not
92     * take effect in a timely manner, and a shutdown pool may remain in a
93     * state in which termination is possible but not completed.</dd>
94 dl 1.2 *
95 dl 1.21 * <dt>Keep-alive times</dt>
96     *
97 jsr166 1.168 * <dd>If the pool currently has more than corePoolSize threads,
98 dl 1.21 * excess threads will be terminated if they have been idle for more
99 jsr166 1.143 * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
100     * This provides a means of reducing resource consumption when the
101     * pool is not being actively used. If the pool becomes more active
102     * later, new threads will be constructed. This parameter can also be
103     * changed dynamically using method {@link #setKeepAliveTime(long,
104     * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link
105     * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
106     * terminating prior to shut down. By default, the keep-alive policy
107 jsr166 1.151 * applies only when there are more than corePoolSize threads, but
108 jsr166 1.143 * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
109     * apply this time-out policy to core threads as well, so long as the
110 jsr166 1.117 * keepAliveTime value is non-zero. </dd>
111 dl 1.21 *
112 dl 1.48 * <dt>Queuing</dt>
113 dl 1.21 *
114 jsr166 1.168 * <dd>Any {@link BlockingQueue} may be used to transfer and hold
115 dl 1.21 * submitted tasks. The use of this queue interacts with pool sizing:
116 dl 1.2 *
117 dl 1.21 * <ul>
118     *
119 jsr166 1.162 * <li>If fewer than corePoolSize threads are running, the Executor
120 dl 1.23 * always prefers adding a new thread
121 jsr166 1.162 * rather than queuing.
122 dl 1.21 *
123 jsr166 1.162 * <li>If corePoolSize or more threads are running, the Executor
124 dl 1.23 * always prefers queuing a request rather than adding a new
125 jsr166 1.162 * thread.
126 jsr166 1.66 *
127 jsr166 1.162 * <li>If a request cannot be queued, a new thread is created unless
128 dl 1.21 * this would exceed maximumPoolSize, in which case, the task will be
129 jsr166 1.162 * rejected.
130 dl 1.21 *
131     * </ul>
132     *
133     * There are three general strategies for queuing:
134     * <ol>
135     *
136 jsr166 1.162 * <li><em> Direct handoffs.</em> A good default choice for a work
137 dl 1.21 * queue is a {@link SynchronousQueue} that hands off tasks to threads
138     * without otherwise holding them. Here, an attempt to queue a task
139     * will fail if no threads are immediately available to run it, so a
140     * new thread will be constructed. This policy avoids lockups when
141     * handling sets of requests that might have internal dependencies.
142     * Direct handoffs generally require unbounded maximumPoolSizes to
143 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
144 dl 1.21 * possibility of unbounded thread growth when commands continue to
145 jsr166 1.162 * arrive on average faster than they can be processed.
146 dl 1.21 *
147     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
148     * example a {@link LinkedBlockingQueue} without a predefined
149 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
150 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
151     * threads will ever be created. (And the value of the maximumPoolSize
152     * therefore doesn't have any effect.) This may be appropriate when
153     * each task is completely independent of others, so tasks cannot
154     * affect each others execution; for example, in a web page server.
155     * While this style of queuing can be useful in smoothing out
156     * transient bursts of requests, it admits the possibility of
157     * unbounded work queue growth when commands continue to arrive on
158 jsr166 1.162 * average faster than they can be processed.
159 dl 1.21 *
160     * <li><em>Bounded queues.</em> A bounded queue (for example, an
161     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
162     * used with finite maximumPoolSizes, but can be more difficult to
163     * tune and control. Queue sizes and maximum pool sizes may be traded
164     * off for each other: Using large queues and small pools minimizes
165     * CPU usage, OS resources, and context-switching overhead, but can
166 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
167 dl 1.21 * example if they are I/O bound), a system may be able to schedule
168     * time for more threads than you otherwise allow. Use of small queues
169 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
170     * may encounter unacceptable scheduling overhead, which also
171 jsr166 1.162 * decreases throughput.
172 dl 1.21 *
173     * </ol>
174     *
175     * </dd>
176     *
177     * <dt>Rejected tasks</dt>
178     *
179 jsr166 1.168 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
180 jsr166 1.143 * <em>rejected</em> when the Executor has been shut down, and also when
181     * the Executor uses finite bounds for both maximum threads and work queue
182     * capacity, and is saturated. In either case, the {@code execute} method
183     * invokes the {@link
184     * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
185     * method of its {@link RejectedExecutionHandler}. Four predefined handler
186     * policies are provided:
187 dl 1.21 *
188     * <ol>
189     *
190 jsr166 1.170 * <li>In the default {@link ThreadPoolExecutor.AbortPolicy}, the handler
191     * throws a runtime {@link RejectedExecutionException} upon rejection.
192 jsr166 1.117 *
193 jsr166 1.162 * <li>In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
194 jsr166 1.117 * that invokes {@code execute} itself runs the task. This provides a
195     * simple feedback control mechanism that will slow down the rate that
196 jsr166 1.162 * new tasks are submitted.
197 jsr166 1.117 *
198 jsr166 1.162 * <li>In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
199     * cannot be executed is simply dropped.
200 jsr166 1.117 *
201     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
202     * executor is not shut down, the task at the head of the work queue
203     * is dropped, and then execution is retried (which can fail again,
204 jsr166 1.162 * causing this to be repeated.)
205 dl 1.21 *
206     * </ol>
207     *
208     * It is possible to define and use other kinds of {@link
209     * RejectedExecutionHandler} classes. Doing so requires some care
210     * especially when policies are designed to work only under particular
211 dl 1.48 * capacity or queuing policies. </dd>
212 dl 1.21 *
213     * <dt>Hook methods</dt>
214     *
215 jsr166 1.168 * <dd>This class provides {@code protected} overridable
216 jsr166 1.143 * {@link #beforeExecute(Thread, Runnable)} and
217     * {@link #afterExecute(Runnable, Throwable)} methods that are called
218 jsr166 1.117 * before and after execution of each task. These can be used to
219     * manipulate the execution environment; for example, reinitializing
220 jsr166 1.143 * ThreadLocals, gathering statistics, or adding log entries.
221     * Additionally, method {@link #terminated} can be overridden to perform
222     * any special processing that needs to be done once the Executor has
223     * fully terminated.
224 jsr166 1.117 *
225 dl 1.158 * <p>If hook, callback, or BlockingQueue methods throw exceptions,
226     * internal worker threads may in turn fail, abruptly terminate, and
227     * possibly be replaced.</dd>
228 dl 1.2 *
229 dl 1.21 * <dt>Queue maintenance</dt>
230 dl 1.2 *
231 jsr166 1.168 * <dd>Method {@link #getQueue()} allows access to the work queue
232 jsr166 1.143 * for purposes of monitoring and debugging. Use of this method for
233     * any other purpose is strongly discouraged. Two supplied methods,
234     * {@link #remove(Runnable)} and {@link #purge} are available to
235     * assist in storage reclamation when large numbers of queued tasks
236     * become cancelled.</dd>
237 dl 1.79 *
238     * <dt>Finalization</dt>
239     *
240 jsr166 1.168 * <dd>A pool that is no longer referenced in a program <em>AND</em>
241 jsr166 1.117 * has no remaining threads will be {@code shutdown} automatically. If
242     * you would like to ensure that unreferenced pools are reclaimed even
243     * if users forget to call {@link #shutdown}, then you must arrange
244     * that unused threads eventually die, by setting appropriate
245     * keep-alive times, using a lower bound of zero core threads and/or
246     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
247     *
248     * </dl>
249 tim 1.1 *
250 jsr166 1.134 * <p><b>Extension example</b>. Most extensions of this class
251 dl 1.43 * override one or more of the protected hook methods. For example,
252     * here is a subclass that adds a simple pause/resume feature:
253     *
254 jsr166 1.160 * <pre> {@code
255 dl 1.43 * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
256     * private boolean isPaused;
257     * private ReentrantLock pauseLock = new ReentrantLock();
258     * private Condition unpaused = pauseLock.newCondition();
259     *
260     * public PausableThreadPoolExecutor(...) { super(...); }
261 jsr166 1.66 *
262 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
263     * super.beforeExecute(t, r);
264     * pauseLock.lock();
265     * try {
266     * while (isPaused) unpaused.await();
267 jsr166 1.66 * } catch (InterruptedException ie) {
268 dl 1.53 * t.interrupt();
269 dl 1.43 * } finally {
270 dl 1.53 * pauseLock.unlock();
271 dl 1.43 * }
272     * }
273 jsr166 1.66 *
274 dl 1.43 * public void pause() {
275     * pauseLock.lock();
276     * try {
277     * isPaused = true;
278     * } finally {
279 dl 1.53 * pauseLock.unlock();
280 dl 1.43 * }
281     * }
282 jsr166 1.66 *
283 dl 1.43 * public void resume() {
284     * pauseLock.lock();
285     * try {
286     * isPaused = false;
287     * unpaused.signalAll();
288     * } finally {
289 dl 1.53 * pauseLock.unlock();
290 dl 1.43 * }
291     * }
292 jsr166 1.116 * }}</pre>
293     *
294 tim 1.1 * @since 1.5
295 dl 1.8 * @author Doug Lea
296 tim 1.1 */
297 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
298 dl 1.86 /**
299 dl 1.107 * The main pool control state, ctl, is an atomic integer packing
300     * two conceptual fields
301     * workerCount, indicating the effective number of threads
302     * runState, indicating whether running, shutting down etc
303     *
304     * In order to pack them into one int, we limit workerCount to
305 jsr166 1.117 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
306 dl 1.107 * billion) otherwise representable. If this is ever an issue in
307     * the future, the variable can be changed to be an AtomicLong,
308     * and the shift/mask constants below adjusted. But until the need
309     * arises, this code is a bit faster and simpler using an int.
310     *
311     * The workerCount is the number of workers that have been
312     * permitted to start and not permitted to stop. The value may be
313 jsr166 1.110 * transiently different from the actual number of live threads,
314 dl 1.107 * for example when a ThreadFactory fails to create a thread when
315     * asked, and when exiting threads are still performing
316     * bookkeeping before terminating. The user-visible pool size is
317     * reported as the current size of the workers set.
