ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.41
Committed: Wed Dec 10 14:57:13 2003 UTC (20 years, 5 months ago) by tim
Branch: MAIN
Changes since 1.40: +7 -2 lines
Log Message:
Don't allocate an empty Runnable[] each time toArray() is called.

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.9 import java.util.concurrent.locks.*;
9 dl 1.33 import java.util.concurrent.atomic.AtomicInteger;
10 dl 1.2 import java.util.*;
11 tim 1.1
12     /**
13 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
14 dl 1.28 * one of possibly several pooled threads, normally configured
15     * using {@link Executors} factory methods.
16 tim 1.1 *
17 dl 1.17 * <p>Thread pools address two different problems: they usually
18     * provide improved performance when executing large numbers of
19     * asynchronous tasks, due to reduced per-task invocation overhead,
20     * and they provide a means of bounding and managing the resources,
21     * including threads, consumed when executing a collection of tasks.
22 dl 1.20 * Each <tt>ThreadPoolExecutor</tt> also maintains some basic
23 dl 1.22 * statistics, such as the number of completed tasks.
24 dl 1.17 *
25 tim 1.1 * <p>To be useful across a wide range of contexts, this class
26 dl 1.24 * provides many adjustable parameters and extensibility
27     * hooks. However, programmers are urged to use the more convenient
28 dl 1.20 * {@link Executors} factory methods {@link
29     * Executors#newCachedThreadPool} (unbounded thread pool, with
30     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
31     * (fixed size thread pool) and {@link
32     * Executors#newSingleThreadExecutor} (single background thread), that
33 dl 1.22 * preconfigure settings for the most common usage
34     * scenarios. Otherwise, use the following guide when manually
35 dl 1.24 * configuring and tuning this class:
36 dl 1.17 *
37 tim 1.1 * <dl>
38 dl 1.2 *
39 dl 1.21 * <dt>Core and maximum pool sizes</dt>
40 dl 1.2 *
41 dl 1.19 * <dd>A <tt>ThreadPoolExecutor</tt> will automatically adjust the
42 dl 1.21 * pool size
43     * (see {@link ThreadPoolExecutor#getPoolSize})
44     * according to the bounds set by corePoolSize
45     * (see {@link ThreadPoolExecutor#getCorePoolSize})
46     * and
47     * maximumPoolSize
48     * (see {@link ThreadPoolExecutor#getMaximumPoolSize}).
49     * When a new task is submitted in method {@link
50     * ThreadPoolExecutor#execute}, and fewer than corePoolSize threads
51     * are running, a new thread is created to handle the request, even if
52     * other worker threads are idle. If there are more than
53     * corePoolSize but less than maximumPoolSize threads running, a new
54     * thread will be created only if the queue is full. By setting
55     * corePoolSize and maximumPoolSize the same, you create a fixed-size
56     * thread pool. By setting maximumPoolSize to an essentially unbounded
57     * value such as <tt>Integer.MAX_VALUE</tt>, you allow the pool to
58 dl 1.27 * accommodate an arbitrary number of concurrent tasks. Most typically,
59 dl 1.21 * core and maximum pool sizes are set only upon construction, but they
60     * may also be changed dynamically using {@link
61     * ThreadPoolExecutor#setCorePoolSize} and {@link
62     * ThreadPoolExecutor#setMaximumPoolSize}. <dd>
63 dl 1.2 *
64 dl 1.21 * <dt> On-demand construction
65 dl 1.2 *
66 dl 1.21 * <dd> By default, even core threads are initially created and
67     * started only when needed by new tasks, but this can be overridden
68     * dynamically using method {@link
69     * ThreadPoolExecutor#prestartCoreThread} or
70     * {@link ThreadPoolExecutor#prestartAllCoreThreads}. </dd>
71 dl 1.2 *
72 tim 1.1 * <dt>Creating new threads</dt>
73 dl 1.2 *
74 dl 1.33 * <dd>New threads are created using a {@link
75     * java.util.concurrent.ThreadFactory}. If not otherwise specified, a
76 dl 1.34 * {@link Executors#defaultThreadFactory} is used, that creates threads to all
77 dl 1.33 * be in the same {@link ThreadGroup} and with the same
78     * <tt>NORM_PRIORITY</tt> priority and non-daemon status. By supplying
79     * a different ThreadFactory, you can alter the thread's name, thread
80     * group, priority, daemon status, etc. </dd>
81 dl 1.2 *
82 dl 1.21 * <dt>Keep-alive times</dt>
83     *
84     * <dd>If the pool currently has more than corePoolSize threads,
85     * excess threads will be terminated if they have been idle for more
86     * than the keepAliveTime (see {@link
87     * ThreadPoolExecutor#getKeepAliveTime}). This provides a means of
88     * reducing resource consumption when the pool is not being actively
89     * used. If the pool becomes more active later, new threads will be
90     * constructed. This parameter can also be changed dynamically
91     * using method {@link ThreadPoolExecutor#setKeepAliveTime}. Using
92     * a value of <tt>Long.MAX_VALUE</tt> {@link TimeUnit#NANOSECONDS}
93     * effectively disables idle threads from ever terminating prior
94     * to shut down.
95     * </dd>
96     *
97     * <dt>Queueing</dt>
98     *
99     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
100     * submitted tasks. The use of this queue interacts with pool sizing:
101 dl 1.2 *
102 dl 1.21 * <ul>
103     *
104 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
105     * always prefers adding a new thread
106 dl 1.21 * rather than queueing.</li>
107     *
108 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
109     * always prefers queuing a request rather than adding a new
110     * thread.</li>
111 dl 1.21 *
112     * <li> If a request cannot be queued, a new thread is created unless
113     * this would exceed maximumPoolSize, in which case, the task will be
114     * rejected.</li>
115     *
116     * </ul>
117     *
118     * There are three general strategies for queuing:
119     * <ol>
120     *
121     * <li> <em> Direct handoffs.</em> A good default choice for a work
122     * queue is a {@link SynchronousQueue} that hands off tasks to threads
123     * without otherwise holding them. Here, an attempt to queue a task
124     * will fail if no threads are immediately available to run it, so a
125     * new thread will be constructed. This policy avoids lockups when
126     * handling sets of requests that might have internal dependencies.
