ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.181
Committed: Sun Sep 17 17:40:14 2017 UTC (6 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.180: +6 -16 lines
Log Message:
remove redundant reentrant lock acquisitions from checkShutdownAccess, interruptWorkers

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4 jsr166 1.124 * http://creativecommons.org/publicdomain/zero/1.0/
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 jsr166 1.156
9 jsr166 1.175 import java.security.AccessControlContext;
10     import java.security.AccessController;
11     import java.security.PrivilegedAction;
12 jsr166 1.156 import java.util.ArrayList;
13     import java.util.ConcurrentModificationException;
14     import java.util.HashSet;
15     import java.util.Iterator;
16     import java.util.List;
17 jsr166 1.157 import java.util.concurrent.atomic.AtomicInteger;
18     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
19     import java.util.concurrent.locks.Condition;
20     import java.util.concurrent.locks.ReentrantLock;
21 tim 1.1
22     /**
23 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
24 dl 1.28 * one of possibly several pooled threads, normally configured
25     * using {@link Executors} factory methods.
26 tim 1.1 *
27 dl 1.17 * <p>Thread pools address two different problems: they usually
28     * provide improved performance when executing large numbers of
29     * asynchronous tasks, due to reduced per-task invocation overhead,
30     * and they provide a means of bounding and managing the resources,
31     * including threads, consumed when executing a collection of tasks.
32 jsr166 1.116 * Each {@code ThreadPoolExecutor} also maintains some basic
33 dl 1.22 * statistics, such as the number of completed tasks.
34 dl 1.17 *
35 tim 1.1 * <p>To be useful across a wide range of contexts, this class
36 dl 1.24 * provides many adjustable parameters and extensibility
37     * hooks. However, programmers are urged to use the more convenient
38 dl 1.20 * {@link Executors} factory methods {@link
39     * Executors#newCachedThreadPool} (unbounded thread pool, with
40     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
41     * (fixed size thread pool) and {@link
42     * Executors#newSingleThreadExecutor} (single background thread), that
43 dl 1.22 * preconfigure settings for the most common usage
44     * scenarios. Otherwise, use the following guide when manually
45 dl 1.24 * configuring and tuning this class:
46 dl 1.17 *
47 tim 1.1 * <dl>
48 dl 1.2 *
49 dl 1.21 * <dt>Core and maximum pool sizes</dt>
50 dl 1.2 *
51 jsr166 1.168 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
52 jsr166 1.117 * pool size (see {@link #getPoolSize})
53     * according to the bounds set by
54     * corePoolSize (see {@link #getCorePoolSize}) and
55     * maximumPoolSize (see {@link #getMaximumPoolSize}).
56     *
57 jsr166 1.143 * When a new task is submitted in method {@link #execute(Runnable)},
58 jsr166 1.169 * if fewer than corePoolSize threads are running, a new thread is
59 jsr166 1.143 * created to handle the request, even if other worker threads are
60 jsr166 1.169 * idle. Else if fewer than maximumPoolSize threads are running, a
61     * new thread will be created to handle the request only if the queue
62     * is full. By setting corePoolSize and maximumPoolSize the same, you
63     * create a fixed-size thread pool. By setting maximumPoolSize to an
64     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
65     * allow the pool to accommodate an arbitrary number of concurrent
66     * tasks. Most typically, core and maximum pool sizes are set only
67     * upon construction, but they may also be changed dynamically using
68     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
69 dl 1.2 *
70 jsr166 1.93 * <dt>On-demand construction</dt>
71 dl 1.2 *
72 jsr166 1.168 * <dd>By default, even core threads are initially created and
73 dl 1.69 * started only when new tasks arrive, but this can be overridden
74 jsr166 1.117 * dynamically using method {@link #prestartCoreThread} or {@link
75     * #prestartAllCoreThreads}. You probably want to prestart threads if
76     * you construct the pool with a non-empty queue. </dd>
77 dl 1.2 *
78 tim 1.1 * <dt>Creating new threads</dt>
79 dl 1.2 *
80 jsr166 1.168 * <dd>New threads are created using a {@link ThreadFactory}. If not
81 jsr166 1.117 * otherwise specified, a {@link Executors#defaultThreadFactory} is
82     * used, that creates threads to all be in the same {@link
83     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
84     * non-daemon status. By supplying a different ThreadFactory, you can
85     * alter the thread's name, thread group, priority, daemon status,
86     * etc. If a {@code ThreadFactory} fails to create a thread when asked
87     * by returning null from {@code newThread}, the executor will
88     * continue, but might not be able to execute any tasks. Threads
89     * should possess the "modifyThread" {@code RuntimePermission}. If
90     * worker threads or other threads using the pool do not possess this
91     * permission, service may be degraded: configuration changes may not
92     * take effect in a timely manner, and a shutdown pool may remain in a
93     * state in which termination is possible but not completed.</dd>
94 dl 1.2 *
95 dl 1.21 * <dt>Keep-alive times</dt>
96     *
97 jsr166 1.168 * <dd>If the pool currently has more than corePoolSize threads,
98 dl 1.21 * excess threads will be terminated if they have been idle for more
99 jsr166 1.143 * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
100     * This provides a means of reducing resource consumption when the
101     * pool is not being actively used. If the pool becomes more active
102     * later, new threads will be constructed. This parameter can also be
103     * changed dynamically using method {@link #setKeepAliveTime(long,
104     * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link
105     * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
106     * terminating prior to shut down. By default, the keep-alive policy
107 jsr166 1.151 * applies only when there are more than corePoolSize threads, but
108 jsr166 1.143 * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
109     * apply this time-out policy to core threads as well, so long as the
110 jsr166 1.117 * keepAliveTime value is non-zero. </dd>
111 dl 1.21 *
112 dl 1.48 * <dt>Queuing</dt>
113 dl 1.21 *
114 jsr166 1.168 * <dd>Any {@link BlockingQueue} may be used to transfer and hold
115 dl 1.21 * submitted tasks. The use of this queue interacts with pool sizing:
116 dl 1.2 *
117 dl 1.21 * <ul>
118     *
119 jsr166 1.162 * <li>If fewer than corePoolSize threads are running, the Executor
120 dl 1.23 * always prefers adding a new thread
121 jsr166 1.162 * rather than queuing.
122 dl 1.21 *
123 jsr166 1.162 * <li>If corePoolSize or more threads are running, the Executor
124 dl 1.23 * always prefers queuing a request rather than adding a new
125 jsr166 1.162 * thread.
126 jsr166 1.66 *
127 jsr166 1.162 * <li>If a request cannot be queued, a new thread is created unless
128 dl 1.21 * this would exceed maximumPoolSize, in which case, the task will be
129 jsr166 1.162 * rejected.
130 dl 1.21 *
131     * </ul>
132     *
133     * There are three general strategies for queuing:
134     * <ol>
135     *
136 jsr166 1.162 * <li><em> Direct handoffs.</em> A good default choice for a work
137 dl 1.21 * queue is a {@link SynchronousQueue} that hands off tasks to threads
138     * without otherwise holding them. Here, an attempt to queue a task
139     * will fail if no threads are immediately available to run it, so a
140     * new thread will be constructed. This policy avoids lockups when
141     * handling sets of requests that might have internal dependencies.
142     * Direct handoffs generally require unbounded maximumPoolSizes to
143 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
144 dl 1.21 * possibility of unbounded thread growth when commands continue to
145 jsr166 1.162 * arrive on average faster than they can be processed.
146 dl 1.21 *
147     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
148     * example a {@link LinkedBlockingQueue} without a predefined
149 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
150 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
151     * threads will ever be created. (And the value of the maximumPoolSize
152     * therefore doesn't have any effect.) This may be appropriate when
153     * each task is completely independent of others, so tasks cannot
154     * affect each others execution; for example, in a web page server.
155     * While this style of queuing can be useful in smoothing out
156     * transient bursts of requests, it admits the possibility of
157     * unbounded work queue growth when commands continue to arrive on
158 jsr166 1.162 * average faster than they can be processed.
159 dl 1.21 *
160     * <li><em>Bounded queues.</em> A bounded queue (for example, an
161     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
162     * used with finite maximumPoolSizes, but can be more difficult to
163     * tune and control. Queue sizes and maximum pool sizes may be traded
164     * off for each other: Using large queues and small pools minimizes
165     * CPU usage, OS resources, and context-switching overhead, but can
166 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
167 dl 1.21 * example if they are I/O bound), a system may be able to schedule
168     * time for more threads than you otherwise allow. Use of small queues
169 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
170     * may encounter unacceptable scheduling overhead, which also
171 jsr166 1.162 * decreases throughput.
172 dl 1.21 *
173     * </ol>
174     *
175     * </dd>
176     *
177     * <dt>Rejected tasks</dt>
178     *
179 jsr166 1.168 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
180 jsr166 1.143 * <em>rejected</em> when the Executor has been shut down, and also when
181     * the Executor uses finite bounds for both maximum threads and work queue
182     * capacity, and is saturated. In either case, the {@code execute} method
183     * invokes the {@link
184     * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
185     * method of its {@link RejectedExecutionHandler}. Four predefined handler
186     * policies are provided:
187 dl 1.21 *
188     * <ol>
189     *
190 jsr166 1.170 * <li>In the default {@link ThreadPoolExecutor.AbortPolicy}, the handler
191     * throws a runtime {@link RejectedExecutionException} upon rejection.
192 jsr166 1.117 *
193 jsr166 1.162 * <li>In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
194 jsr166 1.117 * that invokes {@code execute} itself runs the task. This provides a
195     * simple feedback control mechanism that will slow down the rate that
196 jsr166 1.162 * new tasks are submitted.
197 jsr166 1.117 *
198 jsr166 1.162 * <li>In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
199     * cannot be executed is simply dropped.
200 jsr166 1.117 *
201     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
202     * executor is not shut down, the task at the head of the work queue
203     * is dropped, and then execution is retried (which can fail again,
204 jsr166 1.162 * causing this to be repeated.)
205 dl 1.21 *
206     * </ol>
207     *
208     * It is possible to define and use other kinds of {@link
209     * RejectedExecutionHandler} classes. Doing so requires some care
210     * especially when policies are designed to work only under particular
211 dl 1.48 * capacity or queuing policies. </dd>
212 dl 1.21 *
213     * <dt>Hook methods</dt>
214     *
215 jsr166 1.168 * <dd>This class provides {@code protected} overridable
216 jsr166 1.143 * {@link #beforeExecute(Thread, Runnable)} and
217     * {@link #afterExecute(Runnable, Throwable)} methods that are called
218 jsr166 1.117 * before and after execution of each task. These can be used to
219     * manipulate the execution environment; for example, reinitializing
220 jsr166 1.143 * ThreadLocals, gathering statistics, or adding log entries.
221     * Additionally, method {@link #terminated} can be overridden to perform
222     * any special processing that needs to be done once the Executor has
223     * fully terminated.