318     *
319 jsr166 1.131 * The runState provides the main lifecycle control, taking on values:
320 dl 1.86 *
321 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
322     * SHUTDOWN: Don't accept new tasks, but process queued tasks
323 jsr166 1.91 * STOP: Don't accept new tasks, don't process queued tasks,
324 dl 1.85 * and interrupt in-progress tasks
325 jsr166 1.117 * TIDYING: All tasks have terminated, workerCount is zero,
326     * the thread transitioning to state TIDYING
327     * will run the terminated() hook method
328     * TERMINATED: terminated() has completed
329 dl 1.86 *
330     * The numerical order among these values matters, to allow
331     * ordered comparisons. The runState monotonically increases over
332     * time, but need not hit each state. The transitions are:
333 jsr166 1.87 *
334     * RUNNING -> SHUTDOWN
335 jsr166 1.88 * On invocation of shutdown(), perhaps implicitly in finalize()
336 jsr166 1.87 * (RUNNING or SHUTDOWN) -> STOP
337 dl 1.86 * On invocation of shutdownNow()
338 jsr166 1.117 * SHUTDOWN -> TIDYING
339 dl 1.86 * When both queue and pool are empty
340 jsr166 1.117 * STOP -> TIDYING
341 dl 1.86 * When pool is empty
342 jsr166 1.117 * TIDYING -> TERMINATED
343     * When the terminated() hook method has completed
344     *
345     * Threads waiting in awaitTermination() will return when the
346     * state reaches TERMINATED.
347 dl 1.107 *
348 jsr166 1.117 * Detecting the transition from SHUTDOWN to TIDYING is less
349 dl 1.107 * straightforward than you'd like because the queue may become
350     * empty after non-empty and vice versa during SHUTDOWN state, but
351     * we can only terminate if, after seeing that it is empty, we see
352     * that workerCount is 0 (which sometimes entails a recheck -- see
353     * below).
354     */
355     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
356 jsr166 1.117 private static final int COUNT_BITS = Integer.SIZE - 3;
357 dl 1.107 private static final int CAPACITY = (1 << COUNT_BITS) - 1;
358    
359 jsr166 1.117 // runState is stored in the high-order bits
360     private static final int RUNNING = -1 << COUNT_BITS;
361     private static final int SHUTDOWN = 0 << COUNT_BITS;
362     private static final int STOP = 1 << COUNT_BITS;
363     private static final int TIDYING = 2 << COUNT_BITS;
364     private static final int TERMINATED = 3 << COUNT_BITS;
365 dl 1.107
366     // Packing and unpacking ctl
367 jsr166 1.117 private static int runStateOf(int c) { return c & ~CAPACITY; }
368     private static int workerCountOf(int c) { return c & CAPACITY; }
369     private static int ctlOf(int rs, int wc) { return rs | wc; }
370    
371     /*
372     * Bit field accessors that don't require unpacking ctl.
373     * These depend on the bit layout and on workerCount being never negative.
374     */
375    
376     private static boolean runStateLessThan(int c, int s) {
377 jsr166 1.121 return c < s;
378 jsr166 1.117 }
379    
380     private static boolean runStateAtLeast(int c, int s) {
381 jsr166 1.121 return c >= s;
382 jsr166 1.117 }
383    
384     private static boolean isRunning(int c) {
385 jsr166 1.121 return c < SHUTDOWN;
386 jsr166 1.117 }
387    
388     /**
389 jsr166 1.135 * Attempts to CAS-increment the workerCount field of ctl.
390 jsr166 1.117 */
391     private boolean compareAndIncrementWorkerCount(int expect) {
392 jsr166 1.121 return ctl.compareAndSet(expect, expect + 1);
393 jsr166 1.117 }
394    
395     /**
396 jsr166 1.135 * Attempts to CAS-decrement the workerCount field of ctl.
397 jsr166 1.117 */
398     private boolean compareAndDecrementWorkerCount(int expect) {
399 jsr166 1.121 return ctl.compareAndSet(expect, expect - 1);
400 jsr166 1.117 }
401    
402     /**
403     * Decrements the workerCount field of ctl. This is called only on
404     * abrupt termination of a thread (see processWorkerExit). Other
405     * decrements are performed within getTask.
406     */
407     private void decrementWorkerCount() {
408 jsr166 1.177 ctl.addAndGet(-1);
409 jsr166 1.117 }
410 tim 1.41
411     /**
412 dl 1.86 * The queue used for holding tasks and handing off to worker
413 dl 1.107 * threads. We do not require that workQueue.poll() returning
414 jsr166 1.109 * null necessarily means that workQueue.isEmpty(), so rely
415 dl 1.107 * solely on isEmpty to see if the queue is empty (which we must
416     * do for example when deciding whether to transition from
417 jsr166 1.117 * SHUTDOWN to TIDYING). This accommodates special-purpose
418 dl 1.107 * queues such as DelayQueues for which poll() is allowed to
419     * return null even if it may later return non-null when delays
420     * expire.
421 tim 1.10 */
422 dl 1.2 private final BlockingQueue<Runnable> workQueue;
423    
424     /**
425 dl 1.107 * Lock held on access to workers set and related bookkeeping.
426     * While we could use a concurrent set of some sort, it turns out
427     * to be generally preferable to use a lock. Among the reasons is
428     * that this serializes interruptIdleWorkers, which avoids
429     * unnecessary interrupt storms, especially during shutdown.
430     * Otherwise exiting threads would concurrently interrupt those
431     * that have not yet interrupted. It also simplifies some of the
432     * associated statistics bookkeeping of largestPoolSize etc. We
433     * also hold mainLock on shutdown and shutdownNow, for the sake of
434     * ensuring workers set is stable while separately checking
435     * permission to interrupt and actually interrupting.
436 tim 1.10 */
437 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
438    
439     /**
440 dl 1.107 * Set containing all worker threads in pool. Accessed only when
441     * holding mainLock.
442     */
443 jsr166 1.153 private final HashSet<Worker> workers = new HashSet<>();
444 dl 1.107
445     /**
446 jsr166 1.164 * Wait condition to support awaitTermination.
447 tim 1.10 */
448 dl 1.46 private final Condition termination = mainLock.newCondition();
449 dl 1.2
450     /**
451 dl 1.107 * Tracks largest attained pool size. Accessed only under
452     * mainLock.
453     */
454     private int largestPoolSize;
455    
456     /**
457     * Counter for completed tasks. Updated only on termination of
458     * worker threads. Accessed only under mainLock.
459     */
460     private long completedTaskCount;
461    
462     /*
463     * All user control parameters are declared as volatiles so that
464     * ongoing actions are based on freshest values, but without need
465     * for locking, since no internal invariants depend on them
466     * changing synchronously with respect to other actions.
467     */
468    
469     /**
470     * Factory for new threads. All threads are created using this
471     * factory (via method addWorker). All callers must be prepared
472     * for addWorker to fail, which may reflect a system or user's
473     * policy limiting the number of threads. Even though it is not
474     * treated as an error, failure to create threads may result in
475     * new tasks being rejected or existing ones remaining stuck in
476 jsr166 1.128 * the queue.
477     *
478     * We go further and preserve pool invariants even in the face of
479     * errors such as OutOfMemoryError, that might be thrown while
480     * trying to create threads. Such errors are rather common due to
481 jsr166 1.145 * the need to allocate a native stack in Thread.start, and users
482 jsr166 1.128 * will want to perform clean pool shutdown to clean up. There
483     * will likely be enough memory available for the cleanup code to
484     * complete without encountering yet another OutOfMemoryError.
485 dl 1.107 */
486     private volatile ThreadFactory threadFactory;
487    
488     /**
489     * Handler called when saturated or shutdown in execute.
490 tim 1.10 */
491 dl 1.107 private volatile RejectedExecutionHandler handler;
492 dl 1.2
493     /**
494 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
495 dl 1.86 * Threads use this timeout when there are more than corePoolSize
496     * present or if allowCoreThreadTimeOut. Otherwise they wait
497     * forever for new work.
498 tim 1.10 */
499 dl 1.107 private volatile long keepAliveTime;
500 dl 1.2
501     /**
502 jsr166 1.101 * If false (default), core threads stay alive even when idle.
503     * If true, core threads use keepAliveTime to time out waiting
504     * for work.
505 dl 1.62 */
506 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
507 dl 1.62
508     /**
509 dl 1.107 * Core pool size is the minimum number of workers to keep alive
510     * (and not allow to time out etc) unless allowCoreThreadTimeOut
511 jsr166 1.109 * is set, in which case the minimum is zero.
512 dl 1.107 */
513     private volatile int corePoolSize;
514    
515     /**
516     * Maximum pool size. Note that the actual maximum is internally
517     * bounded by CAPACITY.
518     */
519     private volatile int maximumPoolSize;
520    
521     /**
522 jsr166 1.164 * The default rejected execution handler.
523 dl 1.107 */
524     private static final RejectedExecutionHandler defaultHandler =
525     new AbortPolicy();
526    
527     /**
528     * Permission required for callers of shutdown and shutdownNow.
529     * We additionally require (see checkShutdownAccess) that callers
530     * have permission to actually interrupt threads in the worker set
531     * (as governed by Thread.interrupt, which relies on
532     * ThreadGroup.checkAccess, which in turn relies on
533     * SecurityManager.checkAccess). Shutdowns are attempted only if
534     * these checks pass.
535     *
536     * All actual invocations of Thread.interrupt (see
537     * interruptIdleWorkers and interruptWorkers) ignore
538     * SecurityExceptions, meaning that the attempted interrupts
539     * silently fail. In the case of shutdown, they should not fail
540     * unless the SecurityManager has inconsistent policies, sometimes
541     * allowing access to a thread and sometimes not. In such cases,
542     * failure to actually interrupt threads may disable or delay full
543     * termination. Other uses of interruptIdleWorkers are advisory,
544     * and failure to actually interrupt will merely delay response to
545     * configuration changes so is not handled exceptionally.
546     */
547     private static final RuntimePermission shutdownPerm =
548     new RuntimePermission("modifyThread");
549    
550 jsr166 1.176 /** The context to be used when executing the finalizer, or null. */
551 jsr166 1.175 private final AccessControlContext acc;
552    
553 dl 1.107 /**
554 jsr166 1.108 * Class Worker mainly maintains interrupt control state for
555 jsr166 1.120 * threads running tasks, along with other minor bookkeeping.