127     * Direct handoffs generally require unbounded maximumPoolSizes to
128 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
129 dl 1.21 * possibility of unbounded thread growth when commands continue to
130     * arrive on average faster than they can be processed. </li>
131     *
132     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
133     * example a {@link LinkedBlockingQueue} without a predefined
134     * capacity) will cause new tasks to be queued in cases where all
135 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
136     * threads will ever be created. (And the value of the maximumPoolSize
137     * therefore doesn't have any effect.) This may be appropriate when
138     * each task is completely independent of others, so tasks cannot
139     * affect each others execution; for example, in a web page server.
140     * While this style of queuing can be useful in smoothing out
141     * transient bursts of requests, it admits the possibility of
142     * unbounded work queue growth when commands continue to arrive on
143     * average faster than they can be processed. </li>
144 dl 1.21 *
145     * <li><em>Bounded queues.</em> A bounded queue (for example, an
146     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
147     * used with finite maximumPoolSizes, but can be more difficult to
148     * tune and control. Queue sizes and maximum pool sizes may be traded
149     * off for each other: Using large queues and small pools minimizes
150     * CPU usage, OS resources, and context-switching overhead, but can
151 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
152 dl 1.21 * example if they are I/O bound), a system may be able to schedule
153     * time for more threads than you otherwise allow. Use of small queues
154 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
155     * may encounter unacceptable scheduling overhead, which also
156     * decreases throughput. </li>
157 dl 1.21 *
158     * </ol>
159     *
160     * </dd>
161     *
162     * <dt>Rejected tasks</dt>
163     *
164     * <dd> New tasks submitted in method {@link
165     * ThreadPoolExecutor#execute} will be <em>rejected</em> when the
166     * Executor has been shut down, and also when the Executor uses finite
167     * bounds for both maximum threads and work queue capacity, and is
168 dl 1.22 * saturated. In either case, the <tt>execute</tt> method invokes the
169     * {@link RejectedExecutionHandler#rejectedExecution} method of its
170     * {@link RejectedExecutionHandler}. Four predefined handler policies
171     * are provided:
172 dl 1.21 *
173     * <ol>
174     *
175     * <li> In the
176     * default {@link ThreadPoolExecutor.AbortPolicy}, the handler throws a
177     * runtime {@link RejectedExecutionException} upon rejection. </li>
178     *
179     * <li> In {@link
180     * ThreadPoolExecutor.CallerRunsPolicy}, the thread that invokes
181     * <tt>execute</tt> itself runs the task. This provides a simple
182     * feedback control mechanism that will slow down the rate that new
183     * tasks are submitted. </li>
184     *
185     * <li> In {@link ThreadPoolExecutor.DiscardPolicy},
186     * a task that cannot be executed is simply dropped. </li>
187     *
188     * <li>In {@link
189     * ThreadPoolExecutor.DiscardOldestPolicy}, if the executor is not
190     * shut down, the task at the head of the work queue is dropped, and
191     * then execution is retried (which can fail again, causing this to be
192     * repeated.) </li>
193     *
194     * </ol>
195     *
196     * It is possible to define and use other kinds of {@link
197     * RejectedExecutionHandler} classes. Doing so requires some care
198     * especially when policies are designed to work only under particular
199     * capacity or queueing policies. </dd>
200     *
201     * <dt>Hook methods</dt>
202     *
203 dl 1.23 * <dd>This class provides <tt>protected</tt> overridable {@link
204 dl 1.21 * ThreadPoolExecutor#beforeExecute} and {@link
205     * ThreadPoolExecutor#afterExecute} methods that are called before and
206 dl 1.19 * after execution of each task. These can be used to manipulate the
207     * execution environment, for example, reinitializing ThreadLocals,
208 dl 1.21 * gathering statistics, or adding log entries. Additionally, method
209     * {@link ThreadPoolExecutor#terminated} can be overridden to perform
210     * any special processing that needs to be done once the Executor has
211     * fully terminated.</dd>
212 dl 1.2 *
213 dl 1.21 * <dt>Queue maintenance</dt>
214 dl 1.2 *
215 dl 1.24 * <dd> Method {@link ThreadPoolExecutor#getQueue} allows access to
216     * the work queue for purposes of monitoring and debugging. Use of
217     * this method for any other purpose is strongly discouraged. Two
218     * supplied methods, {@link ThreadPoolExecutor#remove} and {@link
219     * ThreadPoolExecutor#purge} are available to assist in storage
220     * reclamation when large numbers of queued tasks become
221     * cancelled.</dd> </dl>
222 tim 1.1 *
223     * @since 1.5
224 dl 1.8 * @author Doug Lea
225 tim 1.1 */
226 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
227 dl 1.2 /**
228 tim 1.41 * Only used to force toArray() to produce a Runnable[].
229     */
230     private static final Runnable[] EMPTY_RUNNABLE_ARRAY = new Runnable[0];
231    
232     /**
233 dl 1.2 * Queue used for holding tasks and handing off to worker threads.
234 tim 1.10 */
235 dl 1.2 private final BlockingQueue<Runnable> workQueue;
236    
237     /**
238     * Lock held on updates to poolSize, corePoolSize, maximumPoolSize, and
239     * workers set.
240 tim 1.10 */
241 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
242    
243     /**
244     * Wait condition to support awaitTermination
245 tim 1.10 */
246 dl 1.32 private final ReentrantLock.ConditionObject termination = mainLock.newCondition();
247 dl 1.2
248     /**
249     * Set containing all worker threads in pool.
250 tim 1.10 */
251 dl 1.17 private final HashSet<Worker> workers = new HashSet<Worker>();
252 dl 1.2
253     /**
254 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
255 dl 1.2 * Threads use this timeout only when there are more than
256     * corePoolSize present. Otherwise they wait forever for new work.
257 tim 1.10 */
258 dl 1.2 private volatile long keepAliveTime;
259    
260     /**
261     * Core pool size, updated only while holding mainLock,
262     * but volatile to allow concurrent readability even
263     * during updates.
264 tim 1.10 */
265 dl 1.2 private volatile int corePoolSize;
266    
267     /**
268     * Maximum pool size, updated only while holding mainLock
269     * but volatile to allow concurrent readability even
270     * during updates.
271 tim 1.10 */
272 dl 1.2 private volatile int maximumPoolSize;
273    
274     /**
275     * Current pool size, updated only while holding mainLock
276     * but volatile to allow concurrent readability even
277     * during updates.