224 jsr166 1.117 *
225 dl 1.158 * <p>If hook, callback, or BlockingQueue methods throw exceptions,
226     * internal worker threads may in turn fail, abruptly terminate, and
227     * possibly be replaced.</dd>
228 dl 1.2 *
229 dl 1.21 * <dt>Queue maintenance</dt>
230 dl 1.2 *
231 jsr166 1.168 * <dd>Method {@link #getQueue()} allows access to the work queue
232 jsr166 1.143 * for purposes of monitoring and debugging. Use of this method for
233     * any other purpose is strongly discouraged. Two supplied methods,
234     * {@link #remove(Runnable)} and {@link #purge} are available to
235     * assist in storage reclamation when large numbers of queued tasks
236     * become cancelled.</dd>
237 dl 1.79 *
238     * <dt>Finalization</dt>
239     *
240 jsr166 1.168 * <dd>A pool that is no longer referenced in a program <em>AND</em>
241 jsr166 1.117 * has no remaining threads will be {@code shutdown} automatically. If
242     * you would like to ensure that unreferenced pools are reclaimed even
243     * if users forget to call {@link #shutdown}, then you must arrange
244     * that unused threads eventually die, by setting appropriate
245     * keep-alive times, using a lower bound of zero core threads and/or
246     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
247     *
248     * </dl>
249 tim 1.1 *
250 jsr166 1.134 * <p><b>Extension example</b>. Most extensions of this class
251 dl 1.43 * override one or more of the protected hook methods. For example,
252     * here is a subclass that adds a simple pause/resume feature:
253     *
254 jsr166 1.160 * <pre> {@code
255 dl 1.43 * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
256     * private boolean isPaused;
257     * private ReentrantLock pauseLock = new ReentrantLock();
258     * private Condition unpaused = pauseLock.newCondition();
259     *
260     * public PausableThreadPoolExecutor(...) { super(...); }
261 jsr166 1.66 *
262 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
263     * super.beforeExecute(t, r);
264     * pauseLock.lock();
265     * try {
266     * while (isPaused) unpaused.await();
267 jsr166 1.66 * } catch (InterruptedException ie) {
268 dl 1.53 * t.interrupt();
269 dl 1.43 * } finally {
270 dl 1.53 * pauseLock.unlock();
271 dl 1.43 * }
272     * }
273 jsr166 1.66 *
274 dl 1.43 * public void pause() {
275     * pauseLock.lock();
276     * try {
277     * isPaused = true;
278     * } finally {
279 dl 1.53 * pauseLock.unlock();
280 dl 1.43 * }
281     * }
282 jsr166 1.66 *
283 dl 1.43 * public void resume() {
284     * pauseLock.lock();
285     * try {
286     * isPaused = false;
287     * unpaused.signalAll();
288     * } finally {
289 dl 1.53 * pauseLock.unlock();
290 dl 1.43 * }
291     * }
292 jsr166 1.116 * }}</pre>
293     *
294 tim 1.1 * @since 1.5
295 dl 1.8 * @author Doug Lea
296 tim 1.1 */
297 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
298 dl 1.86 /**
299 dl 1.107 * The main pool control state, ctl, is an atomic integer packing
300     * two conceptual fields
301     * workerCount, indicating the effective number of threads
302     * runState, indicating whether running, shutting down etc
303     *
304     * In order to pack them into one int, we limit workerCount to
305 jsr166 1.117 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
306 dl 1.107 * billion) otherwise representable. If this is ever an issue in
307     * the future, the variable can be changed to be an AtomicLong,
308     * and the shift/mask constants below adjusted. But until the need
309     * arises, this code is a bit faster and simpler using an int.
310     *
311     * The workerCount is the number of workers that have been
312     * permitted to start and not permitted to stop. The value may be
313 jsr166 1.110 * transiently different from the actual number of live threads,
314 dl 1.107 * for example when a ThreadFactory fails to create a thread when
315     * asked, and when exiting threads are still performing
316     * bookkeeping before terminating. The user-visible pool size is
317     * reported as the current size of the workers set.
318     *
319 jsr166 1.131 * The runState provides the main lifecycle control, taking on values:
320 dl 1.86 *
321 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
322     * SHUTDOWN: Don't accept new tasks, but process queued tasks
323 jsr166 1.91 * STOP: Don't accept new tasks, don't process queued tasks,
324 dl 1.85 * and interrupt in-progress tasks
325 jsr166 1.117 * TIDYING: All tasks have terminated, workerCount is zero,
326     * the thread transitioning to state TIDYING
327     * will run the terminated() hook method
328     * TERMINATED: terminated() has completed
329 dl 1.86 *
330     * The numerical order among these values matters, to allow
331     * ordered comparisons. The runState monotonically increases over
332     * time, but need not hit each state. The transitions are:
333 jsr166 1.87 *
334     * RUNNING -> SHUTDOWN
335 jsr166 1.88 * On invocation of shutdown(), perhaps implicitly in finalize()
336 jsr166 1.87 * (RUNNING or SHUTDOWN) -> STOP
337 dl 1.86 * On invocation of shutdownNow()
338 jsr166 1.117 * SHUTDOWN -> TIDYING
339 dl 1.86 * When both queue and pool are empty
340 jsr166 1.117 * STOP -> TIDYING
341 dl 1.86 * When pool is empty
342 jsr166 1.117 * TIDYING -> TERMINATED
343     * When the terminated() hook method has completed
344     *
345     * Threads waiting in awaitTermination() will return when the
346     * state reaches TERMINATED.
347 dl 1.107 *
348 jsr166 1.117 * Detecting the transition from SHUTDOWN to TIDYING is less
349 dl 1.107 * straightforward than you'd like because the queue may become
350     * empty after non-empty and vice versa during SHUTDOWN state, but
351     * we can only terminate if, after seeing that it is empty, we see
352     * that workerCount is 0 (which sometimes entails a recheck -- see
353     * below).
354     */
355     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
356 jsr166 1.117 private static final int COUNT_BITS = Integer.SIZE - 3;
357 jsr166 1.180 private static final int COUNT_MASK = (1 << COUNT_BITS) - 1;
358 dl 1.107
359 jsr166 1.117 // runState is stored in the high-order bits
360     private static final int RUNNING = -1 << COUNT_BITS;
361     private static final int SHUTDOWN = 0 << COUNT_BITS;
362     private static final int STOP = 1 << COUNT_BITS;
363     private static final int TIDYING = 2 << COUNT_BITS;
364     private static final int TERMINATED = 3 << COUNT_BITS;
365 dl 1.107
366     // Packing and unpacking ctl
367 jsr166 1.180 private static int runStateOf(int c) { return c & ~COUNT_MASK; }
368     private static int workerCountOf(int c) { return c & COUNT_MASK; }
369 jsr166 1.117 private static int ctlOf(int rs, int wc) { return rs | wc; }
370    
371     /*
372     * Bit field accessors that don't require unpacking ctl.
373     * These depend on the bit layout and on workerCount being never negative.
374     */
375    
376     private static boolean runStateLessThan(int c, int s) {
377 jsr166 1.121 return c < s;
378 jsr166 1.117 }
379    
380     private static boolean runStateAtLeast(int c, int s) {
381 jsr166 1.121 return c >= s;
382 jsr166 1.117 }
383    
384     private static boolean isRunning(int c) {
385 jsr166 1.121 return c < SHUTDOWN;
386 jsr166 1.117 }
387    
388     /**
389 jsr166 1.135 * Attempts to CAS-increment the workerCount field of ctl.
390 jsr166 1.117 */
391     private boolean compareAndIncrementWorkerCount(int expect) {
392 jsr166 1.121 return ctl.compareAndSet(expect, expect + 1);
393 jsr166 1.117 }
394    
395     /**
396 jsr166 1.135 * Attempts to CAS-decrement the workerCount field of ctl.
397 jsr166 1.117 */
398     private boolean compareAndDecrementWorkerCount(int expect) {
399 jsr166 1.121 return ctl.compareAndSet(expect, expect - 1);
400 jsr166 1.117 }
401    
402     /**
403     * Decrements the workerCount field of ctl. This is called only on
404     * abrupt termination of a thread (see processWorkerExit). Other
405     * decrements are performed within getTask.
406     */
407     private void decrementWorkerCount() {
408 jsr166 1.177 ctl.addAndGet(-1);
409 jsr166 1.117 }
410 tim 1.41
411     /**
412 dl 1.86 * The queue used for holding tasks and handing off to worker
413 dl 1.107 * threads. We do not require that workQueue.poll() returning
414 jsr166 1.109 * null necessarily means that workQueue.isEmpty(), so rely
415 dl 1.107 * solely on isEmpty to see if the queue is empty (which we must
416     * do for example when deciding whether to transition from
417 jsr166 1.117 * SHUTDOWN to TIDYING). This accommodates special-purpose
418 dl 1.107 * queues such as DelayQueues for which poll() is allowed to
419     * return null even if it may later return non-null when delays
420     * expire.
421 tim 1.10 */
422 dl 1.2 private final BlockingQueue<Runnable> workQueue;
423    
424     /**
425 dl 1.107 * Lock held on access to workers set and related bookkeeping.
426     * While we could use a concurrent set of some sort, it turns out
427     * to be generally preferable to use a lock. Among the reasons is
428     * that this serializes interruptIdleWorkers, which avoids
429     * unnecessary interrupt storms, especially during shutdown.
430     * Otherwise exiting threads would concurrently interrupt those
431     * that have not yet interrupted. It also simplifies some of the
432     * associated statistics bookkeeping of largestPoolSize etc. We
433     * also hold mainLock on shutdown and shutdownNow, for the sake of
434     * ensuring workers set is stable while separately checking
435     * permission to interrupt and actually interrupting.
436 tim 1.10 */
437 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
438    
439     /**
440 dl 1.107 * Set containing all worker threads in pool. Accessed only when
441     * holding mainLock.
442     */
443 jsr166 1.153 private final HashSet<Worker> workers = new HashSet<>();
444 dl 1.107
445     /**
446 jsr166 1.164 * Wait condition to support awaitTermination.
447 tim 1.10 */
448 dl 1.46 private final Condition termination = mainLock.newCondition();
449 dl 1.2
450     /**
451 dl 1.107 * Tracks largest attained pool size. Accessed only under
452     * mainLock.
453     */
454     private int largestPoolSize;
455    
456     /**
457     * Counter for completed tasks. Updated only on termination of
458     * worker threads. Accessed only under mainLock.
459     */
460     private long completedTaskCount;
461    
462     /*
463     * All user control parameters are declared as volatiles so that
464     * ongoing actions are based on freshest values, but without need
465     * for locking, since no internal invariants depend on them
466     * changing synchronously with respect to other actions.
467     */
468    
469     /**
470     * Factory for new threads. All threads are created using this
471     * factory (via method addWorker). All callers must be prepared
472     * for addWorker to fail, which may reflect a system or user's
473     * policy limiting the number of threads. Even though it is not
474     * treated as an error, failure to create threads may result in
475     * new tasks being rejected or existing ones remaining stuck in
476 jsr166 1.128 * the queue.