556     * This class opportunistically extends AbstractQueuedSynchronizer
557     * to simplify acquiring and releasing a lock surrounding each
558     * task execution. This protects against interrupts that are
559     * intended to wake up a worker thread waiting for a task from
560     * instead interrupting a task being run. We implement a simple
561 dl 1.130 * non-reentrant mutual exclusion lock rather than use
562     * ReentrantLock because we do not want worker tasks to be able to
563     * reacquire the lock when they invoke pool control methods like
564     * setCorePoolSize. Additionally, to suppress interrupts until
565     * the thread actually starts running tasks, we initialize lock
566     * state to a negative value, and clear it upon start (in
567     * runWorker).
568 jsr166 1.120 */
569     private final class Worker
570 jsr166 1.121 extends AbstractQueuedSynchronizer
571     implements Runnable
572 jsr166 1.120 {
573 jsr166 1.121 /**
574     * This class will never be serialized, but we provide a
575     * serialVersionUID to suppress a javac warning.
576     */
577     private static final long serialVersionUID = 6138294804551838833L;
578 jsr166 1.116
579 jsr166 1.108 /** Thread this worker is running in. Null if factory fails. */
580 dl 1.107 final Thread thread;
581 jsr166 1.108 /** Initial task to run. Possibly null. */
582 dl 1.107 Runnable firstTask;
583     /** Per-thread task counter */
584     volatile long completedTasks;
585    
586 jsr166 1.167 // TODO: switch to AbstractQueuedLongSynchronizer and move
587     // completedTasks into the lock word.
588    
589 dl 1.107 /**
590 jsr166 1.108 * Creates with given first task and thread from ThreadFactory.
591     * @param firstTask the first task (null if none)
592 dl 1.107 */
593     Worker(Runnable firstTask) {
594 dl 1.130 setState(-1); // inhibit interrupts until runWorker
595 dl 1.107 this.firstTask = firstTask;
596 jsr166 1.121 this.thread = getThreadFactory().newThread(this);
597 dl 1.107 }
598    
599 jsr166 1.148 /** Delegates main run loop to outer runWorker. */
600 dl 1.107 public void run() {
601     runWorker(this);
602     }
603 jsr166 1.120
604 jsr166 1.121 // Lock methods
605     //
606     // The value 0 represents the unlocked state.
607     // The value 1 represents the locked state.
608    
609     protected boolean isHeldExclusively() {
610 dl 1.130 return getState() != 0;
611 jsr166 1.121 }
612    
613     protected boolean tryAcquire(int unused) {
614     if (compareAndSetState(0, 1)) {
615     setExclusiveOwnerThread(Thread.currentThread());
616     return true;
617     }
618     return false;
619     }
620    
621     protected boolean tryRelease(int unused) {
622     setExclusiveOwnerThread(null);
623     setState(0);
624     return true;
625     }
626    
627     public void lock() { acquire(1); }
628     public boolean tryLock() { return tryAcquire(1); }
629     public void unlock() { release(1); }
630     public boolean isLocked() { return isHeldExclusively(); }
631 dl 1.130
632     void interruptIfStarted() {
633     Thread t;
634     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
635     try {
636     t.interrupt();
637     } catch (SecurityException ignore) {
638     }
639     }
640     }
641 dl 1.107 }
642    
643     /*
644     * Methods for setting control state
645     */
646    
647     /**
648     * Transitions runState to given target, or leaves it alone if
649     * already at least the given target.
650 jsr166 1.116 *
651 jsr166 1.117 * @param targetState the desired state, either SHUTDOWN or STOP
652     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
653 dl 1.107 */
654     private void advanceRunState(int targetState) {
655 jsr166 1.155 // assert targetState == SHUTDOWN || targetState == STOP;
656 dl 1.107 for (;;) {
657     int c = ctl.get();
658 jsr166 1.117 if (runStateAtLeast(c, targetState) ||
659 dl 1.107 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
660     break;
661     }
662     }
663    
664     /**
665     * Transitions to TERMINATED state if either (SHUTDOWN and pool
666     * and queue empty) or (STOP and pool empty). If otherwise
667     * eligible to terminate but workerCount is nonzero, interrupts an
668     * idle worker to ensure that shutdown signals propagate. This
669     * method must be called following any action that might make
670     * termination possible -- reducing worker count or removing tasks
671     * from the queue during shutdown. The method is non-private to
672 jsr166 1.110 * allow access from ScheduledThreadPoolExecutor.
673 dl 1.107 */
674     final void tryTerminate() {
675     for (;;) {
676     int c = ctl.get();
677 jsr166 1.121 if (isRunning(c) ||
678     runStateAtLeast(c, TIDYING) ||
679 jsr166 1.178 (runStateLessThan(c, STOP) && ! workQueue.isEmpty()))
680 jsr166 1.121 return;
681 dl 1.107 if (workerCountOf(c) != 0) { // Eligible to terminate
682 jsr166 1.113 interruptIdleWorkers(ONLY_ONE);
683 dl 1.107 return;
684     }
685 jsr166 1.119
686 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
687     mainLock.lock();
688     try {
689     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
690     try {
691     terminated();
692     } finally {
693     ctl.set(ctlOf(TERMINATED, 0));
694     termination.signalAll();
695     }
696     return;
697     }
698     } finally {
699     mainLock.unlock();
700     }
701 dl 1.107 // else retry on failed CAS
702     }
703     }
704    
705 jsr166 1.116 /*
706 dl 1.107 * Methods for controlling interrupts to worker threads.
707     */
708    
709     /**
710     * If there is a security manager, makes sure caller has
711     * permission to shut down threads in general (see shutdownPerm).
712     * If this passes, additionally makes sure the caller is allowed
713     * to interrupt each worker thread. This might not be true even if
714     * first check passed, if the SecurityManager treats some threads
715     * specially.
716     */
717     private void checkShutdownAccess() {
718     SecurityManager security = System.getSecurityManager();
719     if (security != null) {
720     security.checkPermission(shutdownPerm);
721     final ReentrantLock mainLock = this.mainLock;
722     mainLock.lock();
723     try {
724     for (Worker w : workers)
725     security.checkAccess(w.thread);
726     } finally {
727     mainLock.unlock();
728     }
729     }
730     }
731    
732     /**
733 jsr166 1.116 * Interrupts all threads, even if active. Ignores SecurityExceptions
734     * (in which case some threads may remain uninterrupted).
735 dl 1.107 */
736     private void interruptWorkers() {
737     final ReentrantLock mainLock = this.mainLock;
738     mainLock.lock();
739     try {
740 dl 1.130 for (Worker w : workers)
741     w.interruptIfStarted();
742 dl 1.107 } finally {
743     mainLock.unlock();
744     }
745     }
746    
747     /**
748     * Interrupts threads that might be waiting for tasks (as
749     * indicated by not being locked) so they can check for
750     * termination or configuration changes. Ignores
751     * SecurityExceptions (in which case some threads may remain
752     * uninterrupted).
753     *
754     * @param onlyOne If true, interrupt at most one worker. This is
755     * called only from tryTerminate when termination is otherwise
756     * enabled but there are still other workers. In this case, at
757     * most one waiting worker is interrupted to propagate shutdown
758 jsr166 1.113 * signals in case all threads are currently waiting.
759 dl 1.107 * Interrupting any arbitrary thread ensures that newly arriving
760     * workers since shutdown began will also eventually exit.
761 jsr166 1.113 * To guarantee eventual termination, it suffices to always
762     * interrupt only one idle worker, but shutdown() interrupts all
763     * idle workers so that redundant workers exit promptly, not
764     * waiting for a straggler task to finish.
765 tim 1.10 */
766 dl 1.107 private void interruptIdleWorkers(boolean onlyOne) {
767 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
768 dl 1.107 mainLock.lock();
769     try {
770 jsr166 1.121 for (Worker w : workers) {
771 dl 1.107 Thread t = w.thread;
772 jsr166 1.121 if (!t.isInterrupted() && w.tryLock()) {
773 dl 1.107 try {
774     t.interrupt();
775     } catch (SecurityException ignore) {
776     } finally {
777     w.unlock();
778     }
779     }
780     if (onlyOne)
781     break;
782     }
783     } finally {
784     mainLock.unlock();
785     }
786     }
787    
788 dl 1.118 /**
789     * Common form of interruptIdleWorkers, to avoid having to
790     * remember what the boolean argument means.
791     */
792 jsr166 1.119 private void interruptIdleWorkers() {
793     interruptIdleWorkers(false);
794 dl 1.118 }
795    
796 jsr166 1.113 private static final boolean ONLY_ONE = true;
797    
798 dl 1.107 /*
799     * Misc utilities, most of which are also exported to
800     * ScheduledThreadPoolExecutor
801     */
802    
803     /**
804     * Invokes the rejected execution handler for the given command.
805     * Package-protected for use by ScheduledThreadPoolExecutor.
806     */
807     final void reject(Runnable command) {
808     handler.rejectedExecution(command, this);
809     }
810 dl 1.2
811     /**
812 dl 1.107 * Performs any further cleanup following run state transition on
813     * invocation of shutdown. A no-op here, but used by
814     * ScheduledThreadPoolExecutor to cancel delayed tasks.
815 tim 1.10 */
816 dl 1.107 void onShutdown() {
817     }
818 dl 1.2
819     /**
820 dl 1.107 * Drains the task queue into a new list, normally using
821     * drainTo. But if the queue is a DelayQueue or any other kind of
822     * queue for which poll or drainTo may fail to remove some
823     * elements, it deletes them one by one.
824     */
825     private List<Runnable> drainQueue() {
826     BlockingQueue<Runnable> q = workQueue;
827 jsr166 1.153 ArrayList<Runnable> taskList = new ArrayList<>();
828 dl 1.107 q.drainTo(taskList);
829     if (!q.isEmpty()) {
830     for (Runnable r : q.toArray(new Runnable[0])) {
831     if (q.remove(r))
832     taskList.add(r);
833     }
834     }
835     return taskList;
836     }
837    
838     /*
839     * Methods for creating, running and cleaning up after workers
840 tim 1.10 */
841 dl 1.2
842     /**
843 dl 1.107 * Checks if a new worker can be added with respect to current
844 jsr166 1.116 * pool state and the given bound (either core or maximum). If so,
845 dl 1.107 * the worker count is adjusted accordingly, and, if possible, a
846 jsr166 1.128 * new worker is created and started, running firstTask as its
847 jsr166 1.117 * first task. This method returns false if the pool is stopped or
848 dl 1.107 * eligible to shut down. It also returns false if the thread
849 jsr166 1.128 * factory fails to create a thread when asked. If the thread
850     * creation fails, either due to the thread factory returning
851     * null, or due to an exception (typically OutOfMemoryError in
852 jsr166 1.146 * Thread.start()), we roll back cleanly.