278 tim 1.10 */
279 dl 1.2 private volatile int poolSize;
280    
281     /**
282 dl 1.16 * Lifecycle state
283 tim 1.10 */
284 dl 1.16 private volatile int runState;
285 dl 1.2
286 dl 1.16 // Special values for runState
287 dl 1.8 /** Normal, not-shutdown mode */
288 dl 1.16 private static final int RUNNING = 0;
289 dl 1.8 /** Controlled shutdown mode */
290 dl 1.16 private static final int SHUTDOWN = 1;
291     /** Immediate shutdown mode */
292     private static final int STOP = 2;
293     /** Final state */
294     private static final int TERMINATED = 3;
295 dl 1.2
296     /**
297     * Handler called when saturated or shutdown in execute.
298 tim 1.10 */
299 dl 1.33 private volatile RejectedExecutionHandler handler;
300 dl 1.2
301     /**
302     * Factory for new threads.
303 tim 1.10 */
304 dl 1.33 private volatile ThreadFactory threadFactory;
305 dl 1.2
306     /**
307     * Tracks largest attained pool size.
308 tim 1.10 */
309 dl 1.2 private int largestPoolSize;
310    
311     /**
312     * Counter for completed tasks. Updated only on termination of
313     * worker threads.
314 tim 1.10 */
315 dl 1.2 private long completedTaskCount;
316 tim 1.41
317 dl 1.8 /**
318 dl 1.35 * The default rejected execution handler
319 dl 1.8 */
320 tim 1.10 private static final RejectedExecutionHandler defaultHandler =
321 dl 1.2 new AbortPolicy();
322    
323     /**
324 dl 1.17 * Invoke the rejected execution handler for the given command.
325 dl 1.13 */
326     void reject(Runnable command) {
327     handler.rejectedExecution(command, this);
328     }
329    
330 dl 1.33
331    
332     /**
333 dl 1.2 * Create and return a new thread running firstTask as its first
334     * task. Call only while holding mainLock
335 dl 1.8 * @param firstTask the task the new thread should run first (or
336     * null if none)
337     * @return the new thread
338 dl 1.2 */
339     private Thread addThread(Runnable firstTask) {
340     Worker w = new Worker(firstTask);
341     Thread t = threadFactory.newThread(w);
342     w.thread = t;
343     workers.add(w);
344     int nt = ++poolSize;
345     if (nt > largestPoolSize)
346     largestPoolSize = nt;
347     return t;
348     }
349    
350 dl 1.16
351 dl 1.15
352 dl 1.2 /**
353     * Create and start a new thread running firstTask as its first
354     * task, only if less than corePoolSize threads are running.
355 dl 1.8 * @param firstTask the task the new thread should run first (or
356     * null if none)
357 dl 1.2 * @return true if successful.
358     */
359 dl 1.16 private boolean addIfUnderCorePoolSize(Runnable firstTask) {
360 dl 1.2 Thread t = null;
361     mainLock.lock();
362     try {
363 tim 1.10 if (poolSize < corePoolSize)
364 dl 1.8 t = addThread(firstTask);
365 tim 1.14 } finally {
366 dl 1.2 mainLock.unlock();
367     }
368     if (t == null)
369     return false;
370     t.start();
371     return true;
372     }
373    
374     /**
375     * Create and start a new thread only if less than maximumPoolSize
376     * threads are running. The new thread runs as its first task the
377     * next task in queue, or if there is none, the given task.
378 dl 1.8 * @param firstTask the task the new thread should run first (or
379     * null if none)
380 dl 1.2 * @return null on failure, else the first task to be run by new thread.
381     */
382 dl 1.8 private Runnable addIfUnderMaximumPoolSize(Runnable firstTask) {
383 dl 1.2 Thread t = null;
384     Runnable next = null;
385     mainLock.lock();
386     try {
387     if (poolSize < maximumPoolSize) {
388     next = workQueue.poll();
389     if (next == null)
390 dl 1.8 next = firstTask;
391 dl 1.2 t = addThread(next);
392     }
393 tim 1.14 } finally {
394 dl 1.2 mainLock.unlock();
395     }
396     if (t == null)
397     return null;
398     t.start();
399     return next;
400     }
401    
402    
403     /**
404     * Get the next task for a worker thread to run.
405 dl 1.8 * @return the task
406     * @throws InterruptedException if interrupted while waiting for task
407 dl 1.2 */
408     private Runnable getTask() throws InterruptedException {
409     for (;;) {
410 dl 1.16 switch(runState) {
411     case RUNNING: {
412     if (poolSize <= corePoolSize) // untimed wait if core
413     return workQueue.take();
414    
415     long timeout = keepAliveTime;
416     if (timeout <= 0) // die immediately for 0 timeout
417     return null;
418     Runnable r = workQueue.poll(timeout, TimeUnit.NANOSECONDS);
419     if (r != null)
420     return r;
421     if (poolSize > corePoolSize) // timed out
422     return null;
423     // else, after timeout, pool shrank so shouldn't die, so retry
424     break;
425     }
426    
427     case SHUTDOWN: {
428     // Help drain queue
429     Runnable r = workQueue.poll();
430     if (r != null)
431     return r;
432    
433     // Check if can terminate
434     if (workQueue.isEmpty()) {
435     interruptIdleWorkers();
436     return null;
437     }
438    
439     // There could still be delayed tasks in queue.
440     // Wait for one, re-checking state upon interruption
441     try {
442     return workQueue.take();
443     }
444     catch(InterruptedException ignore) {
445     }
446     break;
447     }
448    
449     case STOP:
450 dl 1.2 return null;
451 dl 1.16 default:
452     assert false;
453     }
454     }
455     }
456    
457     /**
458     * Wake up all threads that might be waiting for tasks.
459     */
460     void interruptIdleWorkers() {
461     mainLock.lock();
462     try {
463 tim 1.39 for (Worker w : workers)
464     w.interruptIfIdle();
465 dl 1.16 } finally {
466     mainLock.unlock();
467 dl 1.2 }
468     }
469    
470     /**
471     * Perform bookkeeping for a terminated worker thread.
472 tim 1.10 * @param w the worker
473 dl 1.2 */
474     private void workerDone(Worker w) {
475     mainLock.lock();
476     try {
477     completedTaskCount += w.completedTasks;
478     workers.remove(w);
479 tim 1.10 if (--poolSize > 0)
480 dl 1.2 return;
481    
482 dl 1.16 // Else, this is the last thread. Deal with potential shutdown.
483    
484     int state = runState;
485     assert state != TERMINATED;
486 tim 1.10
487 dl 1.16 if (state != STOP) {
488     // If there are queued tasks but no threads, create
489     // replacement.