477     *
478     * We go further and preserve pool invariants even in the face of
479     * errors such as OutOfMemoryError, that might be thrown while
480     * trying to create threads. Such errors are rather common due to
481 jsr166 1.145 * the need to allocate a native stack in Thread.start, and users
482 jsr166 1.128 * will want to perform clean pool shutdown to clean up. There
483     * will likely be enough memory available for the cleanup code to
484     * complete without encountering yet another OutOfMemoryError.
485 dl 1.107 */
486     private volatile ThreadFactory threadFactory;
487    
488     /**
489     * Handler called when saturated or shutdown in execute.
490 tim 1.10 */
491 dl 1.107 private volatile RejectedExecutionHandler handler;
492 dl 1.2
493     /**
494 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
495 dl 1.86 * Threads use this timeout when there are more than corePoolSize
496     * present or if allowCoreThreadTimeOut. Otherwise they wait
497     * forever for new work.
498 tim 1.10 */
499 dl 1.107 private volatile long keepAliveTime;
500 dl 1.2
501     /**
502 jsr166 1.101 * If false (default), core threads stay alive even when idle.
503     * If true, core threads use keepAliveTime to time out waiting
504     * for work.
505 dl 1.62 */
506 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
507 dl 1.62
508     /**
509 dl 1.107 * Core pool size is the minimum number of workers to keep alive
510     * (and not allow to time out etc) unless allowCoreThreadTimeOut
511 jsr166 1.109 * is set, in which case the minimum is zero.
512 jsr166 1.180 *
513     * Since the worker count is actually stored in COUNT_BITS bits,
514     * the effective limit is {@code corePoolSize & COUNT_MASK}.
515 dl 1.107 */
516     private volatile int corePoolSize;
517    
518     /**
519 jsr166 1.180 * Maximum pool size.
520     *
521     * Since the worker count is actually stored in COUNT_BITS bits,
522     * the effective limit is {@code maximumPoolSize & COUNT_MASK}.
523 dl 1.107 */
524     private volatile int maximumPoolSize;
525    
526     /**
527 jsr166 1.164 * The default rejected execution handler.
528 dl 1.107 */
529     private static final RejectedExecutionHandler defaultHandler =
530     new AbortPolicy();
531    
532     /**
533     * Permission required for callers of shutdown and shutdownNow.
534     * We additionally require (see checkShutdownAccess) that callers
535     * have permission to actually interrupt threads in the worker set
536     * (as governed by Thread.interrupt, which relies on
537     * ThreadGroup.checkAccess, which in turn relies on
538     * SecurityManager.checkAccess). Shutdowns are attempted only if
539     * these checks pass.
540     *
541     * All actual invocations of Thread.interrupt (see
542     * interruptIdleWorkers and interruptWorkers) ignore
543     * SecurityExceptions, meaning that the attempted interrupts
544     * silently fail. In the case of shutdown, they should not fail
545     * unless the SecurityManager has inconsistent policies, sometimes
546     * allowing access to a thread and sometimes not. In such cases,
547     * failure to actually interrupt threads may disable or delay full
548     * termination. Other uses of interruptIdleWorkers are advisory,
549     * and failure to actually interrupt will merely delay response to
550     * configuration changes so is not handled exceptionally.
551     */
552     private static final RuntimePermission shutdownPerm =
553     new RuntimePermission("modifyThread");
554    
555 jsr166 1.176 /** The context to be used when executing the finalizer, or null. */
556 jsr166 1.175 private final AccessControlContext acc;
557    
558 dl 1.107 /**
559 jsr166 1.108 * Class Worker mainly maintains interrupt control state for
560 jsr166 1.120 * threads running tasks, along with other minor bookkeeping.
561     * This class opportunistically extends AbstractQueuedSynchronizer
562     * to simplify acquiring and releasing a lock surrounding each
563     * task execution. This protects against interrupts that are
564     * intended to wake up a worker thread waiting for a task from
565     * instead interrupting a task being run. We implement a simple
566 dl 1.130 * non-reentrant mutual exclusion lock rather than use
567     * ReentrantLock because we do not want worker tasks to be able to
568     * reacquire the lock when they invoke pool control methods like
569     * setCorePoolSize. Additionally, to suppress interrupts until
570     * the thread actually starts running tasks, we initialize lock
571     * state to a negative value, and clear it upon start (in
572     * runWorker).
573 jsr166 1.120 */
574     private final class Worker
575 jsr166 1.121 extends AbstractQueuedSynchronizer
576     implements Runnable
577 jsr166 1.120 {
578 jsr166 1.121 /**
579     * This class will never be serialized, but we provide a
580     * serialVersionUID to suppress a javac warning.
581     */
582     private static final long serialVersionUID = 6138294804551838833L;
583 jsr166 1.116
584 jsr166 1.108 /** Thread this worker is running in. Null if factory fails. */
585 dl 1.107 final Thread thread;
586 jsr166 1.108 /** Initial task to run. Possibly null. */
587 dl 1.107 Runnable firstTask;
588     /** Per-thread task counter */
589     volatile long completedTasks;
590    
591 jsr166 1.167 // TODO: switch to AbstractQueuedLongSynchronizer and move
592     // completedTasks into the lock word.
593    
594 dl 1.107 /**
595 jsr166 1.108 * Creates with given first task and thread from ThreadFactory.
596     * @param firstTask the first task (null if none)
597 dl 1.107 */
598     Worker(Runnable firstTask) {
599 dl 1.130 setState(-1); // inhibit interrupts until runWorker
600 dl 1.107 this.firstTask = firstTask;
601 jsr166 1.121 this.thread = getThreadFactory().newThread(this);
602 dl 1.107 }
603    
604 jsr166 1.148 /** Delegates main run loop to outer runWorker. */
605 dl 1.107 public void run() {
606     runWorker(this);
607     }
608 jsr166 1.120
609 jsr166 1.121 // Lock methods
610     //
611     // The value 0 represents the unlocked state.
612     // The value 1 represents the locked state.
613    
614     protected boolean isHeldExclusively() {
615 dl 1.130 return getState() != 0;
616 jsr166 1.121 }
617    
618     protected boolean tryAcquire(int unused) {
619     if (compareAndSetState(0, 1)) {
620     setExclusiveOwnerThread(Thread.currentThread());
621     return true;
622     }
623     return false;
624     }
625    
626     protected boolean tryRelease(int unused) {
627     setExclusiveOwnerThread(null);
628     setState(0);
629     return true;
630     }
631    
632     public void lock() { acquire(1); }
633     public boolean tryLock() { return tryAcquire(1); }
634     public void unlock() { release(1); }
635     public boolean isLocked() { return isHeldExclusively(); }
636 dl 1.130
637     void interruptIfStarted() {
638     Thread t;
639     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
640     try {
641     t.interrupt();
642     } catch (SecurityException ignore) {
643     }
644     }
645     }
646 dl 1.107 }
647    
648     /*
649     * Methods for setting control state
650     */
651    
652     /**
653     * Transitions runState to given target, or leaves it alone if
654     * already at least the given target.
655 jsr166 1.116 *
656 jsr166 1.117 * @param targetState the desired state, either SHUTDOWN or STOP
657     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
658 dl 1.107 */
659     private void advanceRunState(int targetState) {
660 jsr166 1.155 // assert targetState == SHUTDOWN || targetState == STOP;
661 dl 1.107 for (;;) {
662     int c = ctl.get();
663 jsr166 1.117 if (runStateAtLeast(c, targetState) ||
664 dl 1.107 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
665     break;
666     }
667     }
668    
669     /**
670     * Transitions to TERMINATED state if either (SHUTDOWN and pool
671     * and queue empty) or (STOP and pool empty). If otherwise
672     * eligible to terminate but workerCount is nonzero, interrupts an
673     * idle worker to ensure that shutdown signals propagate. This
674     * method must be called following any action that might make
675     * termination possible -- reducing worker count or removing tasks
676     * from the queue during shutdown. The method is non-private to
677 jsr166 1.110 * allow access from ScheduledThreadPoolExecutor.
678 dl 1.107 */
679     final void tryTerminate() {
680     for (;;) {
681     int c = ctl.get();
682 jsr166 1.121 if (isRunning(c) ||
683     runStateAtLeast(c, TIDYING) ||
684 jsr166 1.178 (runStateLessThan(c, STOP) && ! workQueue.isEmpty()))
685 jsr166 1.121 return;
686 dl 1.107 if (workerCountOf(c) != 0) { // Eligible to terminate
687 jsr166 1.113 interruptIdleWorkers(ONLY_ONE);
688 dl 1.107 return;
689     }
690 jsr166 1.119
691 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
692     mainLock.lock();
693     try {
694     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
695     try {
696     terminated();
697     } finally {
698     ctl.set(ctlOf(TERMINATED, 0));
699     termination.signalAll();
700     }
701     return;
702     }
703     } finally {
704     mainLock.unlock();
705     }
706 dl 1.107 // else retry on failed CAS
707     }
708     }
709    
710 jsr166 1.116 /*
711 dl 1.107 * Methods for controlling interrupts to worker threads.
712     */
713    
714     /**
715     * If there is a security manager, makes sure caller has
716     * permission to shut down threads in general (see shutdownPerm).
717     * If this passes, additionally makes sure the caller is allowed
718     * to interrupt each worker thread. This might not be true even if
719     * first check passed, if the SecurityManager treats some threads
720     * specially.
721     */
722     private void checkShutdownAccess() {
723 jsr166 1.181 // assert mainLock.isHeldByCurrentThread();
724 dl 1.107 SecurityManager security = System.getSecurityManager();
725     if (security != null) {
726     security.checkPermission(shutdownPerm);
727 jsr166 1.181 for (Worker w : workers)
728     security.checkAccess(w.thread);
729 dl 1.107 }
730     }
731    
732     /**
733 jsr166 1.116 * Interrupts all threads, even if active. Ignores SecurityExceptions
734     * (in which case some threads may remain uninterrupted).
735 dl 1.107 */
736     private void interruptWorkers() {
737 jsr166 1.181 // assert mainLock.isHeldByCurrentThread();
738     for (Worker w : workers)
739     w.interruptIfStarted();
740 dl 1.107 }
741    
742     /**
743     * Interrupts threads that might be waiting for tasks (as
744     * indicated by not being locked) so they can check for
745     * termination or configuration changes. Ignores
746     * SecurityExceptions (in which case some threads may remain
747     * uninterrupted).
748     *
749     * @param onlyOne If true, interrupt at most one worker. This is
750     * called only from tryTerminate when termination is otherwise
751     * enabled but there are still other workers. In this case, at
752     * most one waiting worker is interrupted to propagate shutdown
753 jsr166 1.113 * signals in case all threads are currently waiting.
754 dl 1.107 * Interrupting any arbitrary thread ensures that newly arriving
755     * workers since shutdown began will also eventually exit.
756 jsr166 1.113 * To guarantee eventual termination, it suffices to always
757     * interrupt only one idle worker, but shutdown() interrupts all
758     * idle workers so that redundant workers exit promptly, not
759     * waiting for a straggler task to finish.