853 dl 1.107 *
854     * @param firstTask the task the new thread should run first (or
855     * null if none). Workers are created with an initial first task
856     * (in method execute()) to bypass queuing when there are fewer
857     * than corePoolSize threads (in which case we always start one),
858 jsr166 1.110 * or when the queue is full (in which case we must bypass queue).
859 dl 1.107 * Initially idle threads are usually created via
860     * prestartCoreThread or to replace other dying workers.
861     *
862     * @param core if true use corePoolSize as bound, else
863 jsr166 1.110 * maximumPoolSize. (A boolean indicator is used here rather than a
864 dl 1.107 * value to ensure reads of fresh values after checking other pool
865     * state).
866     * @return true if successful
867 tim 1.10 */
868 dl 1.107 private boolean addWorker(Runnable firstTask, boolean core) {
869 jsr166 1.121 retry:
870 jsr166 1.178 for (int c = ctl.get();;) {
871 jsr166 1.121 // Check if queue empty only if necessary.
872 jsr166 1.178 if (runStateAtLeast(c, SHUTDOWN)
873     && (runStateAtLeast(c, STOP)
874     || firstTask != null
875     || workQueue.isEmpty()))
876 jsr166 1.121 return false;
877    
878     for (;;) {
879     int wc = workerCountOf(c);
880     if (wc >= CAPACITY ||
881     wc >= (core ? corePoolSize : maximumPoolSize))
882     return false;
883     if (compareAndIncrementWorkerCount(c))
884     break retry;
885     c = ctl.get(); // Re-read ctl
886 jsr166 1.178 if (runStateAtLeast(c, SHUTDOWN))
887 jsr166 1.121 continue retry;
888     // else CAS failed due to workerCount change; retry inner loop
889     }
890 dl 1.107 }
891    
892 jsr166 1.128 boolean workerStarted = false;
893 dl 1.130 boolean workerAdded = false;
894 jsr166 1.128 Worker w = null;
895     try {
896     w = new Worker(firstTask);
897     final Thread t = w.thread;
898 dl 1.130 if (t != null) {
899 jsr166 1.132 final ReentrantLock mainLock = this.mainLock;
900 dl 1.130 mainLock.lock();
901     try {
902     // Recheck while holding lock.
903     // Back out on ThreadFactory failure or if
904     // shut down before lock acquired.
905 jsr166 1.178 int c = ctl.get();
906 dl 1.130
907 jsr166 1.178 if (isRunning(c) ||
908     (runStateLessThan(c, STOP) && firstTask == null)) {
909 dl 1.130 if (t.isAlive()) // precheck that t is startable
910     throw new IllegalThreadStateException();
911     workers.add(w);
912     int s = workers.size();
913     if (s > largestPoolSize)
914     largestPoolSize = s;
915     workerAdded = true;
916     }
917     } finally {
918     mainLock.unlock();
919     }
920     if (workerAdded) {
921     t.start();
922     workerStarted = true;
923     }
924 jsr166 1.121 }
925 jsr166 1.128 } finally {
926     if (! workerStarted)
927     addWorkerFailed(w);
928     }
929 dl 1.130 return workerStarted;
930 jsr166 1.128 }
931    
932     /**
933     * Rolls back the worker thread creation.
934     * - removes worker from workers, if present
935     * - decrements worker count
936     * - rechecks for termination, in case the existence of this
937     * worker was holding up termination
938     */
939     private void addWorkerFailed(Worker w) {
940     final ReentrantLock mainLock = this.mainLock;
941     mainLock.lock();
942     try {
943     if (w != null)
944     workers.remove(w);
945     decrementWorkerCount();
946     tryTerminate();
947 dl 1.107 } finally {
948     mainLock.unlock();
949     }
950     }
951 dl 1.2
952     /**
953 dl 1.107 * Performs cleanup and bookkeeping for a dying worker. Called
954     * only from worker threads. Unless completedAbruptly is set,
955     * assumes that workerCount has already been adjusted to account
956     * for exit. This method removes thread from worker set, and
957     * possibly terminates the pool or replaces the worker if either
958     * it exited due to user task exception or if fewer than
959     * corePoolSize workers are running or queue is non-empty but
960     * there are no workers.
961     *
962     * @param w the worker
963     * @param completedAbruptly if the worker died due to user exception
964 tim 1.10 */
965 dl 1.107 private void processWorkerExit(Worker w, boolean completedAbruptly) {
966     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
967     decrementWorkerCount();
968    
969     final ReentrantLock mainLock = this.mainLock;
970     mainLock.lock();
971     try {
972     completedTaskCount += w.completedTasks;
973     workers.remove(w);
974     } finally {
975     mainLock.unlock();
976     }
977    
978     tryTerminate();
979    
980 jsr166 1.121 int c = ctl.get();
981     if (runStateLessThan(c, STOP)) {
982     if (!completedAbruptly) {
983     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
984     if (min == 0 && ! workQueue.isEmpty())
985     min = 1;
986     if (workerCountOf(c) >= min)
987     return; // replacement not needed
988     }
989     addWorker(null, false);
990     }
991 dl 1.107 }
992 dl 1.2
993     /**
994 dl 1.107 * Performs blocking or timed wait for a task, depending on
995     * current configuration settings, or returns null if this worker
996     * must exit because of any of:
997     * 1. There are more than maximumPoolSize workers (due to
998     * a call to setMaximumPoolSize).
999 jsr166 1.110 * 2. The pool is stopped.
1000 jsr166 1.119 * 3. The pool is shutdown and the queue is empty.
1001     * 4. This worker timed out waiting for a task, and timed-out
1002     * workers are subject to termination (that is,
1003     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1004 jsr166 1.139 * both before and after the timed wait, and if the queue is
1005     * non-empty, this worker is not the last thread in the pool.
1006 dl 1.107 *
1007     * @return task, or null if the worker must exit, in which case
1008 jsr166 1.116 * workerCount is decremented
1009 tim 1.10 */
1010 dl 1.107 private Runnable getTask() {
1011 jsr166 1.121 boolean timedOut = false; // Did the last poll() time out?
1012 jsr166 1.119
1013 jsr166 1.121 for (;;) {
1014 dl 1.107 int c = ctl.get();
1015 jsr166 1.121
1016     // Check if queue empty only if necessary.
1017 jsr166 1.178 if (runStateAtLeast(c, SHUTDOWN)
1018     && (runStateAtLeast(c, STOP) || workQueue.isEmpty())) {
1019 jsr166 1.121 decrementWorkerCount();
1020     return null;
1021     }
1022 jsr166 1.119
1023 jsr166 1.139 int wc = workerCountOf(c);
1024 jsr166 1.121
1025 jsr166 1.139 // Are workers subject to culling?
1026     boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
1027 jsr166 1.121
1028 jsr166 1.139 if ((wc > maximumPoolSize || (timed && timedOut))
1029     && (wc > 1 || workQueue.isEmpty())) {
1030 jsr166 1.121 if (compareAndDecrementWorkerCount(c))
1031     return null;
1032 jsr166 1.139 continue;
1033 dl 1.107 }
1034    
1035     try {
1036 jsr166 1.110 Runnable r = timed ?
1037 dl 1.107 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1038     workQueue.take();
1039     if (r != null)
1040     return r;
1041 jsr166 1.121 timedOut = true;
1042 jsr166 1.108 } catch (InterruptedException retry) {
1043 jsr166 1.121 timedOut = false;
1044 dl 1.107 }
1045     }
1046     }
1047 jsr166 1.66
1048 dl 1.8 /**
1049 dl 1.107 * Main worker run loop. Repeatedly gets tasks from queue and
1050     * executes them, while coping with a number of issues:
1051     *
1052     * 1. We may start out with an initial task, in which case we
1053     * don't need to get the first one. Otherwise, as long as pool is
1054     * running, we get tasks from getTask. If it returns null then the
1055     * worker exits due to changed pool state or configuration
1056     * parameters. Other exits result from exception throws in
1057     * external code, in which case completedAbruptly holds, which
1058     * usually leads processWorkerExit to replace this thread.
1059     *
1060     * 2. Before running any task, the lock is acquired to prevent
1061 jsr166 1.137 * other pool interrupts while the task is executing, and then we
1062     * ensure that unless pool is stopping, this thread does not have
1063     * its interrupt set.
1064 dl 1.107 *
1065     * 3. Each task run is preceded by a call to beforeExecute, which
1066     * might throw an exception, in which case we cause thread to die
1067     * (breaking loop with completedAbruptly true) without processing
1068     * the task.
1069     *
1070     * 4. Assuming beforeExecute completes normally, we run the task,
1071 jsr166 1.136 * gathering any of its thrown exceptions to send to afterExecute.
1072     * We separately handle RuntimeException, Error (both of which the
1073     * specs guarantee that we trap) and arbitrary Throwables.
1074     * Because we cannot rethrow Throwables within Runnable.run, we
1075     * wrap them within Errors on the way out (to the thread's
1076     * UncaughtExceptionHandler). Any thrown exception also
1077 dl 1.107 * conservatively causes thread to die.
1078     *
1079     * 5. After task.run completes, we call afterExecute, which may
1080     * also throw an exception, which will also cause thread to
1081     * die. According to JLS Sec 14.20, this exception is the one that
1082     * will be in effect even if task.run throws.
1083     *
1084     * The net effect of the exception mechanics is that afterExecute
1085     * and the thread's UncaughtExceptionHandler have as accurate
1086     * information as we can provide about any problems encountered by
1087     * user code.