490 dl 1.2 Runnable r = workQueue.poll();
491     if (r != null) {
492     addThread(r).start();
493     return;
494     }
495 dl 1.16
496     // If there are some (presumably delayed) tasks but
497     // none pollable, create an idle replacement to wait.
498     if (!workQueue.isEmpty()) {
499     addThread(null).start();
500     return;
501     }
502    
503     // Otherwise, we can exit without replacement
504     if (state == RUNNING)
505     return;
506 dl 1.2 }
507    
508 dl 1.16 // Either state is STOP, or state is SHUTDOWN and there is
509     // no work to do. So we can terminate.
510     runState = TERMINATED;
511 dl 1.2 termination.signalAll();
512 dl 1.16 // fall through to call terminate() outside of lock.
513 tim 1.14 } finally {
514 dl 1.2 mainLock.unlock();
515     }
516    
517 dl 1.16 assert runState == TERMINATED;
518     terminated();
519 dl 1.2 }
520    
521     /**
522 tim 1.10 * Worker threads
523 dl 1.2 */
524     private class Worker implements Runnable {
525    
526     /**
527     * The runLock is acquired and released surrounding each task
528     * execution. It mainly protects against interrupts that are
529     * intended to cancel the worker thread from instead
530     * interrupting the task being run.
531     */
532     private final ReentrantLock runLock = new ReentrantLock();
533    
534     /**
535     * Initial task to run before entering run loop
536     */
537     private Runnable firstTask;
538    
539     /**
540     * Per thread completed task counter; accumulated
541     * into completedTaskCount upon termination.
542     */
543     volatile long completedTasks;
544    
545     /**
546     * Thread this worker is running in. Acts as a final field,
547     * but cannot be set until thread is created.
548     */
549     Thread thread;
550    
551     Worker(Runnable firstTask) {
552     this.firstTask = firstTask;
553     }
554    
555     boolean isActive() {
556     return runLock.isLocked();
557     }
558    
559     /**
560     * Interrupt thread if not running a task
561 tim 1.10 */
562 dl 1.2 void interruptIfIdle() {
563     if (runLock.tryLock()) {
564     try {
565     thread.interrupt();
566 tim 1.14 } finally {
567 dl 1.2 runLock.unlock();
568     }
569     }
570     }
571    
572     /**
573     * Cause thread to die even if running a task.
574 tim 1.10 */
575 dl 1.2 void interruptNow() {
576     thread.interrupt();
577     }
578    
579     /**
580     * Run a single task between before/after methods.
581     */
582     private void runTask(Runnable task) {
583     runLock.lock();
584     try {
585     // Abort now if immediate cancel. Otherwise, we have
586     // committed to run this task.
587 dl 1.16 if (runState == STOP)
588 dl 1.2 return;
589    
590     Thread.interrupted(); // clear interrupt status on entry
591     boolean ran = false;
592     beforeExecute(thread, task);
593     try {
594     task.run();
595     ran = true;
596     afterExecute(task, null);
597     ++completedTasks;
598 tim 1.14 } catch(RuntimeException ex) {
599 dl 1.2 if (!ran)
600     afterExecute(task, ex);
601 dl 1.17 // Else the exception occurred within
602 dl 1.2 // afterExecute itself in which case we don't
603     // want to call it again.
604     throw ex;
605     }
606 tim 1.14 } finally {
607 dl 1.2 runLock.unlock();
608     }
609     }
610    
611     /**
612     * Main run loop
613     */
614     public void run() {
615     try {
616     for (;;) {
617     Runnable task;
618     if (firstTask != null) {
619     task = firstTask;
620     firstTask = null;
621 tim 1.14 } else {
622 dl 1.2 task = getTask();
623     if (task == null)
624     break;
625     }
626     runTask(task);
627     task = null; // unnecessary but can help GC
628     }
629 tim 1.14 } catch(InterruptedException ie) {
630 dl 1.2 // fall through
631 tim 1.14 } finally {
632 dl 1.2 workerDone(this);
633     }
634     }
635     }
636 tim 1.1
637 dl 1.17 // Public methods
638    
639 tim 1.1 /**
640 dl 1.17 * Creates a new <tt>ThreadPoolExecutor</tt> with the given
641 dl 1.34 * initial parameters and default thread factory and handler. It
642     * may be more convenient to use one of the {@link Executors}
643     * factory methods instead of this general purpose constructor.
644 tim 1.1 *
645 dl 1.2 * @param corePoolSize the number of threads to keep in the
646 tim 1.1 * pool, even if they are idle.
647 dl 1.2 * @param maximumPoolSize the maximum number of threads to allow in the
648 tim 1.1 * pool.
649     * @param keepAliveTime when the number of threads is greater than
650 dl 1.2 * the core, this is the maximum time that excess idle threads
651 tim 1.1 * will wait for new tasks before terminating.
652 dl 1.2 * @param unit the time unit for the keepAliveTime
653 tim 1.1 * argument.
654 dl 1.36 * @param workQueue the queue to use for holding tasks before they
655 tim 1.1 * are executed. This queue will hold only the <tt>Runnable</tt>
656     * tasks submitted by the <tt>execute</tt> method.
657 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
658     * keepAliveTime less than zero, or if maximumPoolSize less than or
659     * equal to zero, or if corePoolSize greater than maximumPoolSize.
660 tim 1.1 * @throws NullPointerException if <tt>workQueue</tt> is null
661     */
662 dl 1.2 public ThreadPoolExecutor(int corePoolSize,
663     int maximumPoolSize,
664 tim 1.1 long keepAliveTime,
665 dl 1.2 TimeUnit unit,
666     BlockingQueue<Runnable> workQueue) {
667 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
668 dl 1.34 Executors.defaultThreadFactory(), defaultHandler);
669 dl 1.2 }
670 tim 1.1
671 dl 1.2 /**
672     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
673     * parameters.
674     *
675     * @param corePoolSize the number of threads to keep in the
676     * pool, even if they are idle.
677     * @param maximumPoolSize the maximum number of threads to allow in the
678     * pool.
679     * @param keepAliveTime when the number of threads is greater than
680     * the core, this is the maximum time that excess idle threads
681     * will wait for new tasks before terminating.
682     * @param unit the time unit for the keepAliveTime
683     * argument.
684 dl 1.36 * @param workQueue the queue to use for holding tasks before they
685 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
686     * tasks submitted by the <tt>execute</tt> method.
687     * @param threadFactory the factory to use when the executor
688 tim 1.10 * creates a new thread.
