ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.46
Committed: Sat Dec 27 17:19:03 2003 UTC (20 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.45: +1 -1 lines
Log Message:
Adapt to AbstractQueuedSynchronizer

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain. Use, modify, and
4     * redistribute this code in any way without acknowledgement.
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.9 import java.util.concurrent.locks.*;
9 dl 1.2 import java.util.*;
10 tim 1.1
11     /**
12 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
13 dl 1.28 * one of possibly several pooled threads, normally configured
14     * using {@link Executors} factory methods.
15 tim 1.1 *
16 dl 1.17 * <p>Thread pools address two different problems: they usually
17     * provide improved performance when executing large numbers of
18     * asynchronous tasks, due to reduced per-task invocation overhead,
19     * and they provide a means of bounding and managing the resources,
20     * including threads, consumed when executing a collection of tasks.
21 dl 1.20 * Each <tt>ThreadPoolExecutor</tt> also maintains some basic
22 dl 1.22 * statistics, such as the number of completed tasks.
23 dl 1.17 *
24 tim 1.1 * <p>To be useful across a wide range of contexts, this class
25 dl 1.24 * provides many adjustable parameters and extensibility
26     * hooks. However, programmers are urged to use the more convenient
27 dl 1.20 * {@link Executors} factory methods {@link
28     * Executors#newCachedThreadPool} (unbounded thread pool, with
29     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
30     * (fixed size thread pool) and {@link
31     * Executors#newSingleThreadExecutor} (single background thread), that
32 dl 1.22 * preconfigure settings for the most common usage
33     * scenarios. Otherwise, use the following guide when manually
34 dl 1.24 * configuring and tuning this class:
35 dl 1.17 *
36 tim 1.1 * <dl>
37 dl 1.2 *
38 dl 1.21 * <dt>Core and maximum pool sizes</dt>
39 dl 1.2 *
40 dl 1.19 * <dd>A <tt>ThreadPoolExecutor</tt> will automatically adjust the
41 dl 1.21 * pool size
42     * (see {@link ThreadPoolExecutor#getPoolSize})
43     * according to the bounds set by corePoolSize
44     * (see {@link ThreadPoolExecutor#getCorePoolSize})
45     * and
46     * maximumPoolSize
47     * (see {@link ThreadPoolExecutor#getMaximumPoolSize}).
48     * When a new task is submitted in method {@link
49     * ThreadPoolExecutor#execute}, and fewer than corePoolSize threads
50     * are running, a new thread is created to handle the request, even if
51     * other worker threads are idle. If there are more than
52     * corePoolSize but less than maximumPoolSize threads running, a new
53     * thread will be created only if the queue is full. By setting
54     * corePoolSize and maximumPoolSize the same, you create a fixed-size
55     * thread pool. By setting maximumPoolSize to an essentially unbounded
56     * value such as <tt>Integer.MAX_VALUE</tt>, you allow the pool to
57 dl 1.27 * accommodate an arbitrary number of concurrent tasks. Most typically,
58 dl 1.21 * core and maximum pool sizes are set only upon construction, but they
59     * may also be changed dynamically using {@link
60     * ThreadPoolExecutor#setCorePoolSize} and {@link
61     * ThreadPoolExecutor#setMaximumPoolSize}. <dd>
62 dl 1.2 *
63 dl 1.21 * <dt> On-demand construction
64 dl 1.2 *
65 dl 1.21 * <dd> By default, even core threads are initially created and
66     * started only when needed by new tasks, but this can be overridden
67     * dynamically using method {@link
68     * ThreadPoolExecutor#prestartCoreThread} or
69     * {@link ThreadPoolExecutor#prestartAllCoreThreads}. </dd>
70 dl 1.2 *
71 tim 1.1 * <dt>Creating new threads</dt>
72 dl 1.2 *
73 dl 1.33 * <dd>New threads are created using a {@link
74     * java.util.concurrent.ThreadFactory}. If not otherwise specified, a
75 dl 1.34 * {@link Executors#defaultThreadFactory} is used, that creates threads to all
76 dl 1.33 * be in the same {@link ThreadGroup} and with the same
77     * <tt>NORM_PRIORITY</tt> priority and non-daemon status. By supplying
78     * a different ThreadFactory, you can alter the thread's name, thread
79     * group, priority, daemon status, etc. </dd>
80 dl 1.2 *
81 dl 1.21 * <dt>Keep-alive times</dt>
82     *
83     * <dd>If the pool currently has more than corePoolSize threads,
84     * excess threads will be terminated if they have been idle for more
85     * than the keepAliveTime (see {@link
86     * ThreadPoolExecutor#getKeepAliveTime}). This provides a means of
87     * reducing resource consumption when the pool is not being actively
88     * used. If the pool becomes more active later, new threads will be
89     * constructed. This parameter can also be changed dynamically
90     * using method {@link ThreadPoolExecutor#setKeepAliveTime}. Using
91     * a value of <tt>Long.MAX_VALUE</tt> {@link TimeUnit#NANOSECONDS}
92     * effectively disables idle threads from ever terminating prior
93     * to shut down.
94     * </dd>
95     *
96     * <dt>Queueing</dt>
97     *
98     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
99     * submitted tasks. The use of this queue interacts with pool sizing:
100 dl 1.2 *
101 dl 1.21 * <ul>
102     *
103 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
104     * always prefers adding a new thread
105 dl 1.21 * rather than queueing.</li>
106     *
107 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
108     * always prefers queuing a request rather than adding a new
109     * thread.</li>
110 dl 1.21 *
111     * <li> If a request cannot be queued, a new thread is created unless
112     * this would exceed maximumPoolSize, in which case, the task will be
113     * rejected.</li>
114     *
115     * </ul>
116     *
117     * There are three general strategies for queuing:
118     * <ol>
119     *
120     * <li> <em> Direct handoffs.</em> A good default choice for a work
121     * queue is a {@link SynchronousQueue} that hands off tasks to threads
122     * without otherwise holding them. Here, an attempt to queue a task
123     * will fail if no threads are immediately available to run it, so a
124     * new thread will be constructed. This policy avoids lockups when
125     * handling sets of requests that might have internal dependencies.