1088     *
1089     * @param w the worker
1090 dl 1.8 */
1091 dl 1.107 final void runWorker(Worker w) {
1092 dl 1.130 Thread wt = Thread.currentThread();
1093 dl 1.107 Runnable task = w.firstTask;
1094     w.firstTask = null;
1095 dl 1.130 w.unlock(); // allow interrupts
1096 dl 1.107 boolean completedAbruptly = true;
1097     try {
1098     while (task != null || (task = getTask()) != null) {
1099     w.lock();
1100 dl 1.130 // If pool is stopping, ensure thread is interrupted;
1101     // if not, ensure thread is not interrupted. This
1102     // requires a recheck in second case to deal with
1103     // shutdownNow race while clearing interrupt
1104     if ((runStateAtLeast(ctl.get(), STOP) ||
1105     (Thread.interrupted() &&
1106     runStateAtLeast(ctl.get(), STOP))) &&
1107     !wt.isInterrupted())
1108     wt.interrupt();
1109 dl 1.107 try {
1110 dl 1.130 beforeExecute(wt, task);
1111 dl 1.107 Throwable thrown = null;
1112     try {
1113     task.run();
1114     } catch (RuntimeException x) {
1115     thrown = x; throw x;
1116     } catch (Error x) {
1117     thrown = x; throw x;
1118     } catch (Throwable x) {
1119     thrown = x; throw new Error(x);
1120     } finally {
1121     afterExecute(task, thrown);
1122     }
1123     } finally {
1124     task = null;
1125     w.completedTasks++;
1126     w.unlock();
1127     }
1128     }
1129     completedAbruptly = false;
1130     } finally {
1131     processWorkerExit(w, completedAbruptly);
1132     }
1133     }
1134 dl 1.2
1135 dl 1.107 // Public constructors and methods
1136 dl 1.86
1137 dl 1.2 /**
1138 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1139 jsr166 1.170 * parameters, the default thread factory and the default rejected
1140     * execution handler.
1141     *
1142     * <p>It may be more convenient to use one of the {@link Executors}
1143     * factory methods instead of this general purpose constructor.
1144 dl 1.86 *
1145 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1146     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1147 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1148 jsr166 1.116 * pool
1149 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1150 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1151     * will wait for new tasks before terminating.
1152     * @param unit the time unit for the {@code keepAliveTime} argument
1153     * @param workQueue the queue to use for holding tasks before they are
1154     * executed. This queue will hold only the {@code Runnable}
1155     * tasks submitted by the {@code execute} method.
1156     * @throws IllegalArgumentException if one of the following holds:<br>
1157     * {@code corePoolSize < 0}<br>
1158     * {@code keepAliveTime < 0}<br>
1159     * {@code maximumPoolSize <= 0}<br>
1160     * {@code maximumPoolSize < corePoolSize}
1161     * @throws NullPointerException if {@code workQueue} is null
1162 dl 1.86 */
1163     public ThreadPoolExecutor(int corePoolSize,
1164     int maximumPoolSize,
1165     long keepAliveTime,
1166     TimeUnit unit,
1167     BlockingQueue<Runnable> workQueue) {
1168     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1169     Executors.defaultThreadFactory(), defaultHandler);
1170     }
1171    
1172     /**
1173 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1174 jsr166 1.171 * parameters and {@linkplain ThreadPoolExecutor.AbortPolicy
1175 jsr166 1.170 * default rejected execution handler}.
1176 dl 1.86 *
1177 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1178     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1179 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1180 jsr166 1.116 * pool
1181 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1182 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1183     * will wait for new tasks before terminating.
1184     * @param unit the time unit for the {@code keepAliveTime} argument
1185     * @param workQueue the queue to use for holding tasks before they are
1186     * executed. This queue will hold only the {@code Runnable}
1187     * tasks submitted by the {@code execute} method.
1188 dl 1.86 * @param threadFactory the factory to use when the executor
1189 jsr166 1.116 * creates a new thread
1190     * @throws IllegalArgumentException if one of the following holds:<br>
1191     * {@code corePoolSize < 0}<br>
1192     * {@code keepAliveTime < 0}<br>
1193     * {@code maximumPoolSize <= 0}<br>
1194     * {@code maximumPoolSize < corePoolSize}
1195     * @throws NullPointerException if {@code workQueue}
1196     * or {@code threadFactory} is null
1197 dl 1.86 */
1198     public ThreadPoolExecutor(int corePoolSize,
1199     int maximumPoolSize,
1200     long keepAliveTime,
1201     TimeUnit unit,
1202     BlockingQueue<Runnable> workQueue,
1203     ThreadFactory threadFactory) {
1204     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1205     threadFactory, defaultHandler);
1206     }
1207    
1208     /**
1209 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1210 jsr166 1.170 * parameters and
1211     * {@linkplain Executors#defaultThreadFactory default thread factory}.
1212 dl 1.86 *
1213 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1214     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1215 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1216 jsr166 1.116 * pool
1217 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1218 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1219     * will wait for new tasks before terminating.
1220     * @param unit the time unit for the {@code keepAliveTime} argument
1221     * @param workQueue the queue to use for holding tasks before they are
1222     * executed. This queue will hold only the {@code Runnable}
1223     * tasks submitted by the {@code execute} method.
1224 dl 1.86 * @param handler the handler to use when execution is blocked
1225 jsr166 1.116 * because the thread bounds and queue capacities are reached
1226     * @throws IllegalArgumentException if one of the following holds:<br>
1227     * {@code corePoolSize < 0}<br>
1228     * {@code keepAliveTime < 0}<br>
1229     * {@code maximumPoolSize <= 0}<br>
1230     * {@code maximumPoolSize < corePoolSize}
1231     * @throws NullPointerException if {@code workQueue}
1232     * or {@code handler} is null
1233 dl 1.86 */
1234     public ThreadPoolExecutor(int corePoolSize,
1235     int maximumPoolSize,
1236     long keepAliveTime,
1237     TimeUnit unit,
1238     BlockingQueue<Runnable> workQueue,
1239     RejectedExecutionHandler handler) {
1240     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1241     Executors.defaultThreadFactory(), handler);
1242     }
1243    
1244     /**
1245 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1246 dl 1.86 * parameters.
1247     *
1248 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1249     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1250 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1251 jsr166 1.116 * pool
1252 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1253 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1254     * will wait for new tasks before terminating.
1255     * @param unit the time unit for the {@code keepAliveTime} argument
1256     * @param workQueue the queue to use for holding tasks before they are
1257     * executed. This queue will hold only the {@code Runnable}
1258     * tasks submitted by the {@code execute} method.
1259 dl 1.86 * @param threadFactory the factory to use when the executor
1260 jsr166 1.116 * creates a new thread
1261 dl 1.86 * @param handler the handler to use when execution is blocked
1262 jsr166 1.116 * because the thread bounds and queue capacities are reached
1263     * @throws IllegalArgumentException if one of the following holds:<br>
1264     * {@code corePoolSize < 0}<br>
1265     * {@code keepAliveTime < 0}<br>
1266     * {@code maximumPoolSize <= 0}<br>
1267     * {@code maximumPoolSize < corePoolSize}
1268     * @throws NullPointerException if {@code workQueue}
1269     * or {@code threadFactory} or {@code handler} is null
1270 dl 1.86 */
1271     public ThreadPoolExecutor(int corePoolSize,
1272     int maximumPoolSize,
1273     long keepAliveTime,
1274     TimeUnit unit,
1275     BlockingQueue<Runnable> workQueue,
1276     ThreadFactory threadFactory,
1277     RejectedExecutionHandler handler) {
1278     if (corePoolSize < 0 ||
1279     maximumPoolSize <= 0 ||
1280     maximumPoolSize < corePoolSize ||
1281     keepAliveTime < 0)
1282     throw new IllegalArgumentException();
1283     if (workQueue == null || threadFactory == null || handler == null)
1284     throw new NullPointerException();
1285 jsr166 1.176 this.acc = (System.getSecurityManager() == null)
1286     ? null
1287     : AccessController.getContext();
1288 dl 1.86 this.corePoolSize = corePoolSize;
1289     this.maximumPoolSize = maximumPoolSize;
1290     this.workQueue = workQueue;
1291     this.keepAliveTime = unit.toNanos(keepAliveTime);
1292     this.threadFactory = threadFactory;
1293     this.handler = handler;
1294     }
1295    
1296     /**
1297     * Executes the given task sometime in the future. The task
1298     * may execute in a new thread or in an existing pooled thread.
1299     *
1300     * If the task cannot be submitted for execution, either because this
1301     * executor has been shutdown or because its capacity has been reached,
1302 jsr166 1.116 * the task is handled by the current {@code RejectedExecutionHandler}.
1303 dl 1.86 *
1304     * @param command the task to execute
1305     * @throws RejectedExecutionException at discretion of
1306 jsr166 1.116 * {@code RejectedExecutionHandler}, if the task
1307     * cannot be accepted for execution
1308     * @throws NullPointerException if {@code command} is null
1309 dl 1.13 */
1310 dl 1.86 public void execute(Runnable command) {
1311     if (command == null)
1312     throw new NullPointerException();
1313 dl 1.107 /*
1314     * Proceed in 3 steps:
1315     *
1316     * 1. If fewer than corePoolSize threads are running, try to
1317     * start a new thread with the given command as its first
1318     * task. The call to addWorker atomically checks runState and
1319     * workerCount, and so prevents false alarms that would add
1320     * threads when it shouldn't, by returning false.
1321     *
1322     * 2. If a task can be successfully queued, then we still need
1323     * to double-check whether we should have added a thread
1324     * (because existing ones died since last checking) or that
1325     * the pool shut down since entry into this method. So we
1326     * recheck state and if necessary roll back the enqueuing if
1327     * stopped, or start a new thread if there are none.
1328     *
1329     * 3. If we cannot queue task, then we try to add a new
1330     * thread. If it fails, we know we are shut down or saturated
1331     * and so reject the task.
1332     */
1333     int c = ctl.get();
1334     if (workerCountOf(c) < corePoolSize) {
1335     if (addWorker(command, true))
1336     return;
1337     c = ctl.get();
1338     }
1339 jsr166 1.117 if (isRunning(c) && workQueue.offer(command)) {
1340 dl 1.107 int recheck = ctl.get();
1341 jsr166 1.117 if (! isRunning(recheck) && remove(command))
1342 dl 1.107 reject(command);
1343     else if (workerCountOf(recheck) == 0)
1344     addWorker(null, false);
1345 dl 1.86 }
1346 dl 1.107 else if (!addWorker(command, false))
1347 dl 1.85 reject(command);
1348 tim 1.1 }
1349 dl 1.4
1350 dl 1.53 /**
1351     * Initiates an orderly shutdown in which previously submitted
1352 jsr166 1.116 * tasks are executed, but no new tasks will be accepted.
1353     * Invocation has no additional effect if already shut down.