689 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
690     * keepAliveTime less than zero, or if maximumPoolSize less than or
691     * equal to zero, or if corePoolSize greater than maximumPoolSize.
692 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
693 dl 1.2 * or <tt>threadFactory</tt> are null.
694     */
695     public ThreadPoolExecutor(int corePoolSize,
696     int maximumPoolSize,
697     long keepAliveTime,
698     TimeUnit unit,
699     BlockingQueue<Runnable> workQueue,
700     ThreadFactory threadFactory) {
701 tim 1.1
702 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
703 dl 1.2 threadFactory, defaultHandler);
704     }
705 tim 1.1
706 dl 1.2 /**
707     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
708     * parameters.
709     *
710     * @param corePoolSize the number of threads to keep in the
711     * pool, even if they are idle.
712     * @param maximumPoolSize the maximum number of threads to allow in the
713     * pool.
714     * @param keepAliveTime when the number of threads is greater than
715     * the core, this is the maximum time that excess idle threads
716     * will wait for new tasks before terminating.
717     * @param unit the time unit for the keepAliveTime
718     * argument.
719 dl 1.36 * @param workQueue the queue to use for holding tasks before they
720 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
721     * tasks submitted by the <tt>execute</tt> method.
722     * @param handler the handler to use when execution is blocked
723     * because the thread bounds and queue capacities are reached.
724     * @throws IllegalArgumentException if corePoolSize, or
725     * keepAliveTime less than zero, or if maximumPoolSize less than or
726     * equal to zero, or if corePoolSize greater than maximumPoolSize.
727 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
728 dl 1.2 * or <tt>handler</tt> are null.
729     */
730     public ThreadPoolExecutor(int corePoolSize,
731     int maximumPoolSize,
732     long keepAliveTime,
733     TimeUnit unit,
734     BlockingQueue<Runnable> workQueue,
735     RejectedExecutionHandler handler) {
736 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
737 dl 1.34 Executors.defaultThreadFactory(), handler);
738 dl 1.2 }
739 tim 1.1
740 dl 1.2 /**
741     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
742     * parameters.
743     *
744     * @param corePoolSize the number of threads to keep in the
745     * pool, even if they are idle.
746     * @param maximumPoolSize the maximum number of threads to allow in the
747     * pool.
748     * @param keepAliveTime when the number of threads is greater than
749     * the core, this is the maximum time that excess idle threads
750     * will wait for new tasks before terminating.
751     * @param unit the time unit for the keepAliveTime
752     * argument.
753 dl 1.36 * @param workQueue the queue to use for holding tasks before they
754 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
755     * tasks submitted by the <tt>execute</tt> method.
756     * @param threadFactory the factory to use when the executor
757 tim 1.10 * creates a new thread.
758 dl 1.2 * @param handler the handler to use when execution is blocked
759     * because the thread bounds and queue capacities are reached.
760     * @throws IllegalArgumentException if corePoolSize, or
761     * keepAliveTime less than zero, or if maximumPoolSize less than or
762     * equal to zero, or if corePoolSize greater than maximumPoolSize.
763 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
764 dl 1.2 * or <tt>threadFactory</tt> or <tt>handler</tt> are null.
765     */
766     public ThreadPoolExecutor(int corePoolSize,
767     int maximumPoolSize,
768     long keepAliveTime,
769     TimeUnit unit,
770     BlockingQueue<Runnable> workQueue,
771     ThreadFactory threadFactory,
772     RejectedExecutionHandler handler) {
773 tim 1.10 if (corePoolSize < 0 ||
774 dl 1.2 maximumPoolSize <= 0 ||
775 tim 1.10 maximumPoolSize < corePoolSize ||
776 dl 1.2 keepAliveTime < 0)
777     throw new IllegalArgumentException();
778     if (workQueue == null || threadFactory == null || handler == null)
779     throw new NullPointerException();
780     this.corePoolSize = corePoolSize;
781     this.maximumPoolSize = maximumPoolSize;
782     this.workQueue = workQueue;
783     this.keepAliveTime = unit.toNanos(keepAliveTime);
784     this.threadFactory = threadFactory;
785     this.handler = handler;
786 tim 1.1 }
787    
788 dl 1.2
789     /**
790     * Executes the given task sometime in the future. The task
791     * may execute in a new thread or in an existing pooled thread.
792     *
793     * If the task cannot be submitted for execution, either because this
794     * executor has been shutdown or because its capacity has been reached,
795 tim 1.10 * the task is handled by the current <tt>RejectedExecutionHandler</tt>.
796 dl 1.2 *
797     * @param command the task to execute
798     * @throws RejectedExecutionException at discretion of
799 dl 1.8 * <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
800     * for execution
801 dl 1.26 * @throws NullPointerException if command is null
802 dl 1.2 */
803 tim 1.10 public void execute(Runnable command) {
804 dl 1.26 if (command == null)
805     throw new NullPointerException();
806 dl 1.2 for (;;) {
807 dl 1.16 if (runState != RUNNING) {
808 dl 1.13 reject(command);
809 dl 1.2 return;
810     }
811     if (poolSize < corePoolSize && addIfUnderCorePoolSize(command))
812     return;
813     if (workQueue.offer(command))
814     return;
815     Runnable r = addIfUnderMaximumPoolSize(command);
816     if (r == command)
817     return;
818     if (r == null) {
819 dl 1.13 reject(command);
820 dl 1.2 return;
821     }
822     // else retry
823     }
824 tim 1.1 }
825 dl 1.4
826 dl 1.2 public void shutdown() {
827 dl 1.25 boolean fullyTerminated = false;
828 dl 1.2 mainLock.lock();
829     try {
830 dl 1.25 if (workers.size() > 0) {
831     if (runState == RUNNING) // don't override shutdownNow
832     runState = SHUTDOWN;
833 tim 1.39 for (Worker w: workers)
834     w.interruptIfIdle();
835 dl 1.25 }
836     else { // If no workers, trigger full termination now
837     fullyTerminated = true;
838     runState = TERMINATED;
839     termination.signalAll();
840     }
841 tim 1.14 } finally {
842 dl 1.2 mainLock.unlock();
843     }
844 dl 1.25 if (fullyTerminated)
845     terminated();
846 tim 1.1 }
847    
848 dl 1.16
849 tim 1.39 public List<Runnable> shutdownNow() {
850 dl 1.25 boolean fullyTerminated = false;
851 dl 1.2 mainLock.lock();
852     try {
853 dl 1.25 if (workers.size() > 0) {
854     if (runState != TERMINATED)
855     runState = STOP;
856 tim 1.39 for (Worker w : workers)
857     w.interruptNow();
858 dl 1.25 }
859     else { // If no workers, trigger full termination now
860     fullyTerminated = true;
861     runState = TERMINATED;
862     termination.signalAll();
863     }
864 tim 1.14 } finally {
865 dl 1.2 mainLock.unlock();
866     }
867 dl 1.25 if (fullyTerminated)
868     terminated();
869 tim 1.40
870 tim 1.41 return Arrays.asList(workQueue.toArray(EMPTY_RUNNABLE_ARRAY));
871 tim 1.1 }
872    
873 dl 1.2 public boolean isShutdown() {
874 dl 1.16 return runState != RUNNING;
875     }
876    
877     /**
878     * Return true if this executor is in the process of terminating
879     * after <tt>shutdown</tt> or <tt>shutdownNow</tt> but has not
880     * completely terminated. This method may be useful for
881     * debugging. A return of <tt>true</tt> reported a sufficient
882     * period after shutdown may indicate that submitted tasks have
883     * ignored or suppressed interruption, causing this executor not
884     * to properly terminate.