760 tim 1.10 */
761 dl 1.107 private void interruptIdleWorkers(boolean onlyOne) {
762 jsr166 1.121 final ReentrantLock mainLock = this.mainLock;
763 dl 1.107 mainLock.lock();
764     try {
765 jsr166 1.121 for (Worker w : workers) {
766 dl 1.107 Thread t = w.thread;
767 jsr166 1.121 if (!t.isInterrupted() && w.tryLock()) {
768 dl 1.107 try {
769     t.interrupt();
770     } catch (SecurityException ignore) {
771     } finally {
772     w.unlock();
773     }
774     }
775     if (onlyOne)
776     break;
777     }
778     } finally {
779     mainLock.unlock();
780     }
781     }
782    
783 dl 1.118 /**
784     * Common form of interruptIdleWorkers, to avoid having to
785     * remember what the boolean argument means.
786     */
787 jsr166 1.119 private void interruptIdleWorkers() {
788     interruptIdleWorkers(false);
789 dl 1.118 }
790    
791 jsr166 1.113 private static final boolean ONLY_ONE = true;
792    
793 dl 1.107 /*
794     * Misc utilities, most of which are also exported to
795     * ScheduledThreadPoolExecutor
796     */
797    
798     /**
799     * Invokes the rejected execution handler for the given command.
800     * Package-protected for use by ScheduledThreadPoolExecutor.
801     */
802     final void reject(Runnable command) {
803     handler.rejectedExecution(command, this);
804     }
805 dl 1.2
806     /**
807 dl 1.107 * Performs any further cleanup following run state transition on
808     * invocation of shutdown. A no-op here, but used by
809     * ScheduledThreadPoolExecutor to cancel delayed tasks.
810 tim 1.10 */
811 dl 1.107 void onShutdown() {
812     }
813 dl 1.2
814     /**
815 dl 1.107 * Drains the task queue into a new list, normally using
816     * drainTo. But if the queue is a DelayQueue or any other kind of
817     * queue for which poll or drainTo may fail to remove some
818     * elements, it deletes them one by one.
819     */
820     private List<Runnable> drainQueue() {
821     BlockingQueue<Runnable> q = workQueue;
822 jsr166 1.153 ArrayList<Runnable> taskList = new ArrayList<>();
823 dl 1.107 q.drainTo(taskList);
824     if (!q.isEmpty()) {
825     for (Runnable r : q.toArray(new Runnable[0])) {
826     if (q.remove(r))
827     taskList.add(r);
828     }
829     }
830     return taskList;
831     }
832    
833     /*
834     * Methods for creating, running and cleaning up after workers
835 tim 1.10 */
836 dl 1.2
837     /**
838 dl 1.107 * Checks if a new worker can be added with respect to current
839 jsr166 1.116 * pool state and the given bound (either core or maximum). If so,
840 dl 1.107 * the worker count is adjusted accordingly, and, if possible, a
841 jsr166 1.128 * new worker is created and started, running firstTask as its
842 jsr166 1.117 * first task. This method returns false if the pool is stopped or
843 dl 1.107 * eligible to shut down. It also returns false if the thread
844 jsr166 1.128 * factory fails to create a thread when asked. If the thread
845     * creation fails, either due to the thread factory returning
846     * null, or due to an exception (typically OutOfMemoryError in
847 jsr166 1.146 * Thread.start()), we roll back cleanly.
848 dl 1.107 *
849     * @param firstTask the task the new thread should run first (or
850     * null if none). Workers are created with an initial first task
851     * (in method execute()) to bypass queuing when there are fewer
852     * than corePoolSize threads (in which case we always start one),
853 jsr166 1.110 * or when the queue is full (in which case we must bypass queue).
854 dl 1.107 * Initially idle threads are usually created via
855     * prestartCoreThread or to replace other dying workers.
856     *
857     * @param core if true use corePoolSize as bound, else
858 jsr166 1.110 * maximumPoolSize. (A boolean indicator is used here rather than a
859 dl 1.107 * value to ensure reads of fresh values after checking other pool
860     * state).
861     * @return true if successful
862 tim 1.10 */
863 dl 1.107 private boolean addWorker(Runnable firstTask, boolean core) {
864 jsr166 1.121 retry:
865 jsr166 1.178 for (int c = ctl.get();;) {
866 jsr166 1.121 // Check if queue empty only if necessary.
867 jsr166 1.178 if (runStateAtLeast(c, SHUTDOWN)
868     && (runStateAtLeast(c, STOP)
869     || firstTask != null
870     || workQueue.isEmpty()))
871 jsr166 1.121 return false;
872    
873     for (;;) {
874 jsr166 1.180 if (workerCountOf(c)
875     >= ((core ? corePoolSize : maximumPoolSize) & COUNT_MASK))
876 jsr166 1.121 return false;
877     if (compareAndIncrementWorkerCount(c))
878     break retry;
879     c = ctl.get(); // Re-read ctl
880 jsr166 1.178 if (runStateAtLeast(c, SHUTDOWN))
881 jsr166 1.121 continue retry;
882     // else CAS failed due to workerCount change; retry inner loop
883     }
884 dl 1.107 }
885    
886 jsr166 1.128 boolean workerStarted = false;
887 dl 1.130 boolean workerAdded = false;
888 jsr166 1.128 Worker w = null;
889     try {
890     w = new Worker(firstTask);
891     final Thread t = w.thread;
892 dl 1.130 if (t != null) {
893 jsr166 1.132 final ReentrantLock mainLock = this.mainLock;
894 dl 1.130 mainLock.lock();
895     try {
896     // Recheck while holding lock.
897     // Back out on ThreadFactory failure or if
898     // shut down before lock acquired.
899 jsr166 1.178 int c = ctl.get();
900 dl 1.130
901 jsr166 1.178 if (isRunning(c) ||
902     (runStateLessThan(c, STOP) && firstTask == null)) {
903 dl 1.130 if (t.isAlive()) // precheck that t is startable
904     throw new IllegalThreadStateException();
905     workers.add(w);
906     int s = workers.size();
907     if (s > largestPoolSize)
908     largestPoolSize = s;
909     workerAdded = true;
910     }
911     } finally {
912     mainLock.unlock();
913     }
914     if (workerAdded) {
915     t.start();
916     workerStarted = true;
917     }
918 jsr166 1.121 }
919 jsr166 1.128 } finally {
920     if (! workerStarted)
921     addWorkerFailed(w);
922     }
923 dl 1.130 return workerStarted;
924 jsr166 1.128 }
925    
926     /**
927     * Rolls back the worker thread creation.
928     * - removes worker from workers, if present
929     * - decrements worker count
930     * - rechecks for termination, in case the existence of this
931     * worker was holding up termination
932     */
933     private void addWorkerFailed(Worker w) {
934     final ReentrantLock mainLock = this.mainLock;
935     mainLock.lock();
936     try {
937     if (w != null)
938     workers.remove(w);
939     decrementWorkerCount();
940     tryTerminate();
941 dl 1.107 } finally {
942     mainLock.unlock();
943     }
944     }
945 dl 1.2
946     /**
947 dl 1.107 * Performs cleanup and bookkeeping for a dying worker. Called
948     * only from worker threads. Unless completedAbruptly is set,
949     * assumes that workerCount has already been adjusted to account
950     * for exit. This method removes thread from worker set, and
951     * possibly terminates the pool or replaces the worker if either
952     * it exited due to user task exception or if fewer than
953     * corePoolSize workers are running or queue is non-empty but
954     * there are no workers.
955     *
956     * @param w the worker
957     * @param completedAbruptly if the worker died due to user exception
958 tim 1.10 */
959 dl 1.107 private void processWorkerExit(Worker w, boolean completedAbruptly) {
960     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
961     decrementWorkerCount();
962    
963     final ReentrantLock mainLock = this.mainLock;
964     mainLock.lock();
965     try {
966     completedTaskCount += w.completedTasks;
967     workers.remove(w);
968     } finally {
969     mainLock.unlock();
970     }
971    
972     tryTerminate();
973    
974 jsr166 1.121 int c = ctl.get();
975     if (runStateLessThan(c, STOP)) {
976     if (!completedAbruptly) {
977     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
978     if (min == 0 && ! workQueue.isEmpty())
979     min = 1;
980     if (workerCountOf(c) >= min)
981     return; // replacement not needed
982     }
983     addWorker(null, false);
984     }
985 dl 1.107 }
986 dl 1.2
987     /**
988 dl 1.107 * Performs blocking or timed wait for a task, depending on
989     * current configuration settings, or returns null if this worker
990     * must exit because of any of:
991     * 1. There are more than maximumPoolSize workers (due to
992     * a call to setMaximumPoolSize).
993 jsr166 1.110 * 2. The pool is stopped.
994 jsr166 1.119 * 3. The pool is shutdown and the queue is empty.
995     * 4. This worker timed out waiting for a task, and timed-out
996     * workers are subject to termination (that is,
997     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
998 jsr166 1.139 * both before and after the timed wait, and if the queue is
999     * non-empty, this worker is not the last thread in the pool.
1000 dl 1.107 *
1001     * @return task, or null if the worker must exit, in which case
1002 jsr166 1.116 * workerCount is decremented
1003 tim 1.10 */
1004 dl 1.107 private Runnable getTask() {
1005 jsr166 1.121 boolean timedOut = false; // Did the last poll() time out?
1006 jsr166 1.119
1007 jsr166 1.121 for (;;) {
1008 dl 1.107 int c = ctl.get();
1009 jsr166 1.121
1010     // Check if queue empty only if necessary.
1011 jsr166 1.178 if (runStateAtLeast(c, SHUTDOWN)
1012     && (runStateAtLeast(c, STOP) || workQueue.isEmpty())) {
1013 jsr166 1.121 decrementWorkerCount();
1014     return null;
1015     }
1016 jsr166 1.119
1017 jsr166 1.139 int wc = workerCountOf(c);
1018 jsr166 1.121
1019 jsr166 1.139 // Are workers subject to culling?
1020     boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
1021 jsr166 1.121
1022 jsr166 1.139 if ((wc > maximumPoolSize || (timed && timedOut))
1023     && (wc > 1 || workQueue.isEmpty())) {
1024 jsr166 1.121 if (compareAndDecrementWorkerCount(c))
1025     return null;
1026 jsr166 1.139 continue;
1027 dl 1.107 }
1028    
1029     try {
1030 jsr166 1.110 Runnable r = timed ?
1031 dl 1.107 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1032     workQueue.take();
1033     if (r != null)
1034     return r;
1035 jsr166 1.121 timedOut = true;
1036 jsr166 1.108 } catch (InterruptedException retry) {
1037 jsr166 1.121 timedOut = false;
1038 dl 1.107 }
1039     }
1040     }
1041 jsr166 1.66
1042 dl 1.8 /**
1043 dl 1.107 * Main worker run loop. Repeatedly gets tasks from queue and
1044     * executes them, while coping with a number of issues:
1045     *
1046     * 1. We may start out with an initial task, in which case we
1047     * don't need to get the first one. Otherwise, as long as pool is
1048     * running, we get tasks from getTask. If it returns null then the
1049     * worker exits due to changed pool state or configuration
1050     * parameters. Other exits result from exception throws in
1051     * external code, in which case completedAbruptly holds, which
1052     * usually leads processWorkerExit to replace this thread.