1354     *
1355 jsr166 1.122 * <p>This method does not wait for previously submitted tasks to
1356     * complete execution. Use {@link #awaitTermination awaitTermination}
1357     * to do that.
1358     *
1359 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1360 dl 1.53 */
1361 dl 1.2 public void shutdown() {
1362 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1363 dl 1.2 mainLock.lock();
1364     try {
1365 dl 1.107 checkShutdownAccess();
1366     advanceRunState(SHUTDOWN);
1367 jsr166 1.113 interruptIdleWorkers();
1368 dl 1.107 onShutdown(); // hook for ScheduledThreadPoolExecutor
1369 tim 1.14 } finally {
1370 dl 1.2 mainLock.unlock();
1371     }
1372 dl 1.107 tryTerminate();
1373 tim 1.1 }
1374    
1375 dl 1.53 /**
1376     * Attempts to stop all actively executing tasks, halts the
1377 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1378 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1379     * from the task queue upon return from this method.
1380 jsr166 1.66 *
1381 jsr166 1.122 * <p>This method does not wait for actively executing tasks to
1382     * terminate. Use {@link #awaitTermination awaitTermination} to
1383     * do that.
1384     *
1385 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1386     * processing actively executing tasks. This implementation
1387 jsr166 1.165 * interrupts tasks via {@link Thread#interrupt}; any task that
1388 jsr166 1.75 * fails to respond to interrupts may never terminate.
1389 dl 1.53 *
1390 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1391 dl 1.53 */
1392 tim 1.39 public List<Runnable> shutdownNow() {
1393 dl 1.107 List<Runnable> tasks;
1394 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1395 dl 1.2 mainLock.lock();
1396     try {
1397 dl 1.107 checkShutdownAccess();
1398     advanceRunState(STOP);
1399     interruptWorkers();
1400     tasks = drainQueue();
1401 tim 1.14 } finally {
1402 dl 1.2 mainLock.unlock();
1403     }
1404 dl 1.107 tryTerminate();
1405     return tasks;
1406 dl 1.86 }
1407    
1408 dl 1.2 public boolean isShutdown() {
1409 jsr166 1.178 return runStateAtLeast(ctl.get(), SHUTDOWN);
1410 dl 1.16 }
1411    
1412 jsr166 1.172 /** Used by ScheduledThreadPoolExecutor. */
1413     boolean isStopped() {
1414     return runStateAtLeast(ctl.get(), STOP);
1415     }
1416    
1417 jsr166 1.66 /**
1418 dl 1.55 * Returns true if this executor is in the process of terminating
1419 jsr166 1.117 * after {@link #shutdown} or {@link #shutdownNow} but has not
1420 dl 1.16 * completely terminated. This method may be useful for
1421 jsr166 1.116 * debugging. A return of {@code true} reported a sufficient
1422 dl 1.16 * period after shutdown may indicate that submitted tasks have
1423     * ignored or suppressed interruption, causing this executor not
1424     * to properly terminate.
1425 jsr166 1.116 *
1426 jsr166 1.147 * @return {@code true} if terminating but not yet terminated
1427 dl 1.16 */
1428     public boolean isTerminating() {
1429 jsr166 1.117 int c = ctl.get();
1430 jsr166 1.178 return runStateAtLeast(c, SHUTDOWN) && runStateLessThan(c, TERMINATED);
1431 tim 1.1 }
1432    
1433 dl 1.2 public boolean isTerminated() {
1434 jsr166 1.117 return runStateAtLeast(ctl.get(), TERMINATED);
1435 dl 1.2 }
1436 tim 1.1
1437 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1438     throws InterruptedException {
1439 dl 1.50 long nanos = unit.toNanos(timeout);
1440 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1441 dl 1.2 mainLock.lock();
1442     try {
1443 jsr166 1.178 while (runStateLessThan(ctl.get(), TERMINATED)) {
1444 jsr166 1.166 if (nanos <= 0L)
1445 dl 1.25 return false;
1446     nanos = termination.awaitNanos(nanos);
1447     }
1448 jsr166 1.161 return true;
1449 tim 1.14 } finally {
1450 dl 1.2 mainLock.unlock();
1451     }
1452 dl 1.15 }
1453    
1454     /**
1455 jsr166 1.116 * Invokes {@code shutdown} when this executor is no longer
1456     * referenced and it has no threads.
1457 jsr166 1.174 *
1458 jsr166 1.175 * <p>This method is invoked with privileges that are restricted by
1459     * the security context of the caller that invokes the constructor.
1460     *
1461 jsr166 1.174 * @deprecated The {@code finalize} method has been deprecated.
1462     * Subclasses that override {@code finalize} in order to perform cleanup
1463     * should be modified to use alternative cleanup mechanisms and
1464     * to remove the overriding {@code finalize} method.
1465     * When overriding the {@code finalize} method, its implementation must explicitly
1466     * ensure that {@code super.finalize()} is invoked as described in {@link Object#finalize}.
1467     * See the specification for {@link Object#finalize()} for further
1468     * information about migration options.
1469 jsr166 1.66 */
1470 jsr166 1.174 @Deprecated(since="9")
1471 dl 1.107 protected void finalize() {
1472 jsr166 1.175 SecurityManager sm = System.getSecurityManager();
1473     if (sm == null || acc == null) {
1474     shutdown();
1475     } else {
1476     PrivilegedAction<Void> pa = () -> { shutdown(); return null; };
1477     AccessController.doPrivileged(pa, acc);
1478     }
1479 dl 1.2 }
1480 tim 1.10
1481 dl 1.2 /**
1482     * Sets the thread factory used to create new threads.
1483     *
1484     * @param threadFactory the new thread factory
1485 dl 1.30 * @throws NullPointerException if threadFactory is null
1486 tim 1.11 * @see #getThreadFactory
1487 dl 1.2 */
1488     public void setThreadFactory(ThreadFactory threadFactory) {
1489 dl 1.30 if (threadFactory == null)
1490     throw new NullPointerException();
1491 dl 1.2 this.threadFactory = threadFactory;
1492 tim 1.1 }
1493    
1494 dl 1.2 /**
1495     * Returns the thread factory used to create new threads.
1496     *
1497     * @return the current thread factory
1498 jsr166 1.144 * @see #setThreadFactory(ThreadFactory)
1499 dl 1.2 */
1500     public ThreadFactory getThreadFactory() {
1501     return threadFactory;
1502 tim 1.1 }
1503    
1504 dl 1.2 /**
1505     * Sets a new handler for unexecutable tasks.
1506     *
1507     * @param handler the new handler
1508 dl 1.31 * @throws NullPointerException if handler is null
1509 tim 1.11 * @see #getRejectedExecutionHandler
1510 dl 1.2 */
1511     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1512 dl 1.31 if (handler == null)
1513     throw new NullPointerException();
1514 dl 1.2 this.handler = handler;
1515     }
1516 tim 1.1
1517 dl 1.2 /**
1518     * Returns the current handler for unexecutable tasks.
1519     *
1520     * @return the current handler
1521 jsr166 1.144 * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
1522 dl 1.2 */
1523     public RejectedExecutionHandler getRejectedExecutionHandler() {
1524     return handler;
1525 tim 1.1 }
1526    
1527 dl 1.2 /**
1528     * Sets the core number of threads. This overrides any value set
1529     * in the constructor. If the new value is smaller than the
1530     * current value, excess existing threads will be terminated when
1531 jsr166 1.116 * they next become idle. If larger, new threads will, if needed,
1532 dl 1.34 * be started to execute any queued tasks.
1533 tim 1.1 *
1534 dl 1.2 * @param corePoolSize the new core size
1535 jsr166 1.116 * @throws IllegalArgumentException if {@code corePoolSize < 0}
1536 dl 1.152 * or {@code corePoolSize} is greater than the {@linkplain
1537     * #getMaximumPoolSize() maximum pool size}
1538 tim 1.11 * @see #getCorePoolSize
1539 tim 1.1 */
1540 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1541 dl 1.152 if (corePoolSize < 0 || maximumPoolSize < corePoolSize)
1542 dl 1.2 throw new IllegalArgumentException();
1543 dl 1.107 int delta = corePoolSize - this.corePoolSize;
1544     this.corePoolSize = corePoolSize;
1545     if (workerCountOf(ctl.get()) > corePoolSize)
1546 jsr166 1.113 interruptIdleWorkers();
1547 dl 1.107 else if (delta > 0) {
1548     // We don't really know how many new threads are "needed".
1549     // As a heuristic, prestart enough new workers (up to new
1550     // core size) to handle the current number of tasks in
1551     // queue, but stop if queue becomes empty while doing so.
1552     int k = Math.min(delta, workQueue.size());
1553     while (k-- > 0 && addWorker(null, true)) {
1554     if (workQueue.isEmpty())
1555     break;
1556 tim 1.38 }
1557 dl 1.2 }
1558     }
1559 tim 1.1
1560     /**
1561 dl 1.2 * Returns the core number of threads.
1562 tim 1.1 *
1563 dl 1.2 * @return the core number of threads
1564 tim 1.11 * @see #setCorePoolSize
1565 tim 1.1 */
1566 tim 1.10 public int getCorePoolSize() {
1567 dl 1.2 return corePoolSize;
1568 dl 1.16 }
1569    
1570     /**
1571 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1572 dl 1.16 * overrides the default policy of starting core threads only when
1573 jsr166 1.116 * new tasks are executed. This method will return {@code false}
1574 dl 1.16 * if all core threads have already been started.
1575 jsr166 1.116 *
1576     * @return {@code true} if a thread was started
1577 jsr166 1.66 */
1578 dl 1.16 public boolean prestartCoreThread() {
1579 dl 1.107 return workerCountOf(ctl.get()) < corePoolSize &&
1580     addWorker(null, true);
1581 dl 1.16 }
1582    
1583     /**
1584 dl 1.125 * Same as prestartCoreThread except arranges that at least one
1585     * thread is started even if corePoolSize is 0.
1586     */
1587     void ensurePrestart() {
1588     int wc = workerCountOf(ctl.get());
1589 dl 1.126 if (wc < corePoolSize)
1590     addWorker(null, true);
1591     else if (wc == 0)
1592 dl 1.125 addWorker(null, false);
1593     }
1594    
1595     /**
1596 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1597 dl 1.16 * overrides the default policy of starting core threads only when
1598 jsr166 1.66 * new tasks are executed.