885     * @return true if terminating but not yet terminated.
886     */
887     public boolean isTerminating() {
888     return runState == STOP;
889 tim 1.1 }
890    
891 dl 1.2 public boolean isTerminated() {
892 dl 1.16 return runState == TERMINATED;
893 dl 1.2 }
894 tim 1.1
895 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
896     throws InterruptedException {
897     mainLock.lock();
898     try {
899 dl 1.25 long nanos = unit.toNanos(timeout);
900     for (;;) {
901     if (runState == TERMINATED)
902     return true;
903     if (nanos <= 0)
904     return false;
905     nanos = termination.awaitNanos(nanos);
906     }
907 tim 1.14 } finally {
908 dl 1.2 mainLock.unlock();
909     }
910 dl 1.15 }
911    
912     /**
913     * Invokes <tt>shutdown</tt> when this executor is no longer
914     * referenced.
915     */
916     protected void finalize() {
917     shutdown();
918 dl 1.2 }
919 tim 1.10
920 dl 1.2 /**
921     * Sets the thread factory used to create new threads.
922     *
923     * @param threadFactory the new thread factory
924 dl 1.30 * @throws NullPointerException if threadFactory is null
925 tim 1.11 * @see #getThreadFactory
926 dl 1.2 */
927     public void setThreadFactory(ThreadFactory threadFactory) {
928 dl 1.30 if (threadFactory == null)
929     throw new NullPointerException();
930 dl 1.2 this.threadFactory = threadFactory;
931 tim 1.1 }
932    
933 dl 1.2 /**
934     * Returns the thread factory used to create new threads.
935     *
936     * @return the current thread factory
937 tim 1.11 * @see #setThreadFactory
938 dl 1.2 */
939     public ThreadFactory getThreadFactory() {
940     return threadFactory;
941 tim 1.1 }
942    
943 dl 1.2 /**
944     * Sets a new handler for unexecutable tasks.
945     *
946     * @param handler the new handler
947 dl 1.31 * @throws NullPointerException if handler is null
948 tim 1.11 * @see #getRejectedExecutionHandler
949 dl 1.2 */
950     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
951 dl 1.31 if (handler == null)
952     throw new NullPointerException();
953 dl 1.2 this.handler = handler;
954     }
955 tim 1.1
956 dl 1.2 /**
957     * Returns the current handler for unexecutable tasks.
958     *
959     * @return the current handler
960 tim 1.11 * @see #setRejectedExecutionHandler
961 dl 1.2 */
962     public RejectedExecutionHandler getRejectedExecutionHandler() {
963     return handler;
964 tim 1.1 }
965    
966 dl 1.2 /**
967 dl 1.17 * Returns the task queue used by this executor. Access to the
968     * task queue is intended primarily for debugging and monitoring.
969 dl 1.27 * This queue may be in active use. Retrieving the task queue
970 dl 1.2 * does not prevent queued tasks from executing.
971     *
972     * @return the task queue
973     */
974     public BlockingQueue<Runnable> getQueue() {
975     return workQueue;
976 tim 1.1 }
977 dl 1.4
978     /**
979     * Removes this task from internal queue if it is present, thus
980     * causing it not to be run if it has not already started. This
981     * method may be useful as one part of a cancellation scheme.
982 tim 1.10 *
983 dl 1.8 * @param task the task to remove
984     * @return true if the task was removed
985 dl 1.4 */
986 dl 1.5 public boolean remove(Runnable task) {
987 dl 1.4 return getQueue().remove(task);
988     }
989    
990 dl 1.7
991     /**
992 dl 1.37 * Tries to remove from the work queue all {@link Future}
993 dl 1.16 * tasks that have been cancelled. This method can be useful as a
994     * storage reclamation operation, that has no other impact on
995     * functionality. Cancelled tasks are never executed, but may
996     * accumulate in work queues until worker threads can actively
997     * remove them. Invoking this method instead tries to remove them now.
998 dl 1.23 * However, this method may fail to remove tasks in
999 dl 1.16 * the presence of interference by other threads.
1000 dl 1.7 */
1001    
1002     public void purge() {
1003 dl 1.16 // Fail if we encounter interference during traversal
1004     try {
1005     Iterator<Runnable> it = getQueue().iterator();
1006     while (it.hasNext()) {
1007     Runnable r = it.next();
1008 dl 1.37 if (r instanceof Future<?>) {
1009     Future<?> c = (Future<?>)r;
1010 dl 1.16 if (c.isCancelled())
1011     it.remove();
1012     }
1013 dl 1.7 }
1014     }
1015 dl 1.16 catch(ConcurrentModificationException ex) {
1016     return;
1017     }
1018 dl 1.7 }
1019 tim 1.1
1020     /**
1021 dl 1.2 * Sets the core number of threads. This overrides any value set
1022     * in the constructor. If the new value is smaller than the
1023     * current value, excess existing threads will be terminated when
1024 dl 1.34 * they next become idle. If larger, new threads will, if needed,
1025     * be started to execute any queued tasks.