126     * Direct handoffs generally require unbounded maximumPoolSizes to
127 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
128 dl 1.21 * possibility of unbounded thread growth when commands continue to
129     * arrive on average faster than they can be processed. </li>
130     *
131     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
132     * example a {@link LinkedBlockingQueue} without a predefined
133     * capacity) will cause new tasks to be queued in cases where all
134 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
135     * threads will ever be created. (And the value of the maximumPoolSize
136     * therefore doesn't have any effect.) This may be appropriate when
137     * each task is completely independent of others, so tasks cannot
138     * affect each others execution; for example, in a web page server.
139     * While this style of queuing can be useful in smoothing out
140     * transient bursts of requests, it admits the possibility of
141     * unbounded work queue growth when commands continue to arrive on
142     * average faster than they can be processed. </li>
143 dl 1.21 *
144     * <li><em>Bounded queues.</em> A bounded queue (for example, an
145     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
146     * used with finite maximumPoolSizes, but can be more difficult to
147     * tune and control. Queue sizes and maximum pool sizes may be traded
148     * off for each other: Using large queues and small pools minimizes
149     * CPU usage, OS resources, and context-switching overhead, but can
150 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
151 dl 1.21 * example if they are I/O bound), a system may be able to schedule
152     * time for more threads than you otherwise allow. Use of small queues
153 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
154     * may encounter unacceptable scheduling overhead, which also
155     * decreases throughput. </li>
156 dl 1.21 *
157     * </ol>
158     *
159     * </dd>
160     *
161     * <dt>Rejected tasks</dt>
162     *
163     * <dd> New tasks submitted in method {@link
164     * ThreadPoolExecutor#execute} will be <em>rejected</em> when the
165     * Executor has been shut down, and also when the Executor uses finite
166     * bounds for both maximum threads and work queue capacity, and is
167 dl 1.22 * saturated. In either case, the <tt>execute</tt> method invokes the
168     * {@link RejectedExecutionHandler#rejectedExecution} method of its
169     * {@link RejectedExecutionHandler}. Four predefined handler policies
170     * are provided:
171 dl 1.21 *
172     * <ol>
173     *
174     * <li> In the
175     * default {@link ThreadPoolExecutor.AbortPolicy}, the handler throws a
176     * runtime {@link RejectedExecutionException} upon rejection. </li>
177     *
178     * <li> In {@link
179     * ThreadPoolExecutor.CallerRunsPolicy}, the thread that invokes
180     * <tt>execute</tt> itself runs the task. This provides a simple
181     * feedback control mechanism that will slow down the rate that new
182     * tasks are submitted. </li>
183     *
184     * <li> In {@link ThreadPoolExecutor.DiscardPolicy},
185     * a task that cannot be executed is simply dropped. </li>
186     *
187     * <li>In {@link
188     * ThreadPoolExecutor.DiscardOldestPolicy}, if the executor is not
189     * shut down, the task at the head of the work queue is dropped, and
190     * then execution is retried (which can fail again, causing this to be
191     * repeated.) </li>
192     *
193     * </ol>
194     *
195     * It is possible to define and use other kinds of {@link
196     * RejectedExecutionHandler} classes. Doing so requires some care
197     * especially when policies are designed to work only under particular
198     * capacity or queueing policies. </dd>
199     *
200     * <dt>Hook methods</dt>
201     *
202 dl 1.23 * <dd>This class provides <tt>protected</tt> overridable {@link
203 dl 1.21 * ThreadPoolExecutor#beforeExecute} and {@link
204     * ThreadPoolExecutor#afterExecute} methods that are called before and
205 dl 1.19 * after execution of each task. These can be used to manipulate the
206     * execution environment, for example, reinitializing ThreadLocals,
207 dl 1.21 * gathering statistics, or adding log entries. Additionally, method
208     * {@link ThreadPoolExecutor#terminated} can be overridden to perform
209     * any special processing that needs to be done once the Executor has
210     * fully terminated.</dd>
211 dl 1.2 *
212 dl 1.21 * <dt>Queue maintenance</dt>
213 dl 1.2 *
214 dl 1.24 * <dd> Method {@link ThreadPoolExecutor#getQueue} allows access to
215     * the work queue for purposes of monitoring and debugging. Use of
216     * this method for any other purpose is strongly discouraged. Two
217     * supplied methods, {@link ThreadPoolExecutor#remove} and {@link
218     * ThreadPoolExecutor#purge} are available to assist in storage
219     * reclamation when large numbers of queued tasks become
220     * cancelled.</dd> </dl>
221 tim 1.1 *
222 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
223     * override one or more of the protected hook methods. For example,
224     * here is a subclass that adds a simple pause/resume feature:
225     *
226     * <pre>
227     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
228     * private boolean isPaused;
229     * private ReentrantLock pauseLock = new ReentrantLock();
230     * private Condition unpaused = pauseLock.newCondition();
231     *
232     * public PausableThreadPoolExecutor(...) { super(...); }
233     *
234     * protected void beforeExecute(Thread t, Runnable r) {
235     * super.beforeExecute(t, r);
236     * pauseLock.lock();
237     * try {
238     * while (isPaused) unpaused.await();
239     * } catch(InterruptedException ie) {
240     * Thread.currentThread().interrupt();
241     * } finally {
242     * pauseLock.unlock();
243     * }
244     * }
245     *
246     * public void pause() {
247     * pauseLock.lock();
248     * try {
249     * isPaused = true;
250     * } finally {
251     * pauseLock.unlock();
252     * }
253     * }
254     *
255     * public void resume() {
256     * pauseLock.lock();
257     * try {
258     * isPaused = false;
259     * unpaused.signalAll();
260     * } finally {
261     * pauseLock.unlock();
262     * }
263     * }
264     * }
265     * </pre>
266 tim 1.1 * @since 1.5
267 dl 1.8 * @author Doug Lea
268 tim 1.1 */
269 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
270 dl 1.2 /**
271 tim 1.41 * Only used to force toArray() to produce a Runnable[].