1599 jsr166 1.116 *
1600 jsr166 1.88 * @return the number of threads started
1601 jsr166 1.66 */
1602 dl 1.16 public int prestartAllCoreThreads() {
1603     int n = 0;
1604 dl 1.107 while (addWorker(null, true))
1605 dl 1.16 ++n;
1606     return n;
1607 dl 1.2 }
1608 tim 1.1
1609     /**
1610 dl 1.62 * Returns true if this pool allows core threads to time out and
1611     * terminate if no tasks arrive within the keepAlive time, being
1612     * replaced if needed when new tasks arrive. When true, the same
1613     * keep-alive policy applying to non-core threads applies also to
1614     * core threads. When false (the default), core threads are never
1615     * terminated due to lack of incoming tasks.
1616 jsr166 1.116 *
1617     * @return {@code true} if core threads are allowed to time out,
1618     * else {@code false}
1619 jsr166 1.72 *
1620     * @since 1.6
1621 dl 1.62 */
1622     public boolean allowsCoreThreadTimeOut() {
1623     return allowCoreThreadTimeOut;
1624     }
1625    
1626     /**
1627     * Sets the policy governing whether core threads may time out and
1628     * terminate if no tasks arrive within the keep-alive time, being
1629     * replaced if needed when new tasks arrive. When false, core
1630     * threads are never terminated due to lack of incoming
1631     * tasks. When true, the same keep-alive policy applying to
1632     * non-core threads applies also to core threads. To avoid
1633     * continual thread replacement, the keep-alive time must be
1634 jsr166 1.116 * greater than zero when setting {@code true}. This method
1635 dl 1.64 * should in general be called before the pool is actively used.
1636 jsr166 1.116 *
1637     * @param value {@code true} if should time out, else {@code false}
1638     * @throws IllegalArgumentException if value is {@code true}
1639     * and the current keep-alive time is not greater than zero
1640 jsr166 1.72 *
1641     * @since 1.6
1642 dl 1.62 */
1643     public void allowCoreThreadTimeOut(boolean value) {
1644 dl 1.64 if (value && keepAliveTime <= 0)
1645     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1646 dl 1.107 if (value != allowCoreThreadTimeOut) {
1647     allowCoreThreadTimeOut = value;
1648     if (value)
1649 jsr166 1.113 interruptIdleWorkers();
1650 dl 1.107 }
1651 dl 1.62 }
1652    
1653     /**
1654 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1655 dl 1.2 * value set in the constructor. If the new value is smaller than
1656     * the current value, excess existing threads will be
1657     * terminated when they next become idle.
1658 tim 1.1 *
1659 dl 1.2 * @param maximumPoolSize the new maximum
1660 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1661     * less than or equal to zero, or
1662     * less than the {@linkplain #getCorePoolSize core pool size}
1663 tim 1.11 * @see #getMaximumPoolSize
1664 dl 1.2 */
1665     public void setMaximumPoolSize(int maximumPoolSize) {
1666     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1667     throw new IllegalArgumentException();
1668 dl 1.107 this.maximumPoolSize = maximumPoolSize;
1669     if (workerCountOf(ctl.get()) > maximumPoolSize)
1670 jsr166 1.113 interruptIdleWorkers();
1671 dl 1.2 }
1672 tim 1.1
1673     /**
1674     * Returns the maximum allowed number of threads.
1675     *
1676 dl 1.2 * @return the maximum allowed number of threads
1677 tim 1.11 * @see #setMaximumPoolSize
1678 tim 1.1 */
1679 tim 1.10 public int getMaximumPoolSize() {
1680 dl 1.2 return maximumPoolSize;
1681     }
1682 tim 1.1
1683     /**
1684 jsr166 1.151 * Sets the thread keep-alive time, which is the amount of time
1685     * that threads may remain idle before being terminated.
1686     * Threads that wait this amount of time without processing a
1687     * task will be terminated if there are more than the core
1688     * number of threads currently in the pool, or if this pool
1689     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1690     * This overrides any value set in the constructor.
1691 jsr166 1.116 *
1692 tim 1.1 * @param time the time to wait. A time value of zero will cause
1693 jsr166 1.116 * excess threads to terminate immediately after executing tasks.
1694     * @param unit the time unit of the {@code time} argument
1695     * @throws IllegalArgumentException if {@code time} less than zero or
1696     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1697 jsr166 1.144 * @see #getKeepAliveTime(TimeUnit)
1698 tim 1.1 */
1699 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1700     if (time < 0)
1701     throw new IllegalArgumentException();
1702 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1703     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1704 dl 1.107 long keepAliveTime = unit.toNanos(time);
1705     long delta = keepAliveTime - this.keepAliveTime;
1706     this.keepAliveTime = keepAliveTime;
1707     if (delta < 0)
1708 jsr166 1.113 interruptIdleWorkers();
1709 dl 1.2 }
1710 tim 1.1
1711     /**
1712     * Returns the thread keep-alive time, which is the amount of time
1713 jsr166 1.151 * that threads may remain idle before being terminated.
1714     * Threads that wait this amount of time without processing a
1715     * task will be terminated if there are more than the core
1716     * number of threads currently in the pool, or if this pool
1717     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1718 tim 1.1 *
1719 dl 1.2 * @param unit the desired time unit of the result
1720 tim 1.1 * @return the time limit
1721 jsr166 1.144 * @see #setKeepAliveTime(long, TimeUnit)
1722 tim 1.1 */
1723 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1724 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1725     }
1726 tim 1.1
1727 dl 1.86 /* User-level queue utilities */
1728    
1729     /**
1730     * Returns the task queue used by this executor. Access to the
1731     * task queue is intended primarily for debugging and monitoring.
1732     * This queue may be in active use. Retrieving the task queue
1733     * does not prevent queued tasks from executing.
1734     *
1735     * @return the task queue
1736     */
1737     public BlockingQueue<Runnable> getQueue() {
1738     return workQueue;
1739     }
1740    
1741     /**
1742     * Removes this task from the executor's internal queue if it is
1743     * present, thus causing it not to be run if it has not already
1744     * started.
1745     *
1746 jsr166 1.134 * <p>This method may be useful as one part of a cancellation
1747 dl 1.86 * scheme. It may fail to remove tasks that have been converted
1748 jsr166 1.149 * into other forms before being placed on the internal queue.
1749     * For example, a task entered using {@code submit} might be
1750 jsr166 1.116 * converted into a form that maintains {@code Future} status.
1751 jsr166 1.117 * However, in such cases, method {@link #purge} may be used to
1752     * remove those Futures that have been cancelled.
1753 dl 1.86 *
1754     * @param task the task to remove
1755 jsr166 1.147 * @return {@code true} if the task was removed
1756 dl 1.86 */
1757     public boolean remove(Runnable task) {
1758 jsr166 1.116 boolean removed = workQueue.remove(task);
1759     tryTerminate(); // In case SHUTDOWN and now empty
1760 dl 1.107 return removed;
1761 dl 1.86 }
1762    
1763     /**
1764     * Tries to remove from the work queue all {@link Future}
1765     * tasks that have been cancelled. This method can be useful as a
1766     * storage reclamation operation, that has no other impact on
1767     * functionality. Cancelled tasks are never executed, but may
1768     * accumulate in work queues until worker threads can actively
1769     * remove them. Invoking this method instead tries to remove them now.
1770     * However, this method may fail to remove tasks in
1771     * the presence of interference by other threads.
1772     */
1773     public void purge() {
1774 jsr166 1.111 final BlockingQueue<Runnable> q = workQueue;
1775 dl 1.86 try {
1776 dl 1.107 Iterator<Runnable> it = q.iterator();
1777 dl 1.86 while (it.hasNext()) {
1778     Runnable r = it.next();
1779 jsr166 1.111 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1780 jsr166 1.121 it.remove();
1781 dl 1.107 }
1782 jsr166 1.111 } catch (ConcurrentModificationException fallThrough) {
1783 jsr166 1.121 // Take slow path if we encounter interference during traversal.
1784 jsr166 1.111 // Make copy for traversal and call remove for cancelled entries.
1785 jsr166 1.121 // The slow path is more likely to be O(N*N).
1786 jsr166 1.111 for (Object r : q.toArray())
1787     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1788 jsr166 1.121 q.remove(r);
1789 dl 1.86 }
1790 dl 1.107
1791     tryTerminate(); // In case SHUTDOWN and now empty
1792 dl 1.86 }
1793    
1794 tim 1.1 /* Statistics */
1795    
1796     /**
1797     * Returns the current number of threads in the pool.
1798     *
1799     * @return the number of threads
1800     */
1801 tim 1.10 public int getPoolSize() {
1802 dl 1.107 final ReentrantLock mainLock = this.mainLock;
1803     mainLock.lock();
1804     try {
1805 jsr166 1.121 // Remove rare and surprising possibility of
1806     // isTerminated() && getPoolSize() > 0
1807 jsr166 1.117 return runStateAtLeast(ctl.get(), TIDYING) ? 0
1808 jsr166 1.121 : workers.size();
1809 dl 1.107 } finally {
1810     mainLock.unlock();
1811     }
1812 dl 1.2 }
1813 tim 1.1
1814     /**
1815 dl 1.2 * Returns the approximate number of threads that are actively
1816 tim 1.1 * executing tasks.
1817     *
1818     * @return the number of threads
1819     */
1820 tim 1.10 public int getActiveCount() {
1821 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1822 dl 1.2 mainLock.lock();
1823     try {
1824     int n = 0;
1825 jsr166 1.116 for (Worker w : workers)
1826 dl 1.107 if (w.isLocked())
1827 dl 1.2 ++n;
1828     return n;
1829 tim 1.14 } finally {
1830 dl 1.2 mainLock.unlock();
1831     }
1832     }
1833 tim 1.1
1834     /**
1835 dl 1.2 * Returns the largest number of threads that have ever
1836     * simultaneously been in the pool.
1837 tim 1.1 *
1838     * @return the number of threads
1839     */
1840 tim 1.10 public int getLargestPoolSize() {
1841 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1842 dl 1.2 mainLock.lock();
1843     try {
1844     return largestPoolSize;
1845 tim 1.14 } finally {
1846 dl 1.2 mainLock.unlock();
1847     }
1848     }
1849 tim 1.1
1850     /**
1851 dl 1.85 * Returns the approximate total number of tasks that have ever been
1852 dl 1.2 * scheduled for execution. Because the states of tasks and
1853     * threads may change dynamically during computation, the returned
1854 dl 1.97 * value is only an approximation.