1026 tim 1.1 *
1027 dl 1.2 * @param corePoolSize the new core size
1028 tim 1.10 * @throws IllegalArgumentException if <tt>corePoolSize</tt>
1029 dl 1.8 * less than zero
1030 tim 1.11 * @see #getCorePoolSize
1031 tim 1.1 */
1032 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1033     if (corePoolSize < 0)
1034     throw new IllegalArgumentException();
1035     mainLock.lock();
1036     try {
1037     int extra = this.corePoolSize - corePoolSize;
1038     this.corePoolSize = corePoolSize;
1039 tim 1.38 if (extra < 0) {
1040     Runnable r;
1041     while (extra++ < 0 && poolSize < corePoolSize &&
1042     (r = workQueue.poll()) != null)
1043     addThread(r).start();
1044     }
1045     else if (extra > 0 && poolSize > corePoolSize) {
1046 dl 1.2 Iterator<Worker> it = workers.iterator();
1047 tim 1.10 while (it.hasNext() &&
1048 dl 1.34 extra-- > 0 &&
1049 dl 1.2 poolSize > corePoolSize &&
1050 dl 1.34 workQueue.remainingCapacity() == 0)
1051 dl 1.2 it.next().interruptIfIdle();
1052     }
1053 tim 1.14 } finally {
1054 dl 1.2 mainLock.unlock();
1055     }
1056     }
1057 tim 1.1
1058     /**
1059 dl 1.2 * Returns the core number of threads.
1060 tim 1.1 *
1061 dl 1.2 * @return the core number of threads
1062 tim 1.11 * @see #setCorePoolSize
1063 tim 1.1 */
1064 tim 1.10 public int getCorePoolSize() {
1065 dl 1.2 return corePoolSize;
1066 dl 1.16 }
1067    
1068     /**
1069     * Start a core thread, causing it to idly wait for work. This
1070     * overrides the default policy of starting core threads only when
1071     * new tasks are executed. This method will return <tt>false</tt>
1072     * if all core threads have already been started.
1073     * @return true if a thread was started
1074     */
1075     public boolean prestartCoreThread() {
1076     return addIfUnderCorePoolSize(null);
1077     }
1078    
1079     /**
1080     * Start all core threads, causing them to idly wait for work. This
1081     * overrides the default policy of starting core threads only when
1082     * new tasks are executed.
1083     * @return the number of threads started.
1084     */
1085     public int prestartAllCoreThreads() {
1086     int n = 0;
1087     while (addIfUnderCorePoolSize(null))
1088     ++n;
1089     return n;
1090 dl 1.2 }
1091 tim 1.1
1092     /**
1093     * Sets the maximum allowed number of threads. This overrides any
1094 dl 1.2 * value set in the constructor. If the new value is smaller than
1095     * the current value, excess existing threads will be
1096     * terminated when they next become idle.
1097 tim 1.1 *
1098 dl 1.2 * @param maximumPoolSize the new maximum
1099     * @throws IllegalArgumentException if maximumPoolSize less than zero or
1100     * the {@link #getCorePoolSize core pool size}
1101 tim 1.11 * @see #getMaximumPoolSize
1102 dl 1.2 */
1103     public void setMaximumPoolSize(int maximumPoolSize) {
1104     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1105     throw new IllegalArgumentException();
1106     mainLock.lock();
1107     try {
1108     int extra = this.maximumPoolSize - maximumPoolSize;
1109     this.maximumPoolSize = maximumPoolSize;
1110     if (extra > 0 && poolSize > maximumPoolSize) {
1111     Iterator<Worker> it = workers.iterator();
1112 tim 1.10 while (it.hasNext() &&
1113     extra > 0 &&
1114 dl 1.2 poolSize > maximumPoolSize) {
1115     it.next().interruptIfIdle();
1116     --extra;
1117     }
1118     }
1119 tim 1.14 } finally {
1120 dl 1.2 mainLock.unlock();
1121     }
1122     }
1123 tim 1.1
1124     /**
1125     * Returns the maximum allowed number of threads.
1126     *
1127 dl 1.2 * @return the maximum allowed number of threads
1128 tim 1.11 * @see #setMaximumPoolSize
1129 tim 1.1 */
1130 tim 1.10 public int getMaximumPoolSize() {
1131 dl 1.2 return maximumPoolSize;
1132     }
1133 tim 1.1
1134     /**
1135     * Sets the time limit for which threads may remain idle before
1136 dl 1.2 * being terminated. If there are more than the core number of
1137 tim 1.1 * threads currently in the pool, after waiting this amount of
1138     * time without processing a task, excess threads will be
1139     * terminated. This overrides any value set in the constructor.
1140     * @param time the time to wait. A time value of zero will cause
1141     * excess threads to terminate immediately after executing tasks.
1142 dl 1.2 * @param unit the time unit of the time argument
1143 dl 1.17 * @throws IllegalArgumentException if time less than zero
1144 tim 1.11 * @see #getKeepAliveTime
1145 tim 1.1 */
1146 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1147     if (time < 0)
1148     throw new IllegalArgumentException();
1149     this.keepAliveTime = unit.toNanos(time);
1150     }
1151 tim 1.1
1152     /**
1153     * Returns the thread keep-alive time, which is the amount of time
1154 dl 1.2 * which threads in excess of the core pool size may remain
1155 tim 1.10 * idle before being terminated.
1156 tim 1.1 *
1157 dl 1.2 * @param unit the desired time unit of the result
1158 tim 1.1 * @return the time limit
1159 tim 1.11 * @see #setKeepAliveTime
1160 tim 1.1 */
1161 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1162 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1163     }
1164 tim 1.1
1165     /* Statistics */
1166    
1167     /**
1168     * Returns the current number of threads in the pool.
1169     *
1170     * @return the number of threads
1171     */
1172 tim 1.10 public int getPoolSize() {
1173 dl 1.2 return poolSize;
1174     }
1175 tim 1.1
1176     /**
1177 dl 1.2 * Returns the approximate number of threads that are actively
1178 tim 1.1 * executing tasks.
1179     *
1180     * @return the number of threads
1181     */
1182 tim 1.10 public int getActiveCount() {
1183 dl 1.2 mainLock.lock();
1184     try {
1185     int n = 0;
1186 tim 1.39 for (Worker w : workers) {
1187     if (w.isActive())
1188 dl 1.2 ++n;
1189     }
1190     return n;
1191 tim 1.14 } finally {
1192 dl 1.2 mainLock.unlock();
1193     }
1194     }
1195 tim 1.1
1196     /**
1197 dl 1.2 * Returns the largest number of threads that have ever
1198     * simultaneously been in the pool.