272     */
273     private static final Runnable[] EMPTY_RUNNABLE_ARRAY = new Runnable[0];
274    
275     /**
276 dl 1.43 * Permission for checking shutdown
277     */
278     private static final RuntimePermission shutdownPerm =
279     new RuntimePermission("modifyThread");
280    
281     /**
282 dl 1.2 * Queue used for holding tasks and handing off to worker threads.
283 tim 1.10 */
284 dl 1.2 private final BlockingQueue<Runnable> workQueue;
285    
286     /**
287     * Lock held on updates to poolSize, corePoolSize, maximumPoolSize, and
288     * workers set.
289 tim 1.10 */
290 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
291    
292     /**
293     * Wait condition to support awaitTermination
294 tim 1.10 */
295 dl 1.46 private final Condition termination = mainLock.newCondition();
296 dl 1.2
297     /**
298     * Set containing all worker threads in pool.
299 tim 1.10 */
300 dl 1.17 private final HashSet<Worker> workers = new HashSet<Worker>();
301 dl 1.2
302     /**
303 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
304 dl 1.2 * Threads use this timeout only when there are more than
305     * corePoolSize present. Otherwise they wait forever for new work.
306 tim 1.10 */
307 dl 1.2 private volatile long keepAliveTime;
308    
309     /**
310     * Core pool size, updated only while holding mainLock,
311     * but volatile to allow concurrent readability even
312     * during updates.
313 tim 1.10 */
314 dl 1.2 private volatile int corePoolSize;
315    
316     /**
317     * Maximum pool size, updated only while holding mainLock
318     * but volatile to allow concurrent readability even
319     * during updates.
320 tim 1.10 */
321 dl 1.2 private volatile int maximumPoolSize;
322    
323     /**
324     * Current pool size, updated only while holding mainLock
325     * but volatile to allow concurrent readability even
326     * during updates.
327 tim 1.10 */
328 dl 1.2 private volatile int poolSize;
329    
330     /**
331 dl 1.16 * Lifecycle state
332 tim 1.10 */
333 dl 1.16 private volatile int runState;
334 dl 1.2
335 dl 1.16 // Special values for runState
336 dl 1.8 /** Normal, not-shutdown mode */
337 dl 1.16 private static final int RUNNING = 0;
338 dl 1.8 /** Controlled shutdown mode */
339 dl 1.16 private static final int SHUTDOWN = 1;
340     /** Immediate shutdown mode */
341     private static final int STOP = 2;
342     /** Final state */
343     private static final int TERMINATED = 3;
344 dl 1.2
345     /**
346     * Handler called when saturated or shutdown in execute.
347 tim 1.10 */
348 dl 1.33 private volatile RejectedExecutionHandler handler;
349 dl 1.2
350     /**
351     * Factory for new threads.
352 tim 1.10 */
353 dl 1.33 private volatile ThreadFactory threadFactory;
354 dl 1.2
355     /**
356     * Tracks largest attained pool size.
357 tim 1.10 */
358 dl 1.2 private int largestPoolSize;
359    
360     /**
361     * Counter for completed tasks. Updated only on termination of
362     * worker threads.
363 tim 1.10 */
364 dl 1.2 private long completedTaskCount;
365 tim 1.41
366 dl 1.8 /**
367 dl 1.35 * The default rejected execution handler
368 dl 1.8 */
369 tim 1.10 private static final RejectedExecutionHandler defaultHandler =
370 dl 1.2 new AbortPolicy();
371    
372     /**
373 dl 1.17 * Invoke the rejected execution handler for the given command.
374 dl 1.13 */
375     void reject(Runnable command) {
376     handler.rejectedExecution(command, this);
377     }
378    
379 dl 1.33
380    
381     /**
382 dl 1.2 * Create and return a new thread running firstTask as its first
383     * task. Call only while holding mainLock
384 dl 1.8 * @param firstTask the task the new thread should run first (or
385     * null if none)
386     * @return the new thread
387 dl 1.2 */
388     private Thread addThread(Runnable firstTask) {
389     Worker w = new Worker(firstTask);
390     Thread t = threadFactory.newThread(w);
391     w.thread = t;
392     workers.add(w);
393     int nt = ++poolSize;
394     if (nt > largestPoolSize)
395     largestPoolSize = nt;
396     return t;
397     }
398    
399 dl 1.16
400 dl 1.15
401 dl 1.2 /**
402     * Create and start a new thread running firstTask as its first
403     * task, only if less than corePoolSize threads are running.
404 dl 1.8 * @param firstTask the task the new thread should run first (or
405     * null if none)
406 dl 1.2 * @return true if successful.
407     */
408 dl 1.16 private boolean addIfUnderCorePoolSize(Runnable firstTask) {
409 dl 1.2 Thread t = null;
410 dl 1.45 final ReentrantLock mainLock = this.mainLock;
411 dl 1.2 mainLock.lock();
412     try {
413 tim 1.10 if (poolSize < corePoolSize)
414 dl 1.8 t = addThread(firstTask);
415 tim 1.14 } finally {
416 dl 1.2 mainLock.unlock();
417     }
418     if (t == null)
419     return false;
420     t.start();
421     return true;
422     }
423    
424     /**
425     * Create and start a new thread only if less than maximumPoolSize
426     * threads are running. The new thread runs as its first task the
427     * next task in queue, or if there is none, the given task.
428 dl 1.8 * @param firstTask the task the new thread should run first (or
429     * null if none)
430 dl 1.2 * @return null on failure, else the first task to be run by new thread.