1855 tim 1.1 *
1856     * @return the number of tasks
1857     */
1858 tim 1.10 public long getTaskCount() {
1859 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1860 dl 1.2 mainLock.lock();
1861     try {
1862     long n = completedTaskCount;
1863 tim 1.39 for (Worker w : workers) {
1864 dl 1.2 n += w.completedTasks;
1865 dl 1.107 if (w.isLocked())
1866 dl 1.2 ++n;
1867     }
1868     return n + workQueue.size();
1869 tim 1.14 } finally {
1870 dl 1.2 mainLock.unlock();
1871     }
1872     }
1873 tim 1.1
1874     /**
1875 dl 1.2 * Returns the approximate total number of tasks that have
1876     * completed execution. Because the states of tasks and threads
1877     * may change dynamically during computation, the returned value
1878 dl 1.17 * is only an approximation, but one that does not ever decrease
1879     * across successive calls.
1880 tim 1.1 *
1881     * @return the number of tasks
1882     */
1883 tim 1.10 public long getCompletedTaskCount() {
1884 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1885 dl 1.2 mainLock.lock();
1886     try {
1887     long n = completedTaskCount;
1888 tim 1.39 for (Worker w : workers)
1889     n += w.completedTasks;
1890 dl 1.2 return n;
1891 tim 1.14 } finally {
1892 dl 1.2 mainLock.unlock();
1893     }
1894     }
1895 tim 1.1
1896 dl 1.123 /**
1897     * Returns a string identifying this pool, as well as its state,
1898     * including indications of run state and estimated worker and
1899     * task counts.
1900     *
1901     * @return a string identifying this pool, as well as its state
1902     */
1903     public String toString() {
1904     long ncompleted;
1905     int nworkers, nactive;
1906     final ReentrantLock mainLock = this.mainLock;
1907     mainLock.lock();
1908     try {
1909     ncompleted = completedTaskCount;
1910     nactive = 0;
1911     nworkers = workers.size();
1912     for (Worker w : workers) {
1913     ncompleted += w.completedTasks;
1914     if (w.isLocked())
1915     ++nactive;
1916     }
1917     } finally {
1918     mainLock.unlock();
1919     }
1920     int c = ctl.get();
1921 jsr166 1.150 String runState =
1922 jsr166 1.178 isRunning(c) ? "Running" :
1923 jsr166 1.150 runStateAtLeast(c, TERMINATED) ? "Terminated" :
1924     "Shutting down";
1925 dl 1.123 return super.toString() +
1926 jsr166 1.150 "[" + runState +
1927 dl 1.123 ", pool size = " + nworkers +
1928     ", active threads = " + nactive +
1929     ", queued tasks = " + workQueue.size() +
1930     ", completed tasks = " + ncompleted +
1931     "]";
1932     }
1933    
1934 dl 1.86 /* Extension hooks */
1935    
1936 tim 1.1 /**
1937 dl 1.17 * Method invoked prior to executing the given Runnable in the
1938 jsr166 1.116 * given thread. This method is invoked by thread {@code t} that
1939     * will execute task {@code r}, and may be used to re-initialize
1940 jsr166 1.73 * ThreadLocals, or to perform logging.
1941     *
1942     * <p>This implementation does nothing, but may be customized in
1943     * subclasses. Note: To properly nest multiple overridings, subclasses
1944 jsr166 1.116 * should generally invoke {@code super.beforeExecute} at the end of
1945 jsr166 1.73 * this method.
1946 tim 1.1 *
1947 jsr166 1.116 * @param t the thread that will run task {@code r}
1948     * @param r the task that will be executed
1949 tim 1.1 */
1950 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1951 tim 1.1
1952     /**
1953 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1954     * This method is invoked by the thread that executed the task. If
1955 jsr166 1.116 * non-null, the Throwable is the uncaught {@code RuntimeException}
1956     * or {@code Error} that caused execution to terminate abruptly.
1957 dl 1.69 *
1958 dl 1.107 * <p>This implementation does nothing, but may be customized in
1959     * subclasses. Note: To properly nest multiple overridings, subclasses
1960 jsr166 1.116 * should generally invoke {@code super.afterExecute} at the
1961 dl 1.107 * beginning of this method.
1962     *
1963 dl 1.69 * <p><b>Note:</b> When actions are enclosed in tasks (such as
1964     * {@link FutureTask}) either explicitly or via methods such as
1965 jsr166 1.116 * {@code submit}, these task objects catch and maintain
1966 dl 1.69 * computational exceptions, and so they do not cause abrupt
1967 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1968 dl 1.107 * passed to this method. If you would like to trap both kinds of
1969     * failures in this method, you can further probe for such cases,
1970     * as in this sample subclass that prints either the direct cause
1971     * or the underlying exception if a task has been aborted:
1972     *
1973 jsr166 1.160 * <pre> {@code
1974 dl 1.107 * class ExtendedExecutor extends ThreadPoolExecutor {
1975     * // ...
1976     * protected void afterExecute(Runnable r, Throwable t) {
1977     * super.afterExecute(r, t);
1978 jsr166 1.159 * if (t == null
1979     * && r instanceof Future<?>
1980     * && ((Future<?>)r).isDone()) {
1981 dl 1.107 * try {
1982 jsr166 1.116 * Object result = ((Future<?>) r).get();
1983 dl 1.107 * } catch (CancellationException ce) {
1984 jsr166 1.154 * t = ce;
1985 dl 1.107 * } catch (ExecutionException ee) {
1986 jsr166 1.154 * t = ee.getCause();
1987 dl 1.107 * } catch (InterruptedException ie) {
1988 jsr166 1.159 * // ignore/reset
1989     * Thread.currentThread().interrupt();
1990 dl 1.107 * }
1991     * }
1992     * if (t != null)
1993     * System.out.println(t);
1994     * }
1995 jsr166 1.116 * }}</pre>
1996 tim 1.1 *
1997 jsr166 1.116 * @param r the runnable that has completed
1998 dl 1.24 * @param t the exception that caused termination, or null if
1999 jsr166 1.116 * execution completed normally
2000 tim 1.1 */
2001 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
2002 tim 1.1
2003 dl 1.2 /**
2004     * Method invoked when the Executor has terminated. Default
2005 dl 1.17 * implementation does nothing. Note: To properly nest multiple
2006     * overridings, subclasses should generally invoke
2007 jsr166 1.116 * {@code super.terminated} within this method.
2008 dl 1.2 */
2009     protected void terminated() { }
2010 tim 1.1
2011 dl 1.86 /* Predefined RejectedExecutionHandlers */
2012    
2013 tim 1.1 /**
2014 dl 1.21 * A handler for rejected tasks that runs the rejected task
2015 jsr166 1.116 * directly in the calling thread of the {@code execute} method,
2016 dl 1.21 * unless the executor has been shut down, in which case the task
2017     * is discarded.
2018 tim 1.1 */
2019 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
2020 tim 1.1 /**
2021 jsr166 1.116 * Creates a {@code CallerRunsPolicy}.
2022 tim 1.1 */
2023     public CallerRunsPolicy() { }
2024    
2025 dl 1.24 /**
2026     * Executes task r in the caller's thread, unless the executor
2027     * has been shut down, in which case the task is discarded.
2028 jsr166 1.116 *
2029 dl 1.24 * @param r the runnable task requested to be executed
2030     * @param e the executor attempting to execute this task
2031     */
2032 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2033     if (!e.isShutdown()) {
2034 tim 1.1 r.run();
2035     }
2036     }
2037     }
2038    
2039     /**
2040 dl 1.21 * A handler for rejected tasks that throws a
2041 jsr166 1.170 * {@link RejectedExecutionException}.
2042     *
2043     * This is the default handler for {@link ThreadPoolExecutor} and
2044     * {@link ScheduledThreadPoolExecutor}.
2045 tim 1.1 */
2046 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
2047 tim 1.1 /**
2048 jsr166 1.116 * Creates an {@code AbortPolicy}.
2049 tim 1.1 */
2050     public AbortPolicy() { }
2051    
2052 dl 1.24 /**
2053 dl 1.54 * Always throws RejectedExecutionException.
2054 jsr166 1.116 *
2055 dl 1.24 * @param r the runnable task requested to be executed
2056     * @param e the executor attempting to execute this task
2057 jsr166 1.141 * @throws RejectedExecutionException always
2058 dl 1.24 */
2059 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2060 dl 1.123 throw new RejectedExecutionException("Task " + r.toString() +
2061     " rejected from " +
2062     e.toString());
2063 tim 1.1 }
2064     }
2065    
2066     /**
2067 dl 1.21 * A handler for rejected tasks that silently discards the
2068     * rejected task.
2069 tim 1.1 */
2070 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
2071 tim 1.1 /**
2072 jsr166 1.116 * Creates a {@code DiscardPolicy}.
2073 tim 1.1 */
2074     public DiscardPolicy() { }
2075    
2076 dl 1.24 /**
2077     * Does nothing, which has the effect of discarding task r.
2078 jsr166 1.116 *
2079 dl 1.24 * @param r the runnable task requested to be executed
2080     * @param e the executor attempting to execute this task
2081     */
2082 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2083 tim 1.1 }
2084     }
2085    
2086     /**
2087 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
2088 jsr166 1.116 * request and then retries {@code execute}, unless the executor
2089 dl 1.21 * is shut down, in which case the task is discarded.
2090 tim 1.1 */
2091 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2092 tim 1.1 /**
2093 jsr166 1.116 * Creates a {@code DiscardOldestPolicy} for the given executor.
2094 tim 1.1 */
2095     public DiscardOldestPolicy() { }
2096    
2097 dl 1.24 /**
2098     * Obtains and ignores the next task that the executor
2099     * would otherwise execute, if one is immediately available,
2100     * and then retries execution of task r, unless the executor
2101     * is shut down, in which case task r is instead discarded.
2102 jsr166 1.116 *
2103 dl 1.24 * @param r the runnable task requested to be executed
2104     * @param e the executor attempting to execute this task
2105     */
2106 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2107     if (!e.isShutdown()) {
2108     e.getQueue().poll();
2109     e.execute(r);
2110 tim 1.1 }
2111     }
2112     }
2113     }