1053     *
1054     * 2. Before running any task, the lock is acquired to prevent
1055 jsr166 1.137 * other pool interrupts while the task is executing, and then we
1056     * ensure that unless pool is stopping, this thread does not have
1057     * its interrupt set.
1058 dl 1.107 *
1059     * 3. Each task run is preceded by a call to beforeExecute, which
1060     * might throw an exception, in which case we cause thread to die
1061     * (breaking loop with completedAbruptly true) without processing
1062     * the task.
1063     *
1064     * 4. Assuming beforeExecute completes normally, we run the task,
1065 jsr166 1.136 * gathering any of its thrown exceptions to send to afterExecute.
1066     * We separately handle RuntimeException, Error (both of which the
1067     * specs guarantee that we trap) and arbitrary Throwables.
1068     * Because we cannot rethrow Throwables within Runnable.run, we
1069     * wrap them within Errors on the way out (to the thread's
1070     * UncaughtExceptionHandler). Any thrown exception also
1071 dl 1.107 * conservatively causes thread to die.
1072     *
1073     * 5. After task.run completes, we call afterExecute, which may
1074     * also throw an exception, which will also cause thread to
1075     * die. According to JLS Sec 14.20, this exception is the one that
1076     * will be in effect even if task.run throws.
1077     *
1078     * The net effect of the exception mechanics is that afterExecute
1079     * and the thread's UncaughtExceptionHandler have as accurate
1080     * information as we can provide about any problems encountered by
1081     * user code.
1082     *
1083     * @param w the worker
1084 dl 1.8 */
1085 dl 1.107 final void runWorker(Worker w) {
1086 dl 1.130 Thread wt = Thread.currentThread();
1087 dl 1.107 Runnable task = w.firstTask;
1088     w.firstTask = null;
1089 dl 1.130 w.unlock(); // allow interrupts
1090 dl 1.107 boolean completedAbruptly = true;
1091     try {
1092     while (task != null || (task = getTask()) != null) {
1093     w.lock();
1094 dl 1.130 // If pool is stopping, ensure thread is interrupted;
1095     // if not, ensure thread is not interrupted. This
1096     // requires a recheck in second case to deal with
1097     // shutdownNow race while clearing interrupt
1098     if ((runStateAtLeast(ctl.get(), STOP) ||
1099     (Thread.interrupted() &&
1100     runStateAtLeast(ctl.get(), STOP))) &&
1101     !wt.isInterrupted())
1102     wt.interrupt();
1103 dl 1.107 try {
1104 dl 1.130 beforeExecute(wt, task);
1105 dl 1.107 Throwable thrown = null;
1106     try {
1107     task.run();
1108     } catch (RuntimeException x) {
1109     thrown = x; throw x;
1110     } catch (Error x) {
1111     thrown = x; throw x;
1112     } catch (Throwable x) {
1113     thrown = x; throw new Error(x);
1114     } finally {
1115     afterExecute(task, thrown);
1116     }
1117     } finally {
1118     task = null;
1119     w.completedTasks++;
1120     w.unlock();
1121     }
1122     }
1123     completedAbruptly = false;
1124     } finally {
1125     processWorkerExit(w, completedAbruptly);
1126     }
1127     }
1128 dl 1.2
1129 dl 1.107 // Public constructors and methods
1130 dl 1.86
1131 dl 1.2 /**
1132 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1133 jsr166 1.170 * parameters, the default thread factory and the default rejected
1134     * execution handler.
1135     *
1136     * <p>It may be more convenient to use one of the {@link Executors}
1137     * factory methods instead of this general purpose constructor.
1138 dl 1.86 *
1139 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1140     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1141 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1142 jsr166 1.116 * pool
1143 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1144 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1145     * will wait for new tasks before terminating.
1146     * @param unit the time unit for the {@code keepAliveTime} argument
1147     * @param workQueue the queue to use for holding tasks before they are
1148     * executed. This queue will hold only the {@code Runnable}
1149     * tasks submitted by the {@code execute} method.
1150     * @throws IllegalArgumentException if one of the following holds:<br>
1151     * {@code corePoolSize < 0}<br>
1152     * {@code keepAliveTime < 0}<br>
1153     * {@code maximumPoolSize <= 0}<br>
1154     * {@code maximumPoolSize < corePoolSize}
1155     * @throws NullPointerException if {@code workQueue} is null
1156 dl 1.86 */
1157     public ThreadPoolExecutor(int corePoolSize,
1158     int maximumPoolSize,
1159     long keepAliveTime,
1160     TimeUnit unit,
1161     BlockingQueue<Runnable> workQueue) {
1162     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1163     Executors.defaultThreadFactory(), defaultHandler);
1164     }
1165    
1166     /**
1167 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1168 jsr166 1.171 * parameters and {@linkplain ThreadPoolExecutor.AbortPolicy
1169 jsr166 1.170 * default rejected execution handler}.
1170 dl 1.86 *
1171 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1172     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1173 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1174 jsr166 1.116 * pool
1175 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1176 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1177     * will wait for new tasks before terminating.
1178     * @param unit the time unit for the {@code keepAliveTime} argument
1179     * @param workQueue the queue to use for holding tasks before they are
1180     * executed. This queue will hold only the {@code Runnable}
1181     * tasks submitted by the {@code execute} method.
1182 dl 1.86 * @param threadFactory the factory to use when the executor
1183 jsr166 1.116 * creates a new thread
1184     * @throws IllegalArgumentException if one of the following holds:<br>
1185     * {@code corePoolSize < 0}<br>
1186     * {@code keepAliveTime < 0}<br>
1187     * {@code maximumPoolSize <= 0}<br>
1188     * {@code maximumPoolSize < corePoolSize}
1189     * @throws NullPointerException if {@code workQueue}
1190     * or {@code threadFactory} is null
1191 dl 1.86 */
1192     public ThreadPoolExecutor(int corePoolSize,
1193     int maximumPoolSize,
1194     long keepAliveTime,
1195     TimeUnit unit,
1196     BlockingQueue<Runnable> workQueue,
1197     ThreadFactory threadFactory) {
1198     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1199     threadFactory, defaultHandler);
1200     }
1201    
1202     /**
1203 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1204 jsr166 1.170 * parameters and
1205     * {@linkplain Executors#defaultThreadFactory default thread factory}.
1206 dl 1.86 *
1207 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1208     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1209 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1210 jsr166 1.116 * pool
1211 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1212 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1213     * will wait for new tasks before terminating.
1214     * @param unit the time unit for the {@code keepAliveTime} argument
1215     * @param workQueue the queue to use for holding tasks before they are
1216     * executed. This queue will hold only the {@code Runnable}
1217     * tasks submitted by the {@code execute} method.
1218 dl 1.86 * @param handler the handler to use when execution is blocked
1219 jsr166 1.116 * because the thread bounds and queue capacities are reached
1220     * @throws IllegalArgumentException if one of the following holds:<br>
1221     * {@code corePoolSize < 0}<br>
1222     * {@code keepAliveTime < 0}<br>
1223     * {@code maximumPoolSize <= 0}<br>
1224     * {@code maximumPoolSize < corePoolSize}
1225     * @throws NullPointerException if {@code workQueue}
1226     * or {@code handler} is null
1227 dl 1.86 */
1228     public ThreadPoolExecutor(int corePoolSize,
1229     int maximumPoolSize,
1230     long keepAliveTime,
1231     TimeUnit unit,
1232     BlockingQueue<Runnable> workQueue,
1233     RejectedExecutionHandler handler) {
1234     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1235     Executors.defaultThreadFactory(), handler);
1236     }
1237    
1238     /**
1239 jsr166 1.116 * Creates a new {@code ThreadPoolExecutor} with the given initial
1240 dl 1.86 * parameters.
1241     *
1242 jsr166 1.116 * @param corePoolSize the number of threads to keep in the pool, even
1243     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1244 dl 1.86 * @param maximumPoolSize the maximum number of threads to allow in the
1245 jsr166 1.116 * pool
1246 dl 1.86 * @param keepAliveTime when the number of threads is greater than
1247 jsr166 1.116 * the core, this is the maximum time that excess idle threads
1248     * will wait for new tasks before terminating.
1249     * @param unit the time unit for the {@code keepAliveTime} argument
1250     * @param workQueue the queue to use for holding tasks before they are
1251     * executed. This queue will hold only the {@code Runnable}
1252     * tasks submitted by the {@code execute} method.
1253 dl 1.86 * @param threadFactory the factory to use when the executor
1254 jsr166 1.116 * creates a new thread
1255 dl 1.86 * @param handler the handler to use when execution is blocked
1256 jsr166 1.116 * because the thread bounds and queue capacities are reached
1257     * @throws IllegalArgumentException if one of the following holds:<br>
1258     * {@code corePoolSize < 0}<br>
1259     * {@code keepAliveTime < 0}<br>
1260     * {@code maximumPoolSize <= 0}<br>
1261     * {@code maximumPoolSize < corePoolSize}
1262     * @throws NullPointerException if {@code workQueue}
1263     * or {@code threadFactory} or {@code handler} is null
1264 dl 1.86 */
1265     public ThreadPoolExecutor(int corePoolSize,
1266     int maximumPoolSize,
1267     long keepAliveTime,
1268     TimeUnit unit,
1269     BlockingQueue<Runnable> workQueue,
1270     ThreadFactory threadFactory,
1271     RejectedExecutionHandler handler) {
1272     if (corePoolSize < 0 ||
1273     maximumPoolSize <= 0 ||
1274     maximumPoolSize < corePoolSize ||
1275     keepAliveTime < 0)
1276     throw new IllegalArgumentException();
1277     if (workQueue == null || threadFactory == null || handler == null)
1278     throw new NullPointerException();
1279 jsr166 1.176 this.acc = (System.getSecurityManager() == null)
1280     ? null
1281     : AccessController.getContext();
1282 dl 1.86 this.corePoolSize = corePoolSize;
1283     this.maximumPoolSize = maximumPoolSize;
1284     this.workQueue = workQueue;
1285     this.keepAliveTime = unit.toNanos(keepAliveTime);
1286     this.threadFactory = threadFactory;
1287     this.handler = handler;
1288     }
1289    
1290     /**
1291     * Executes the given task sometime in the future. The task
1292     * may execute in a new thread or in an existing pooled thread.
1293     *
1294     * If the task cannot be submitted for execution, either because this
1295     * executor has been shutdown or because its capacity has been reached,
1296 jsr166 1.179 * the task is handled by the current {@link RejectedExecutionHandler}.