431     */
432 dl 1.8 private Runnable addIfUnderMaximumPoolSize(Runnable firstTask) {
433 dl 1.2 Thread t = null;
434     Runnable next = null;
435 dl 1.45 final ReentrantLock mainLock = this.mainLock;
436 dl 1.2 mainLock.lock();
437     try {
438     if (poolSize < maximumPoolSize) {
439     next = workQueue.poll();
440     if (next == null)
441 dl 1.8 next = firstTask;
442 dl 1.2 t = addThread(next);
443     }
444 tim 1.14 } finally {
445 dl 1.2 mainLock.unlock();
446     }
447     if (t == null)
448     return null;
449     t.start();
450     return next;
451     }
452    
453    
454     /**
455     * Get the next task for a worker thread to run.
456 dl 1.8 * @return the task
457     * @throws InterruptedException if interrupted while waiting for task
458 dl 1.2 */
459     private Runnable getTask() throws InterruptedException {
460     for (;;) {
461 dl 1.16 switch(runState) {
462     case RUNNING: {
463     if (poolSize <= corePoolSize) // untimed wait if core
464     return workQueue.take();
465    
466     long timeout = keepAliveTime;
467     if (timeout <= 0) // die immediately for 0 timeout
468     return null;
469     Runnable r = workQueue.poll(timeout, TimeUnit.NANOSECONDS);
470     if (r != null)
471     return r;
472     if (poolSize > corePoolSize) // timed out
473     return null;
474     // else, after timeout, pool shrank so shouldn't die, so retry
475     break;
476     }
477    
478     case SHUTDOWN: {
479     // Help drain queue
480     Runnable r = workQueue.poll();
481     if (r != null)
482     return r;
483    
484     // Check if can terminate
485     if (workQueue.isEmpty()) {
486     interruptIdleWorkers();
487     return null;
488     }
489    
490     // There could still be delayed tasks in queue.
491     // Wait for one, re-checking state upon interruption
492     try {
493     return workQueue.take();
494     }
495     catch(InterruptedException ignore) {
496     }
497     break;
498     }
499    
500     case STOP:
501 dl 1.2 return null;
502 dl 1.16 default:
503     assert false;
504     }
505     }
506     }
507    
508     /**
509     * Wake up all threads that might be waiting for tasks.
510     */
511     void interruptIdleWorkers() {
512 dl 1.45 final ReentrantLock mainLock = this.mainLock;
513 dl 1.16 mainLock.lock();
514     try {
515 tim 1.39 for (Worker w : workers)
516     w.interruptIfIdle();
517 dl 1.16 } finally {
518     mainLock.unlock();
519 dl 1.2 }
520     }
521    
522     /**
523     * Perform bookkeeping for a terminated worker thread.
524 tim 1.10 * @param w the worker
525 dl 1.2 */
526     private void workerDone(Worker w) {
527 dl 1.45 final ReentrantLock mainLock = this.mainLock;
528 dl 1.2 mainLock.lock();
529     try {
530     completedTaskCount += w.completedTasks;
531     workers.remove(w);
532 tim 1.10 if (--poolSize > 0)
533 dl 1.2 return;
534    
535 dl 1.16 // Else, this is the last thread. Deal with potential shutdown.
536    
537     int state = runState;
538     assert state != TERMINATED;
539 tim 1.10
540 dl 1.16 if (state != STOP) {
541     // If there are queued tasks but no threads, create
542     // replacement.
543 dl 1.2 Runnable r = workQueue.poll();
544     if (r != null) {
545     addThread(r).start();
546     return;
547     }
548 dl 1.16
549     // If there are some (presumably delayed) tasks but
550     // none pollable, create an idle replacement to wait.
551     if (!workQueue.isEmpty()) {
552     addThread(null).start();
553     return;
554     }
555    
556     // Otherwise, we can exit without replacement
557     if (state == RUNNING)
558     return;
559 dl 1.2 }
560    
561 dl 1.16 // Either state is STOP, or state is SHUTDOWN and there is
562     // no work to do. So we can terminate.
563 dl 1.45 termination.signalAll();
564 dl 1.16 runState = TERMINATED;
565     // fall through to call terminate() outside of lock.
566 tim 1.14 } finally {
567 dl 1.2 mainLock.unlock();
568     }
569    
570 dl 1.16 assert runState == TERMINATED;
571     terminated();
572 dl 1.2 }
573    
574     /**
575 tim 1.10 * Worker threads
576 dl 1.2 */
577     private class Worker implements Runnable {
578    
579     /**
580     * The runLock is acquired and released surrounding each task
581     * execution. It mainly protects against interrupts that are
582     * intended to cancel the worker thread from instead
583     * interrupting the task being run.
584     */
585     private final ReentrantLock runLock = new ReentrantLock();
586    
587     /**
588     * Initial task to run before entering run loop
589     */
590     private Runnable firstTask;
591    
592     /**
593     * Per thread completed task counter; accumulated
594     * into completedTaskCount upon termination.
595     */
596     volatile long completedTasks;
597    
598     /**
599     * Thread this worker is running in. Acts as a final field,
600     * but cannot be set until thread is created.
601     */
602     Thread thread;
603    
604     Worker(Runnable firstTask) {
605     this.firstTask = firstTask;
606     }
607    
608     boolean isActive() {
609     return runLock.isLocked();
610     }
611    
612     /**
613     * Interrupt thread if not running a task
614 tim 1.10 */
615 dl 1.2 void interruptIfIdle() {
616 dl 1.45 final ReentrantLock runLock = this.runLock;
617 dl 1.2 if (runLock.tryLock()) {
618     try {
619     thread.interrupt();
620 tim 1.14 } finally {
621 dl 1.2 runLock.unlock();
622     }
623     }
624     }
625    
626     /**
627     * Cause thread to die even if running a task.
628 tim 1.10 */
629 dl 1.2 void interruptNow() {
630     thread.interrupt();
631     }
632    
633     /**
634     * Run a single task between before/after methods.
635     */
636     private void runTask(Runnable task) {
637 dl 1.45 final ReentrantLock runLock = this.runLock;
638 dl 1.2 runLock.lock();
639     try {
640     // Abort now if immediate cancel. Otherwise, we have
641     // committed to run this task.