1199 tim 1.1 *
1200     * @return the number of threads
1201     */
1202 tim 1.10 public int getLargestPoolSize() {
1203 dl 1.2 mainLock.lock();
1204     try {
1205     return largestPoolSize;
1206 tim 1.14 } finally {
1207 dl 1.2 mainLock.unlock();
1208     }
1209     }
1210 tim 1.1
1211     /**
1212 dl 1.2 * Returns the approximate total number of tasks that have been
1213     * scheduled for execution. Because the states of tasks and
1214     * threads may change dynamically during computation, the returned
1215 dl 1.17 * value is only an approximation, but one that does not ever
1216     * decrease across successive calls.
1217 tim 1.1 *
1218     * @return the number of tasks
1219     */
1220 tim 1.10 public long getTaskCount() {
1221 dl 1.2 mainLock.lock();
1222     try {
1223     long n = completedTaskCount;
1224 tim 1.39 for (Worker w : workers) {
1225 dl 1.2 n += w.completedTasks;
1226     if (w.isActive())
1227     ++n;
1228     }
1229     return n + workQueue.size();
1230 tim 1.14 } finally {
1231 dl 1.2 mainLock.unlock();
1232     }
1233     }
1234 tim 1.1
1235     /**
1236 dl 1.2 * Returns the approximate total number of tasks that have
1237     * completed execution. Because the states of tasks and threads
1238     * may change dynamically during computation, the returned value
1239 dl 1.17 * is only an approximation, but one that does not ever decrease
1240     * across successive calls.
1241 tim 1.1 *
1242     * @return the number of tasks
1243     */
1244 tim 1.10 public long getCompletedTaskCount() {
1245 dl 1.2 mainLock.lock();
1246     try {
1247     long n = completedTaskCount;
1248 tim 1.39 for (Worker w : workers)
1249     n += w.completedTasks;
1250 dl 1.2 return n;
1251 tim 1.14 } finally {
1252 dl 1.2 mainLock.unlock();
1253     }
1254     }
1255 tim 1.1
1256     /**
1257 dl 1.17 * Method invoked prior to executing the given Runnable in the
1258     * given thread. This method may be used to re-initialize
1259     * ThreadLocals, or to perform logging. Note: To properly nest
1260     * multiple overridings, subclasses should generally invoke
1261 dl 1.5 * <tt>super.beforeExecute</tt> at the end of this method.
1262 tim 1.1 *
1263 dl 1.2 * @param t the thread that will run task r.
1264     * @param r the task that will be executed.
1265 tim 1.1 */
1266 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1267 tim 1.1
1268     /**
1269 dl 1.2 * Method invoked upon completion of execution of the given
1270     * Runnable. If non-null, the Throwable is the uncaught exception
1271 dl 1.5 * that caused execution to terminate abruptly. Note: To properly
1272     * nest multiple overridings, subclasses should generally invoke
1273     * <tt>super.afterExecute</tt> at the beginning of this method.
1274 tim 1.1 *
1275 dl 1.2 * @param r the runnable that has completed.
1276 dl 1.24 * @param t the exception that caused termination, or null if
1277 dl 1.2 * execution completed normally.
1278 tim 1.1 */
1279 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1280 tim 1.1
1281 dl 1.2 /**
1282     * Method invoked when the Executor has terminated. Default
1283 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1284     * overridings, subclasses should generally invoke
1285     * <tt>super.terminated</tt> within this method.
1286 dl 1.2 */
1287     protected void terminated() { }
1288 tim 1.1
1289     /**
1290 dl 1.21 * A handler for rejected tasks that runs the rejected task
1291     * directly in the calling thread of the <tt>execute</tt> method,
1292     * unless the executor has been shut down, in which case the task
1293     * is discarded.
1294 tim 1.1 */
1295 dl 1.2 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1296 tim 1.1
1297     /**
1298 dl 1.24 * Creates a <tt>CallerRunsPolicy</tt>.
1299 tim 1.1 */
1300     public CallerRunsPolicy() { }
1301    
1302 dl 1.24 /**
1303     * Executes task r in the caller's thread, unless the executor
1304     * has been shut down, in which case the task is discarded.
1305     * @param r the runnable task requested to be executed
1306     * @param e the executor attempting to execute this task
1307     */
1308 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1309     if (!e.isShutdown()) {
1310 tim 1.1 r.run();
1311     }
1312     }
1313     }
1314    
1315     /**
1316 dl 1.21 * A handler for rejected tasks that throws a
1317 dl 1.8 * <tt>RejectedExecutionException</tt>.
1318 tim 1.1 */
1319 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
1320 tim 1.1
1321     /**
1322 dl 1.29 * Creates an <tt>AbortPolicy</tt>.
1323 tim 1.1 */
1324     public AbortPolicy() { }
1325    
1326 dl 1.24 /**
1327     * Always throws RejectedExecutionException
1328     * @param r the runnable task requested to be executed
1329     * @param e the executor attempting to execute this task
1330     * @throws RejectedExecutionException always.
1331     */
1332 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1333     throw new RejectedExecutionException();
1334 tim 1.1 }
1335     }
1336    
1337     /**
1338 dl 1.21 * A handler for rejected tasks that silently discards the
1339     * rejected task.
1340 tim 1.1 */
1341 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
1342 tim 1.1
1343     /**
1344 dl 1.24 * Creates <tt>DiscardPolicy</tt>.
1345 tim 1.1 */
1346     public DiscardPolicy() { }
1347    
1348 dl 1.24 /**
1349     * Does nothing, which has the effect of discarding task r.
1350     * @param r the runnable task requested to be executed
1351     * @param e the executor attempting to execute this task
1352     */
1353 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1354 tim 1.1 }
1355     }
1356    
1357     /**
1358 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
1359     * request and then retries <tt>execute</tt>, unless the executor
1360     * is shut down, in which case the task is discarded.
1361 tim 1.1 */
1362 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
1363 tim 1.1 /**
1364 dl 1.24 * Creates a <tt>DiscardOldestPolicy</tt> for the given executor.
1365 tim 1.1 */
1366     public DiscardOldestPolicy() { }
1367    
1368 dl 1.24 /**
1369     * Obtains and ignores the next task that the executor
1370     * would otherwise execute, if one is immediately available,
1371     * and then retries execution of task r, unless the executor
1372     * is shut down, in which case task r is instead discarded.
1373     * @param r the runnable task requested to be executed
1374     * @param e the executor attempting to execute this task
1375     */
1376 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1377     if (!e.isShutdown()) {
1378     e.getQueue().poll();
1379     e.execute(r);
1380 tim 1.1 }
1381     }
1382     }
1383     }