1297 dl 1.86 *
1298     * @param command the task to execute
1299     * @throws RejectedExecutionException at discretion of
1300 jsr166 1.116 * {@code RejectedExecutionHandler}, if the task
1301     * cannot be accepted for execution
1302     * @throws NullPointerException if {@code command} is null
1303 dl 1.13 */
1304 dl 1.86 public void execute(Runnable command) {
1305     if (command == null)
1306     throw new NullPointerException();
1307 dl 1.107 /*
1308     * Proceed in 3 steps:
1309     *
1310     * 1. If fewer than corePoolSize threads are running, try to
1311     * start a new thread with the given command as its first
1312     * task. The call to addWorker atomically checks runState and
1313     * workerCount, and so prevents false alarms that would add
1314     * threads when it shouldn't, by returning false.
1315     *
1316     * 2. If a task can be successfully queued, then we still need
1317     * to double-check whether we should have added a thread
1318     * (because existing ones died since last checking) or that
1319     * the pool shut down since entry into this method. So we
1320     * recheck state and if necessary roll back the enqueuing if
1321     * stopped, or start a new thread if there are none.
1322     *
1323     * 3. If we cannot queue task, then we try to add a new
1324     * thread. If it fails, we know we are shut down or saturated
1325     * and so reject the task.
1326     */
1327     int c = ctl.get();
1328     if (workerCountOf(c) < corePoolSize) {
1329     if (addWorker(command, true))
1330     return;
1331     c = ctl.get();
1332     }
1333 jsr166 1.117 if (isRunning(c) && workQueue.offer(command)) {
1334 dl 1.107 int recheck = ctl.get();
1335 jsr166 1.117 if (! isRunning(recheck) && remove(command))
1336 dl 1.107 reject(command);
1337     else if (workerCountOf(recheck) == 0)
1338     addWorker(null, false);
1339 dl 1.86 }
1340 dl 1.107 else if (!addWorker(command, false))
1341 dl 1.85 reject(command);
1342 tim 1.1 }
1343 dl 1.4
1344 dl 1.53 /**
1345     * Initiates an orderly shutdown in which previously submitted
1346 jsr166 1.116 * tasks are executed, but no new tasks will be accepted.
1347     * Invocation has no additional effect if already shut down.
1348     *
1349 jsr166 1.122 * <p>This method does not wait for previously submitted tasks to
1350     * complete execution. Use {@link #awaitTermination awaitTermination}
1351     * to do that.
1352     *
1353 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1354 dl 1.53 */
1355 dl 1.2 public void shutdown() {
1356 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1357 dl 1.2 mainLock.lock();
1358     try {
1359 dl 1.107 checkShutdownAccess();
1360     advanceRunState(SHUTDOWN);
1361 jsr166 1.113 interruptIdleWorkers();
1362 dl 1.107 onShutdown(); // hook for ScheduledThreadPoolExecutor
1363 tim 1.14 } finally {
1364 dl 1.2 mainLock.unlock();
1365     }
1366 dl 1.107 tryTerminate();
1367 tim 1.1 }
1368    
1369 dl 1.53 /**
1370     * Attempts to stop all actively executing tasks, halts the
1371 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1372 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1373     * from the task queue upon return from this method.
1374 jsr166 1.66 *
1375 jsr166 1.122 * <p>This method does not wait for actively executing tasks to
1376     * terminate. Use {@link #awaitTermination awaitTermination} to
1377     * do that.
1378     *
1379 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1380     * processing actively executing tasks. This implementation
1381 jsr166 1.165 * interrupts tasks via {@link Thread#interrupt}; any task that
1382 jsr166 1.75 * fails to respond to interrupts may never terminate.
1383 dl 1.53 *
1384 jsr166 1.116 * @throws SecurityException {@inheritDoc}
1385 dl 1.53 */
1386 tim 1.39 public List<Runnable> shutdownNow() {
1387 dl 1.107 List<Runnable> tasks;
1388 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1389 dl 1.2 mainLock.lock();
1390     try {
1391 dl 1.107 checkShutdownAccess();
1392     advanceRunState(STOP);
1393     interruptWorkers();
1394     tasks = drainQueue();
1395 tim 1.14 } finally {
1396 dl 1.2 mainLock.unlock();
1397     }
1398 dl 1.107 tryTerminate();
1399     return tasks;
1400 dl 1.86 }
1401    
1402 dl 1.2 public boolean isShutdown() {
1403 jsr166 1.178 return runStateAtLeast(ctl.get(), SHUTDOWN);
1404 dl 1.16 }
1405    
1406 jsr166 1.172 /** Used by ScheduledThreadPoolExecutor. */
1407     boolean isStopped() {
1408     return runStateAtLeast(ctl.get(), STOP);
1409     }
1410    
1411 jsr166 1.66 /**
1412 dl 1.55 * Returns true if this executor is in the process of terminating
1413 jsr166 1.117 * after {@link #shutdown} or {@link #shutdownNow} but has not
1414 dl 1.16 * completely terminated. This method may be useful for
1415 jsr166 1.116 * debugging. A return of {@code true} reported a sufficient
1416 dl 1.16 * period after shutdown may indicate that submitted tasks have
1417     * ignored or suppressed interruption, causing this executor not
1418     * to properly terminate.
1419 jsr166 1.116 *
1420 jsr166 1.147 * @return {@code true} if terminating but not yet terminated
1421 dl 1.16 */
1422     public boolean isTerminating() {
1423 jsr166 1.117 int c = ctl.get();
1424 jsr166 1.178 return runStateAtLeast(c, SHUTDOWN) && runStateLessThan(c, TERMINATED);
1425 tim 1.1 }
1426    
1427 dl 1.2 public boolean isTerminated() {
1428 jsr166 1.117 return runStateAtLeast(ctl.get(), TERMINATED);
1429 dl 1.2 }
1430 tim 1.1
1431 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1432     throws InterruptedException {
1433 dl 1.50 long nanos = unit.toNanos(timeout);
1434 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1435 dl 1.2 mainLock.lock();
1436     try {
1437 jsr166 1.178 while (runStateLessThan(ctl.get(), TERMINATED)) {
1438 jsr166 1.166 if (nanos <= 0L)
1439 dl 1.25 return false;
1440     nanos = termination.awaitNanos(nanos);
1441     }
1442 jsr166 1.161 return true;
1443 tim 1.14 } finally {
1444 dl 1.2 mainLock.unlock();
1445     }
1446 dl 1.15 }
1447    
1448     /**
1449 jsr166 1.116 * Invokes {@code shutdown} when this executor is no longer
1450     * referenced and it has no threads.
1451 jsr166 1.174 *
1452 jsr166 1.175 * <p>This method is invoked with privileges that are restricted by
1453     * the security context of the caller that invokes the constructor.
1454     *
1455 jsr166 1.174 * @deprecated The {@code finalize} method has been deprecated.
1456     * Subclasses that override {@code finalize} in order to perform cleanup
1457     * should be modified to use alternative cleanup mechanisms and
1458     * to remove the overriding {@code finalize} method.
1459     * When overriding the {@code finalize} method, its implementation must explicitly
1460     * ensure that {@code super.finalize()} is invoked as described in {@link Object#finalize}.
1461     * See the specification for {@link Object#finalize()} for further
1462     * information about migration options.
1463 jsr166 1.66 */
1464 jsr166 1.174 @Deprecated(since="9")
1465 dl 1.107 protected void finalize() {
1466 jsr166 1.175 SecurityManager sm = System.getSecurityManager();
1467     if (sm == null || acc == null) {
1468     shutdown();
1469     } else {
1470     PrivilegedAction<Void> pa = () -> { shutdown(); return null; };
1471     AccessController.doPrivileged(pa, acc);
1472     }
1473 dl 1.2 }
1474 tim 1.10
1475 dl 1.2 /**
1476     * Sets the thread factory used to create new threads.
1477     *
1478     * @param threadFactory the new thread factory
1479 dl 1.30 * @throws NullPointerException if threadFactory is null
1480 tim 1.11 * @see #getThreadFactory
1481 dl 1.2 */
1482     public void setThreadFactory(ThreadFactory threadFactory) {
1483 dl 1.30 if (threadFactory == null)
1484     throw new NullPointerException();
1485 dl 1.2 this.threadFactory = threadFactory;
1486 tim 1.1 }
1487    
1488 dl 1.2 /**
1489     * Returns the thread factory used to create new threads.
1490     *
1491     * @return the current thread factory
1492 jsr166 1.144 * @see #setThreadFactory(ThreadFactory)
1493 dl 1.2 */
1494     public ThreadFactory getThreadFactory() {
1495     return threadFactory;
1496 tim 1.1 }
1497    
1498 dl 1.2 /**
1499     * Sets a new handler for unexecutable tasks.
1500     *
1501     * @param handler the new handler
1502 dl 1.31 * @throws NullPointerException if handler is null
1503 tim 1.11 * @see #getRejectedExecutionHandler
1504 dl 1.2 */
1505     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1506 dl 1.31 if (handler == null)
1507     throw new NullPointerException();
1508 dl 1.2 this.handler = handler;
1509     }
1510 tim 1.1
1511 dl 1.2 /**
1512     * Returns the current handler for unexecutable tasks.
1513     *
1514     * @return the current handler
1515 jsr166 1.144 * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
1516 dl 1.2 */
1517     public RejectedExecutionHandler getRejectedExecutionHandler() {
1518     return handler;
1519 tim 1.1 }
1520    
1521 dl 1.2 /**
1522     * Sets the core number of threads. This overrides any value set
1523     * in the constructor. If the new value is smaller than the
1524     * current value, excess existing threads will be terminated when
1525 jsr166 1.116 * they next become idle. If larger, new threads will, if needed,
1526 dl 1.34 * be started to execute any queued tasks.
1527 tim 1.1 *
1528 dl 1.2 * @param corePoolSize the new core size
1529 jsr166 1.116 * @throws IllegalArgumentException if {@code corePoolSize < 0}
1530 dl 1.152 * or {@code corePoolSize} is greater than the {@linkplain
1531     * #getMaximumPoolSize() maximum pool size}
1532 tim 1.11 * @see #getCorePoolSize
1533 tim 1.1 */
1534 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1535 dl 1.152 if (corePoolSize < 0 || maximumPoolSize < corePoolSize)
1536 dl 1.2 throw new IllegalArgumentException();
1537 dl 1.107 int delta = corePoolSize - this.corePoolSize;
1538     this.corePoolSize = corePoolSize;
1539     if (workerCountOf(ctl.get()) > corePoolSize)
1540 jsr166 1.113 interruptIdleWorkers();
1541 dl 1.107 else if (delta > 0) {
1542     // We don't really know how many new threads are "needed".
1543     // As a heuristic, prestart enough new workers (up to new
1544     // core size) to handle the current number of tasks in
1545     // queue, but stop if queue becomes empty while doing so.
1546     int k = Math.min(delta, workQueue.size());
1547     while (k-- > 0 && addWorker(null, true)) {
1548     if (workQueue.isEmpty())
1549     break;
1550 tim 1.38 }
1551 dl 1.2 }
1552     }
1553 tim 1.1
1554     /**
1555 dl 1.2 * Returns the core number of threads.