642 dl 1.16 if (runState == STOP)
643 dl 1.2 return;
644    
645     Thread.interrupted(); // clear interrupt status on entry
646     boolean ran = false;
647     beforeExecute(thread, task);
648     try {
649     task.run();
650     ran = true;
651     afterExecute(task, null);
652     ++completedTasks;
653 tim 1.14 } catch(RuntimeException ex) {
654 dl 1.2 if (!ran)
655     afterExecute(task, ex);
656 dl 1.17 // Else the exception occurred within
657 dl 1.2 // afterExecute itself in which case we don't
658     // want to call it again.
659     throw ex;
660     }
661 tim 1.14 } finally {
662 dl 1.2 runLock.unlock();
663     }
664     }
665    
666     /**
667     * Main run loop
668     */
669     public void run() {
670     try {
671     for (;;) {
672     Runnable task;
673     if (firstTask != null) {
674     task = firstTask;
675     firstTask = null;
676 tim 1.14 } else {
677 dl 1.2 task = getTask();
678     if (task == null)
679     break;
680     }
681     runTask(task);
682     task = null; // unnecessary but can help GC
683     }
684 tim 1.14 } catch(InterruptedException ie) {
685 dl 1.2 // fall through
686 tim 1.14 } finally {
687 dl 1.2 workerDone(this);
688     }
689     }
690     }
691 tim 1.1
692 dl 1.17 // Public methods
693    
694 tim 1.1 /**
695 dl 1.17 * Creates a new <tt>ThreadPoolExecutor</tt> with the given
696 dl 1.34 * initial parameters and default thread factory and handler. It
697     * may be more convenient to use one of the {@link Executors}
698     * factory methods instead of this general purpose constructor.
699 tim 1.1 *
700 dl 1.2 * @param corePoolSize the number of threads to keep in the
701 tim 1.1 * pool, even if they are idle.
702 dl 1.2 * @param maximumPoolSize the maximum number of threads to allow in the
703 tim 1.1 * pool.
704     * @param keepAliveTime when the number of threads is greater than
705 dl 1.2 * the core, this is the maximum time that excess idle threads
706 tim 1.1 * will wait for new tasks before terminating.
707 dl 1.2 * @param unit the time unit for the keepAliveTime
708 tim 1.1 * argument.
709 dl 1.36 * @param workQueue the queue to use for holding tasks before they
710 tim 1.1 * are executed. This queue will hold only the <tt>Runnable</tt>
711     * tasks submitted by the <tt>execute</tt> method.
712 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
713     * keepAliveTime less than zero, or if maximumPoolSize less than or
714     * equal to zero, or if corePoolSize greater than maximumPoolSize.
715 tim 1.1 * @throws NullPointerException if <tt>workQueue</tt> is null
716     */
717 dl 1.2 public ThreadPoolExecutor(int corePoolSize,
718     int maximumPoolSize,
719 tim 1.1 long keepAliveTime,
720 dl 1.2 TimeUnit unit,
721     BlockingQueue<Runnable> workQueue) {
722 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
723 dl 1.34 Executors.defaultThreadFactory(), defaultHandler);
724 dl 1.2 }
725 tim 1.1
726 dl 1.2 /**
727     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
728     * parameters.
729     *
730     * @param corePoolSize the number of threads to keep in the
731     * pool, even if they are idle.
732     * @param maximumPoolSize the maximum number of threads to allow in the
733     * pool.
734     * @param keepAliveTime when the number of threads is greater than
735     * the core, this is the maximum time that excess idle threads
736     * will wait for new tasks before terminating.
737     * @param unit the time unit for the keepAliveTime
738     * argument.
739 dl 1.36 * @param workQueue the queue to use for holding tasks before they
740 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
741     * tasks submitted by the <tt>execute</tt> method.
742     * @param threadFactory the factory to use when the executor
743 tim 1.10 * creates a new thread.
744 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
745     * keepAliveTime less than zero, or if maximumPoolSize less than or
746     * equal to zero, or if corePoolSize greater than maximumPoolSize.
747 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
748 dl 1.2 * or <tt>threadFactory</tt> are null.
749     */
750     public ThreadPoolExecutor(int corePoolSize,
751     int maximumPoolSize,
752     long keepAliveTime,
753     TimeUnit unit,
754     BlockingQueue<Runnable> workQueue,
755     ThreadFactory threadFactory) {
756 tim 1.1
757 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
758 dl 1.2 threadFactory, defaultHandler);
759     }
760 tim 1.1
761 dl 1.2 /**
762     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
763     * parameters.
764     *
765     * @param corePoolSize the number of threads to keep in the
766     * pool, even if they are idle.
767     * @param maximumPoolSize the maximum number of threads to allow in the
768     * pool.
769     * @param keepAliveTime when the number of threads is greater than
770     * the core, this is the maximum time that excess idle threads
771     * will wait for new tasks before terminating.
772     * @param unit the time unit for the keepAliveTime
773     * argument.
774 dl 1.36 * @param workQueue the queue to use for holding tasks before they
775 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
776     * tasks submitted by the <tt>execute</tt> method.
777     * @param handler the handler to use when execution is blocked
778     * because the thread bounds and queue capacities are reached.
779     * @throws IllegalArgumentException if corePoolSize, or
780     * keepAliveTime less than zero, or if maximumPoolSize less than or
781     * equal to zero, or if corePoolSize greater than maximumPoolSize.
782 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
783 dl 1.2 * or <tt>handler</tt> are null.
784     */
785     public ThreadPoolExecutor(int corePoolSize,
786     int maximumPoolSize,
787     long keepAliveTime,
788     TimeUnit unit,
789     BlockingQueue<Runnable> workQueue,
790     RejectedExecutionHandler handler) {
791 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
792 dl 1.34 Executors.defaultThreadFactory(), handler);
793 dl 1.2 }
794 tim 1.1
795 dl 1.2 /**
796     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
797     * parameters.
798     *
799     * @param corePoolSize the number of threads to keep in the
800     * pool, even if they are idle.
801     * @param maximumPoolSize the maximum number of threads to allow in the
802     * pool.
803     * @param keepAliveTime when the number of threads is greater than
804     * the core, this is the maximum time that excess idle threads
805     * will wait for new tasks before terminating.
806     * @param unit the time unit for the keepAliveTime
807     * argument.
808 dl 1.36 * @param workQueue the queue to use for holding tasks before they
809 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
810     * tasks submitted by the <tt>execute</tt> method.
811     * @param threadFactory the factory to use when the executor
812 tim 1.10 * creates a new thread.
813 dl 1.2 * @param handler the handler to use when execution is blocked
814     * because the thread bounds and queue capacities are reached.
815     * @throws IllegalArgumentException if corePoolSize, or
816     * keepAliveTime less than zero, or if maximumPoolSize less than or
817     * equal to zero, or if corePoolSize greater than maximumPoolSize.
818 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
819 dl 1.2 * or <tt>threadFactory</tt> or <tt>handler</tt> are null.
820     */
821     public ThreadPoolExecutor(int corePoolSize,
822     int maximumPoolSize,
823     long keepAliveTime,
824     TimeUnit unit,
825     BlockingQueue<Runnable> workQueue,
826     ThreadFactory threadFactory,
827     RejectedExecutionHandler handler) {
828 tim 1.10 if (corePoolSize < 0 ||
829 dl 1.2 maximumPoolSize <= 0 ||
830 tim 1.10 maximumPoolSize < corePoolSize ||
831 dl 1.2 keepAliveTime < 0)
832     throw new IllegalArgumentException();
833     if (workQueue == null || threadFactory == null || handler == null)
834     throw new NullPointerException();
835     this.corePoolSize = corePoolSize;
836     this.maximumPoolSize = maximumPoolSize;
837     this.workQueue = workQueue;
838     this.keepAliveTime = unit.toNanos(keepAliveTime);
839     this.threadFactory = threadFactory;
840     this.handler = handler;
841 tim 1.1 }
842    
843 dl 1.2
844     /**
845     * Executes the given task sometime in the future. The task
846     * may execute in a new thread or in an existing pooled thread.
847     *
848     * If the task cannot be submitted for execution, either because this
849     * executor has been shutdown or because its capacity has been reached,
850 tim 1.10 * the task is handled by the current <tt>RejectedExecutionHandler</tt>.
851 dl 1.2 *
852     * @param command the task to execute
853     * @throws RejectedExecutionException at discretion of
854 dl 1.8 * <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
855     * for execution
856 dl 1.26 * @throws NullPointerException if command is null
857 dl 1.2 */
858 tim 1.10 public void execute(Runnable command) {
859 dl 1.26 if (command == null)
860     throw new NullPointerException();
861 dl 1.2 for (;;) {
862 dl 1.16 if (runState != RUNNING) {
863 dl 1.13 reject(command);
864 dl 1.2 return;
865     }
866     if (poolSize < corePoolSize && addIfUnderCorePoolSize(command))
867     return;
868     if (workQueue.offer(command))
869     return;
870     Runnable r = addIfUnderMaximumPoolSize(command);
871     if (r == command)
872     return;
873     if (r == null) {
874 dl 1.13 reject(command);
875 dl 1.2 return;
876     }
877     // else retry
878     }
879 tim 1.1 }
880 dl 1.4
881 dl 1.2 public void shutdown() {
882 dl 1.43 // Fail if caller doesn't have modifyThread permission
883 dl 1.42 SecurityManager security = System.getSecurityManager();
884     if (security != null)
885 dl 1.43 java.security.AccessController.checkPermission(shutdownPerm);
886 dl 1.42
887 dl 1.25 boolean fullyTerminated = false;
888 dl 1.45 final ReentrantLock mainLock = this.mainLock;
889 dl 1.2 mainLock.lock();
890     try {
891 dl 1.25 if (workers.size() > 0) {
892 dl 1.43 // Check if caller can modify worker threads.
893     // This might not be true even if passed above check,
894     // if the securityManager treats some threads specially.
895     if (security != null) {
896     for (Worker w: workers)
897     security.checkAccess(w.thread);
898     }
899    
900     int state = runState;
901     if (state == RUNNING) // don't override shutdownNow
902 dl 1.25 runState = SHUTDOWN;
903 dl 1.43
904     try {
905     for (Worker w: workers)
906     w.interruptIfIdle();
907     } catch(SecurityException se) {
908     // If SecurityManager allows above checks, but then
909     // unexpectedly throws exception when interrupting
910     // threads (which it ought not do), back out as
911     // cleanly as we can. -Some threads may have been
912     // killed but we remain in non-shutdown state.
913     runState = state;
914     throw se;
915     }
916 dl 1.25 }
917     else { // If no workers, trigger full termination now
918     fullyTerminated = true;
919     runState = TERMINATED;
920     termination.signalAll();
921     }
922 tim 1.14 } finally {
923 dl 1.2 mainLock.unlock();
924     }
925 dl 1.25 if (fullyTerminated)
926     terminated();
927 tim 1.1 }
928    
929 dl 1.16
930 tim 1.39 public List<Runnable> shutdownNow() {
931 dl 1.43 // Almost the same code as shutdown()
932 dl 1.42 SecurityManager security = System.getSecurityManager();
933     if (security != null)
934 dl 1.43 java.security.AccessController.checkPermission(shutdownPerm);
935    
936 dl 1.25 boolean fullyTerminated = false;
937 dl 1.45 final ReentrantLock mainLock = this.mainLock;
938 dl 1.2 mainLock.lock();
939     try {
940 dl 1.25 if (workers.size() > 0) {
941 dl 1.43 if (security != null) {
942     for (Worker w: workers)
943     security.checkAccess(w.thread);
944     }
945    
946     int state = runState;
947     if (state != TERMINATED)
948 dl 1.25 runState = STOP;
949 dl 1.43 try {
950     for (Worker w : workers)
951     w.interruptNow();
952     } catch(SecurityException se) {
953     runState = state; // back out;
954     throw se;
955     }
956 dl 1.25 }
957     else { // If no workers, trigger full termination now
958     fullyTerminated = true;
959     runState = TERMINATED;
960     termination.signalAll();
961     }
962 tim 1.14 } finally {
963 dl 1.2 mainLock.unlock();
964     }
965 dl 1.25 if (fullyTerminated)
966     terminated();
967 tim 1.40
968 tim 1.41 return Arrays.asList(workQueue.toArray(EMPTY_RUNNABLE_ARRAY));
969 tim 1.1 }
970    
971 dl 1.2 public boolean isShutdown() {
972 dl 1.16 return runState != RUNNING;
973     }
974    
975     /**
976     * Return true if this executor is in the process of terminating
977     * after <tt>shutdown</tt> or <tt>shutdownNow</tt> but has not
978     * completely terminated. This method may be useful for
979     * debugging. A return of <tt>true</tt> reported a sufficient
980     * period after shutdown may indicate that submitted tasks have
981     * ignored or suppressed interruption, causing this executor not
982     * to properly terminate.