1556 tim 1.1 *
1557 dl 1.2 * @return the core number of threads
1558 tim 1.11 * @see #setCorePoolSize
1559 tim 1.1 */
1560 tim 1.10 public int getCorePoolSize() {
1561 dl 1.2 return corePoolSize;
1562 dl 1.16 }
1563    
1564     /**
1565 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1566 dl 1.16 * overrides the default policy of starting core threads only when
1567 jsr166 1.116 * new tasks are executed. This method will return {@code false}
1568 dl 1.16 * if all core threads have already been started.
1569 jsr166 1.116 *
1570     * @return {@code true} if a thread was started
1571 jsr166 1.66 */
1572 dl 1.16 public boolean prestartCoreThread() {
1573 dl 1.107 return workerCountOf(ctl.get()) < corePoolSize &&
1574     addWorker(null, true);
1575 dl 1.16 }
1576    
1577     /**
1578 dl 1.125 * Same as prestartCoreThread except arranges that at least one
1579     * thread is started even if corePoolSize is 0.
1580     */
1581     void ensurePrestart() {
1582     int wc = workerCountOf(ctl.get());
1583 dl 1.126 if (wc < corePoolSize)
1584     addWorker(null, true);
1585     else if (wc == 0)
1586 dl 1.125 addWorker(null, false);
1587     }
1588    
1589     /**
1590 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1591 dl 1.16 * overrides the default policy of starting core threads only when
1592 jsr166 1.66 * new tasks are executed.
1593 jsr166 1.116 *
1594 jsr166 1.88 * @return the number of threads started
1595 jsr166 1.66 */
1596 dl 1.16 public int prestartAllCoreThreads() {
1597     int n = 0;
1598 dl 1.107 while (addWorker(null, true))
1599 dl 1.16 ++n;
1600     return n;
1601 dl 1.2 }
1602 tim 1.1
1603     /**
1604 dl 1.62 * Returns true if this pool allows core threads to time out and
1605     * terminate if no tasks arrive within the keepAlive time, being
1606     * replaced if needed when new tasks arrive. When true, the same
1607     * keep-alive policy applying to non-core threads applies also to
1608     * core threads. When false (the default), core threads are never
1609     * terminated due to lack of incoming tasks.
1610 jsr166 1.116 *
1611     * @return {@code true} if core threads are allowed to time out,
1612     * else {@code false}
1613 jsr166 1.72 *
1614     * @since 1.6
1615 dl 1.62 */
1616     public boolean allowsCoreThreadTimeOut() {
1617     return allowCoreThreadTimeOut;
1618     }
1619    
1620     /**
1621     * Sets the policy governing whether core threads may time out and
1622     * terminate if no tasks arrive within the keep-alive time, being
1623     * replaced if needed when new tasks arrive. When false, core
1624     * threads are never terminated due to lack of incoming
1625     * tasks. When true, the same keep-alive policy applying to
1626     * non-core threads applies also to core threads. To avoid
1627     * continual thread replacement, the keep-alive time must be
1628 jsr166 1.116 * greater than zero when setting {@code true}. This method
1629 dl 1.64 * should in general be called before the pool is actively used.
1630 jsr166 1.116 *
1631     * @param value {@code true} if should time out, else {@code false}
1632     * @throws IllegalArgumentException if value is {@code true}
1633     * and the current keep-alive time is not greater than zero
1634 jsr166 1.72 *
1635     * @since 1.6
1636 dl 1.62 */
1637     public void allowCoreThreadTimeOut(boolean value) {
1638 dl 1.64 if (value && keepAliveTime <= 0)
1639     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1640 dl 1.107 if (value != allowCoreThreadTimeOut) {
1641     allowCoreThreadTimeOut = value;
1642     if (value)
1643 jsr166 1.113 interruptIdleWorkers();
1644 dl 1.107 }
1645 dl 1.62 }
1646    
1647     /**
1648 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1649 dl 1.2 * value set in the constructor. If the new value is smaller than
1650     * the current value, excess existing threads will be
1651     * terminated when they next become idle.
1652 tim 1.1 *
1653 dl 1.2 * @param maximumPoolSize the new maximum
1654 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1655     * less than or equal to zero, or
1656     * less than the {@linkplain #getCorePoolSize core pool size}
1657 tim 1.11 * @see #getMaximumPoolSize
1658 dl 1.2 */
1659     public void setMaximumPoolSize(int maximumPoolSize) {
1660     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1661     throw new IllegalArgumentException();
1662 dl 1.107 this.maximumPoolSize = maximumPoolSize;
1663     if (workerCountOf(ctl.get()) > maximumPoolSize)
1664 jsr166 1.113 interruptIdleWorkers();
1665 dl 1.2 }
1666 tim 1.1
1667     /**
1668     * Returns the maximum allowed number of threads.
1669     *
1670 dl 1.2 * @return the maximum allowed number of threads
1671 tim 1.11 * @see #setMaximumPoolSize
1672 tim 1.1 */
1673 tim 1.10 public int getMaximumPoolSize() {
1674 dl 1.2 return maximumPoolSize;
1675     }
1676 tim 1.1
1677     /**
1678 jsr166 1.151 * Sets the thread keep-alive time, which is the amount of time
1679     * that threads may remain idle before being terminated.
1680     * Threads that wait this amount of time without processing a
1681     * task will be terminated if there are more than the core
1682     * number of threads currently in the pool, or if this pool
1683     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1684     * This overrides any value set in the constructor.
1685 jsr166 1.116 *
1686 tim 1.1 * @param time the time to wait. A time value of zero will cause
1687 jsr166 1.116 * excess threads to terminate immediately after executing tasks.
1688     * @param unit the time unit of the {@code time} argument
1689     * @throws IllegalArgumentException if {@code time} less than zero or
1690     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1691 jsr166 1.144 * @see #getKeepAliveTime(TimeUnit)
1692 tim 1.1 */
1693 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1694     if (time < 0)
1695     throw new IllegalArgumentException();
1696 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1697     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1698 dl 1.107 long keepAliveTime = unit.toNanos(time);
1699     long delta = keepAliveTime - this.keepAliveTime;
1700     this.keepAliveTime = keepAliveTime;
1701     if (delta < 0)
1702 jsr166 1.113 interruptIdleWorkers();
1703 dl 1.2 }
1704 tim 1.1
1705     /**
1706     * Returns the thread keep-alive time, which is the amount of time
1707 jsr166 1.151 * that threads may remain idle before being terminated.
1708     * Threads that wait this amount of time without processing a
1709     * task will be terminated if there are more than the core
1710     * number of threads currently in the pool, or if this pool
1711     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1712 tim 1.1 *
1713 dl 1.2 * @param unit the desired time unit of the result
1714 tim 1.1 * @return the time limit
1715 jsr166 1.144 * @see #setKeepAliveTime(long, TimeUnit)
1716 tim 1.1 */
1717 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1718 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1719     }
1720 tim 1.1
1721 dl 1.86 /* User-level queue utilities */
1722    
1723     /**
1724     * Returns the task queue used by this executor. Access to the
1725     * task queue is intended primarily for debugging and monitoring.
1726     * This queue may be in active use. Retrieving the task queue
1727     * does not prevent queued tasks from executing.
1728     *
1729     * @return the task queue
1730     */
1731     public BlockingQueue<Runnable> getQueue() {
1732     return workQueue;
1733     }
1734    
1735     /**
1736     * Removes this task from the executor's internal queue if it is
1737     * present, thus causing it not to be run if it has not already
1738     * started.
1739     *
1740 jsr166 1.134 * <p>This method may be useful as one part of a cancellation
1741 dl 1.86 * scheme. It may fail to remove tasks that have been converted
1742 jsr166 1.149 * into other forms before being placed on the internal queue.
1743     * For example, a task entered using {@code submit} might be
1744 jsr166 1.116 * converted into a form that maintains {@code Future} status.
1745 jsr166 1.117 * However, in such cases, method {@link #purge} may be used to
1746     * remove those Futures that have been cancelled.
1747 dl 1.86 *
1748     * @param task the task to remove
1749 jsr166 1.147 * @return {@code true} if the task was removed
1750 dl 1.86 */
1751     public boolean remove(Runnable task) {
1752 jsr166 1.116 boolean removed = workQueue.remove(task);
1753     tryTerminate(); // In case SHUTDOWN and now empty
1754 dl 1.107 return removed;
1755 dl 1.86 }
1756    
1757     /**
1758     * Tries to remove from the work queue all {@link Future}
1759     * tasks that have been cancelled. This method can be useful as a
1760     * storage reclamation operation, that has no other impact on
1761     * functionality. Cancelled tasks are never executed, but may
1762     * accumulate in work queues until worker threads can actively
1763     * remove them. Invoking this method instead tries to remove them now.
1764     * However, this method may fail to remove tasks in
1765     * the presence of interference by other threads.
1766     */
1767     public void purge() {
1768 jsr166 1.111 final BlockingQueue<Runnable> q = workQueue;
1769 dl 1.86 try {
1770 dl 1.107 Iterator<Runnable> it = q.iterator();
1771 dl 1.86 while (it.hasNext()) {
1772     Runnable r = it.next();
1773 jsr166 1.111 if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1774 jsr166 1.121 it.remove();
1775 dl 1.107 }
1776 jsr166 1.111 } catch (ConcurrentModificationException fallThrough) {
1777 jsr166 1.121 // Take slow path if we encounter interference during traversal.
1778 jsr166 1.111 // Make copy for traversal and call remove for cancelled entries.
1779 jsr166 1.121 // The slow path is more likely to be O(N*N).
1780 jsr166 1.111 for (Object r : q.toArray())
1781     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1782 jsr166 1.121 q.remove(r);
1783 dl 1.86 }
1784 dl 1.107
1785     tryTerminate(); // In case SHUTDOWN and now empty
1786 dl 1.86 }
1787    
1788 tim 1.1 /* Statistics */
1789    
1790     /**
1791     * Returns the current number of threads in the pool.
1792     *
1793     * @return the number of threads
1794     */
1795 tim 1.10 public int getPoolSize() {
1796 dl 1.107 final ReentrantLock mainLock = this.mainLock;
1797     mainLock.lock();
1798     try {
1799 jsr166 1.121 // Remove rare and surprising possibility of
1800     // isTerminated() && getPoolSize() > 0
1801 jsr166 1.117 return runStateAtLeast(ctl.get(), TIDYING) ? 0
1802 jsr166 1.121 : workers.size();
1803 dl 1.107 } finally {
1804     mainLock.unlock();
1805     }
1806 dl 1.2 }
1807 tim 1.1
1808     /**
1809 dl 1.2 * Returns the approximate number of threads that are actively
1810 tim 1.1 * executing tasks.
1811     *
1812     * @return the number of threads
1813     */
1814 tim 1.10 public int getActiveCount() {
1815 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1816 dl 1.2 mainLock.lock();
1817     try {
1818     int n = 0;
1819 jsr166 1.116 for (Worker w : workers)
1820 dl 1.107 if (w.isLocked())
1821 dl 1.2 ++n;
1822     return n;
1823 tim 1.14 } finally {
1824 dl 1.2 mainLock.unlock();
1825     }
1826     }
1827 tim 1.1
1828     /**
1829 dl 1.2 * Returns the largest number of threads that have ever
1830     * simultaneously been in the pool.