983     * @return true if terminating but not yet terminated.
984     */
985     public boolean isTerminating() {
986     return runState == STOP;
987 tim 1.1 }
988    
989 dl 1.2 public boolean isTerminated() {
990 dl 1.16 return runState == TERMINATED;
991 dl 1.2 }
992 tim 1.1
993 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
994     throws InterruptedException {
995 dl 1.45 final ReentrantLock mainLock = this.mainLock;
996 dl 1.2 mainLock.lock();
997     try {
998 dl 1.25 long nanos = unit.toNanos(timeout);
999     for (;;) {
1000     if (runState == TERMINATED)
1001     return true;
1002     if (nanos <= 0)
1003     return false;
1004     nanos = termination.awaitNanos(nanos);
1005     }
1006 tim 1.14 } finally {
1007 dl 1.2 mainLock.unlock();
1008     }
1009 dl 1.15 }
1010    
1011     /**
1012     * Invokes <tt>shutdown</tt> when this executor is no longer
1013     * referenced.
1014     */
1015     protected void finalize() {
1016     shutdown();
1017 dl 1.2 }
1018 tim 1.10
1019 dl 1.2 /**
1020     * Sets the thread factory used to create new threads.
1021     *
1022     * @param threadFactory the new thread factory
1023 dl 1.30 * @throws NullPointerException if threadFactory is null
1024 tim 1.11 * @see #getThreadFactory
1025 dl 1.2 */
1026     public void setThreadFactory(ThreadFactory threadFactory) {
1027 dl 1.30 if (threadFactory == null)
1028     throw new NullPointerException();
1029 dl 1.2 this.threadFactory = threadFactory;
1030 tim 1.1 }
1031    
1032 dl 1.2 /**
1033     * Returns the thread factory used to create new threads.
1034     *
1035     * @return the current thread factory
1036 tim 1.11 * @see #setThreadFactory
1037 dl 1.2 */
1038     public ThreadFactory getThreadFactory() {
1039     return threadFactory;
1040 tim 1.1 }
1041    
1042 dl 1.2 /**
1043     * Sets a new handler for unexecutable tasks.
1044     *
1045     * @param handler the new handler
1046 dl 1.31 * @throws NullPointerException if handler is null
1047 tim 1.11 * @see #getRejectedExecutionHandler
1048 dl 1.2 */
1049     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1050 dl 1.31 if (handler == null)
1051     throw new NullPointerException();
1052 dl 1.2 this.handler = handler;
1053     }
1054 tim 1.1
1055 dl 1.2 /**
1056     * Returns the current handler for unexecutable tasks.
1057     *
1058     * @return the current handler
1059 tim 1.11 * @see #setRejectedExecutionHandler
1060 dl 1.2 */
1061     public RejectedExecutionHandler getRejectedExecutionHandler() {
1062     return handler;
1063 tim 1.1 }
1064    
1065 dl 1.2 /**
1066 dl 1.17 * Returns the task queue used by this executor. Access to the
1067     * task queue is intended primarily for debugging and monitoring.
1068 dl 1.27 * This queue may be in active use. Retrieving the task queue
1069 dl 1.2 * does not prevent queued tasks from executing.
1070     *
1071     * @return the task queue
1072     */
1073     public BlockingQueue<Runnable> getQueue() {
1074     return workQueue;
1075 tim 1.1 }
1076 dl 1.4
1077     /**
1078 dl 1.44 * Removes this task from the executor's internal queue if it is
1079     * present, thus causing it not to be run if it has not already
1080     * started.
1081     *
1082     * <p> This method may be useful as one part of a cancellation
1083     * scheme. It may fail to remove tasks that have been converted
1084     * into other forms before being placed on the internal queue. For
1085     * example, a task entered using <tt>submit</tt> might be
1086     * converted into a form that maintains <tt>Future</tt> status.
1087     * However, in such cases, method {@link ThreadPoolExecutor#purge}
1088     * may be used to remove those Futures that have been cancelled.
1089     *
1090 tim 1.10 *
1091 dl 1.8 * @param task the task to remove
1092     * @return true if the task was removed
1093 dl 1.4 */
1094 dl 1.5 public boolean remove(Runnable task) {
1095 dl 1.4 return getQueue().remove(task);
1096     }
1097    
1098 dl 1.7
1099     /**
1100 dl 1.37 * Tries to remove from the work queue all {@link Future}
1101 dl 1.16 * tasks that have been cancelled. This method can be useful as a
1102     * storage reclamation operation, that has no other impact on
1103     * functionality. Cancelled tasks are never executed, but may
1104     * accumulate in work queues until worker threads can actively
1105     * remove them. Invoking this method instead tries to remove them now.
1106 dl 1.23 * However, this method may fail to remove tasks in
1107 dl 1.16 * the presence of interference by other threads.