1831 tim 1.1 *
1832     * @return the number of threads
1833     */
1834 tim 1.10 public int getLargestPoolSize() {
1835 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1836 dl 1.2 mainLock.lock();
1837     try {
1838     return largestPoolSize;
1839 tim 1.14 } finally {
1840 dl 1.2 mainLock.unlock();
1841     }
1842     }
1843 tim 1.1
1844     /**
1845 dl 1.85 * Returns the approximate total number of tasks that have ever been
1846 dl 1.2 * scheduled for execution. Because the states of tasks and
1847     * threads may change dynamically during computation, the returned
1848 dl 1.97 * value is only an approximation.
1849 tim 1.1 *
1850     * @return the number of tasks
1851     */
1852 tim 1.10 public long getTaskCount() {
1853 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1854 dl 1.2 mainLock.lock();
1855     try {
1856     long n = completedTaskCount;
1857 tim 1.39 for (Worker w : workers) {
1858 dl 1.2 n += w.completedTasks;
1859 dl 1.107 if (w.isLocked())
1860 dl 1.2 ++n;
1861     }
1862     return n + workQueue.size();
1863 tim 1.14 } finally {
1864 dl 1.2 mainLock.unlock();
1865     }
1866     }
1867 tim 1.1
1868     /**
1869 dl 1.2 * Returns the approximate total number of tasks that have
1870     * completed execution. Because the states of tasks and threads
1871     * may change dynamically during computation, the returned value
1872 dl 1.17 * is only an approximation, but one that does not ever decrease
1873     * across successive calls.
1874 tim 1.1 *
1875     * @return the number of tasks
1876     */
1877 tim 1.10 public long getCompletedTaskCount() {
1878 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1879 dl 1.2 mainLock.lock();
1880     try {
1881     long n = completedTaskCount;
1882 tim 1.39 for (Worker w : workers)
1883     n += w.completedTasks;
1884 dl 1.2 return n;
1885 tim 1.14 } finally {
1886 dl 1.2 mainLock.unlock();
1887     }
1888     }
1889 tim 1.1
1890 dl 1.123 /**
1891     * Returns a string identifying this pool, as well as its state,
1892     * including indications of run state and estimated worker and
1893     * task counts.
1894     *
1895     * @return a string identifying this pool, as well as its state
1896     */
1897     public String toString() {
1898     long ncompleted;
1899     int nworkers, nactive;
1900     final ReentrantLock mainLock = this.mainLock;
1901     mainLock.lock();
1902     try {
1903     ncompleted = completedTaskCount;
1904     nactive = 0;
1905     nworkers = workers.size();
1906     for (Worker w : workers) {
1907     ncompleted += w.completedTasks;
1908     if (w.isLocked())
1909     ++nactive;
1910     }
1911     } finally {
1912     mainLock.unlock();
1913     }
1914     int c = ctl.get();
1915 jsr166 1.150 String runState =
1916 jsr166 1.178 isRunning(c) ? "Running" :
1917 jsr166 1.150 runStateAtLeast(c, TERMINATED) ? "Terminated" :
1918     "Shutting down";
1919 dl 1.123 return super.toString() +
1920 jsr166 1.150 "[" + runState +
1921 dl 1.123 ", pool size = " + nworkers +
1922     ", active threads = " + nactive +
1923     ", queued tasks = " + workQueue.size() +
1924     ", completed tasks = " + ncompleted +
1925     "]";
1926     }
1927    
1928 dl 1.86 /* Extension hooks */
1929    
1930 tim 1.1 /**
1931 dl 1.17 * Method invoked prior to executing the given Runnable in the
1932 jsr166 1.116 * given thread. This method is invoked by thread {@code t} that
1933     * will execute task {@code r}, and may be used to re-initialize
1934 jsr166 1.73 * ThreadLocals, or to perform logging.
1935     *
1936     * <p>This implementation does nothing, but may be customized in
1937     * subclasses. Note: To properly nest multiple overridings, subclasses
1938 jsr166 1.116 * should generally invoke {@code super.beforeExecute} at the end of
1939 jsr166 1.73 * this method.
1940 tim 1.1 *
1941 jsr166 1.116 * @param t the thread that will run task {@code r}
1942     * @param r the task that will be executed
1943 tim 1.1 */
1944 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1945 tim 1.1
1946     /**
1947 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1948     * This method is invoked by the thread that executed the task. If
1949 jsr166 1.116 * non-null, the Throwable is the uncaught {@code RuntimeException}
1950     * or {@code Error} that caused execution to terminate abruptly.
1951 dl 1.69 *
1952 dl 1.107 * <p>This implementation does nothing, but may be customized in
1953     * subclasses. Note: To properly nest multiple overridings, subclasses
1954 jsr166 1.116 * should generally invoke {@code super.afterExecute} at the
1955 dl 1.107 * beginning of this method.
1956     *
1957 dl 1.69 * <p><b>Note:</b> When actions are enclosed in tasks (such as
1958     * {@link FutureTask}) either explicitly or via methods such as
1959 jsr166 1.116 * {@code submit}, these task objects catch and maintain
1960 dl 1.69 * computational exceptions, and so they do not cause abrupt
1961 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1962 dl 1.107 * passed to this method. If you would like to trap both kinds of
1963     * failures in this method, you can further probe for such cases,
1964     * as in this sample subclass that prints either the direct cause
1965     * or the underlying exception if a task has been aborted:
1966     *
1967 jsr166 1.160 * <pre> {@code
1968 dl 1.107 * class ExtendedExecutor extends ThreadPoolExecutor {
1969     * // ...
1970     * protected void afterExecute(Runnable r, Throwable t) {
1971     * super.afterExecute(r, t);
1972 jsr166 1.159 * if (t == null
1973     * && r instanceof Future<?>
1974     * && ((Future<?>)r).isDone()) {
1975 dl 1.107 * try {
1976 jsr166 1.116 * Object result = ((Future<?>) r).get();
1977 dl 1.107 * } catch (CancellationException ce) {
1978 jsr166 1.154 * t = ce;
1979 dl 1.107 * } catch (ExecutionException ee) {
1980 jsr166 1.154 * t = ee.getCause();
1981 dl 1.107 * } catch (InterruptedException ie) {
1982 jsr166 1.159 * // ignore/reset
1983     * Thread.currentThread().interrupt();
1984 dl 1.107 * }
1985     * }
1986     * if (t != null)
1987     * System.out.println(t);
1988     * }
1989 jsr166 1.116 * }}</pre>
1990 tim 1.1 *
1991 jsr166 1.116 * @param r the runnable that has completed
1992 dl 1.24 * @param t the exception that caused termination, or null if
1993 jsr166 1.116 * execution completed normally
1994 tim 1.1 */
1995 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1996 tim 1.1
1997 dl 1.2 /**
1998     * Method invoked when the Executor has terminated. Default
1999 dl 1.17 * implementation does nothing. Note: To properly nest multiple
2000     * overridings, subclasses should generally invoke
2001 jsr166 1.116 * {@code super.terminated} within this method.
2002 dl 1.2 */
2003     protected void terminated() { }
2004 tim 1.1
2005 dl 1.86 /* Predefined RejectedExecutionHandlers */
2006    
2007 tim 1.1 /**
2008 dl 1.21 * A handler for rejected tasks that runs the rejected task
2009 jsr166 1.116 * directly in the calling thread of the {@code execute} method,
2010 dl 1.21 * unless the executor has been shut down, in which case the task
2011     * is discarded.
2012 tim 1.1 */
2013 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
2014 tim 1.1 /**
2015 jsr166 1.116 * Creates a {@code CallerRunsPolicy}.
2016 tim 1.1 */
2017     public CallerRunsPolicy() { }
2018    
2019 dl 1.24 /**
2020     * Executes task r in the caller's thread, unless the executor
2021     * has been shut down, in which case the task is discarded.
2022 jsr166 1.116 *
2023 dl 1.24 * @param r the runnable task requested to be executed
2024     * @param e the executor attempting to execute this task
2025     */
2026 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2027     if (!e.isShutdown()) {
2028 tim 1.1 r.run();
2029     }
2030     }
2031     }
2032    
2033     /**
2034 dl 1.21 * A handler for rejected tasks that throws a
2035 jsr166 1.170 * {@link RejectedExecutionException}.
2036     *
2037     * This is the default handler for {@link ThreadPoolExecutor} and
2038     * {@link ScheduledThreadPoolExecutor}.
2039 tim 1.1 */
2040 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
2041 tim 1.1 /**
2042 jsr166 1.116 * Creates an {@code AbortPolicy}.
2043 tim 1.1 */
2044     public AbortPolicy() { }
2045    
2046 dl 1.24 /**
2047 dl 1.54 * Always throws RejectedExecutionException.
2048 jsr166 1.116 *
2049 dl 1.24 * @param r the runnable task requested to be executed
2050     * @param e the executor attempting to execute this task
2051 jsr166 1.141 * @throws RejectedExecutionException always
2052 dl 1.24 */
2053 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2054 dl 1.123 throw new RejectedExecutionException("Task " + r.toString() +
2055     " rejected from " +
2056     e.toString());
2057 tim 1.1 }
2058     }
2059    
2060     /**
2061 dl 1.21 * A handler for rejected tasks that silently discards the
2062     * rejected task.
2063 tim 1.1 */
2064 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
2065 tim 1.1 /**
2066 jsr166 1.116 * Creates a {@code DiscardPolicy}.
2067 tim 1.1 */
2068     public DiscardPolicy() { }
2069    
2070 dl 1.24 /**
2071     * Does nothing, which has the effect of discarding task r.
2072 jsr166 1.116 *
2073 dl 1.24 * @param r the runnable task requested to be executed
2074     * @param e the executor attempting to execute this task
2075     */
2076 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2077 tim 1.1 }
2078     }
2079    
2080     /**
2081 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
2082 jsr166 1.116 * request and then retries {@code execute}, unless the executor
2083 dl 1.21 * is shut down, in which case the task is discarded.
2084 tim 1.1 */
2085 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2086 tim 1.1 /**
2087 jsr166 1.116 * Creates a {@code DiscardOldestPolicy} for the given executor.
2088 tim 1.1 */
2089     public DiscardOldestPolicy() { }
2090    
2091 dl 1.24 /**
2092     * Obtains and ignores the next task that the executor
2093     * would otherwise execute, if one is immediately available,
2094     * and then retries execution of task r, unless the executor
2095     * is shut down, in which case task r is instead discarded.
2096 jsr166 1.116 *
2097 dl 1.24 * @param r the runnable task requested to be executed
2098     * @param e the executor attempting to execute this task
2099     */
2100 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2101     if (!e.isShutdown()) {
2102     e.getQueue().poll();
2103     e.execute(r);
2104 tim 1.1 }
2105     }
2106     }
2107     }