1108 dl 1.7 */
1109    
1110     public void purge() {
1111 dl 1.16 // Fail if we encounter interference during traversal
1112     try {
1113     Iterator<Runnable> it = getQueue().iterator();
1114     while (it.hasNext()) {
1115     Runnable r = it.next();
1116 dl 1.37 if (r instanceof Future<?>) {
1117     Future<?> c = (Future<?>)r;
1118 dl 1.16 if (c.isCancelled())
1119     it.remove();
1120     }
1121 dl 1.7 }
1122     }
1123 dl 1.16 catch(ConcurrentModificationException ex) {
1124     return;
1125     }
1126 dl 1.7 }
1127 tim 1.1
1128     /**
1129 dl 1.2 * Sets the core number of threads. This overrides any value set
1130     * in the constructor. If the new value is smaller than the
1131     * current value, excess existing threads will be terminated when
1132 dl 1.34 * they next become idle. If larger, new threads will, if needed,
1133     * be started to execute any queued tasks.
1134 tim 1.1 *
1135 dl 1.2 * @param corePoolSize the new core size
1136 tim 1.10 * @throws IllegalArgumentException if <tt>corePoolSize</tt>
1137 dl 1.8 * less than zero
1138 tim 1.11 * @see #getCorePoolSize
1139 tim 1.1 */
1140 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1141     if (corePoolSize < 0)
1142     throw new IllegalArgumentException();
1143 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1144 dl 1.2 mainLock.lock();
1145     try {
1146     int extra = this.corePoolSize - corePoolSize;
1147     this.corePoolSize = corePoolSize;
1148 tim 1.38 if (extra < 0) {
1149     Runnable r;
1150     while (extra++ < 0 && poolSize < corePoolSize &&
1151     (r = workQueue.poll()) != null)
1152     addThread(r).start();
1153     }
1154     else if (extra > 0 && poolSize > corePoolSize) {
1155 dl 1.2 Iterator<Worker> it = workers.iterator();
1156 tim 1.10 while (it.hasNext() &&
1157 dl 1.34 extra-- > 0 &&
1158 dl 1.2 poolSize > corePoolSize &&
1159 dl 1.34 workQueue.remainingCapacity() == 0)
1160 dl 1.2 it.next().interruptIfIdle();
1161     }
1162 tim 1.14 } finally {
1163 dl 1.2 mainLock.unlock();
1164     }
1165     }
1166 tim 1.1
1167     /**
1168 dl 1.2 * Returns the core number of threads.
1169 tim 1.1 *
1170 dl 1.2 * @return the core number of threads
1171 tim 1.11 * @see #setCorePoolSize
1172 tim 1.1 */
1173 tim 1.10 public int getCorePoolSize() {
1174 dl 1.2 return corePoolSize;
1175 dl 1.16 }
1176    
1177     /**
1178     * Start a core thread, causing it to idly wait for work. This
1179     * overrides the default policy of starting core threads only when
1180     * new tasks are executed. This method will return <tt>false</tt>
1181     * if all core threads have already been started.
1182     * @return true if a thread was started
1183     */
1184     public boolean prestartCoreThread() {
1185     return addIfUnderCorePoolSize(null);
1186     }
1187    
1188     /**
1189     * Start all core threads, causing them to idly wait for work. This
1190     * overrides the default policy of starting core threads only when
1191     * new tasks are executed.
1192     * @return the number of threads started.
1193     */
1194     public int prestartAllCoreThreads() {
1195     int n = 0;
1196     while (addIfUnderCorePoolSize(null))
1197     ++n;
1198     return n;
1199 dl 1.2 }
1200 tim 1.1
1201     /**
1202     * Sets the maximum allowed number of threads. This overrides any
1203 dl 1.2 * value set in the constructor. If the new value is smaller than
1204     * the current value, excess existing threads will be
1205     * terminated when they next become idle.
1206 tim 1.1 *
1207 dl 1.2 * @param maximumPoolSize the new maximum
1208     * @throws IllegalArgumentException if maximumPoolSize less than zero or
1209     * the {@link #getCorePoolSize core pool size}
1210 tim 1.11 * @see #getMaximumPoolSize
1211 dl 1.2 */
1212     public void setMaximumPoolSize(int maximumPoolSize) {
1213     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1214     throw new IllegalArgumentException();
1215 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1216 dl 1.2 mainLock.lock();
1217     try {
1218     int extra = this.maximumPoolSize - maximumPoolSize;
1219     this.maximumPoolSize = maximumPoolSize;
1220     if (extra > 0 && poolSize > maximumPoolSize) {
1221     Iterator<Worker> it = workers.iterator();
1222 tim 1.10 while (it.hasNext() &&
1223     extra > 0 &&
1224 dl 1.2 poolSize > maximumPoolSize) {
1225     it.next().interruptIfIdle();
1226     --extra;
1227     }
1228     }
1229 tim 1.14 } finally {
1230 dl 1.2 mainLock.unlock();
1231     }
1232     }
1233 tim 1.1
1234     /**
1235     * Returns the maximum allowed number of threads.
1236     *
1237 dl 1.2 * @return the maximum allowed number of threads
1238 tim 1.11 * @see #setMaximumPoolSize
1239 tim 1.1 */
1240 tim 1.10 public int getMaximumPoolSize() {
1241 dl 1.2 return maximumPoolSize;
1242     }
1243 tim 1.1
1244     /**
1245     * Sets the time limit for which threads may remain idle before
1246 dl 1.2 * being terminated. If there are more than the core number of
1247 tim 1.1 * threads currently in the pool, after waiting this amount of
1248     * time without processing a task, excess threads will be
1249     * terminated. This overrides any value set in the constructor.
1250     * @param time the time to wait. A time value of zero will cause
1251     * excess threads to terminate immediately after executing tasks.
1252 dl 1.2 * @param unit the time unit of the time argument
1253 dl 1.17 * @throws IllegalArgumentException if time less than zero
1254 tim 1.11 * @see #getKeepAliveTime
1255 tim 1.1 */
1256 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1257     if (time < 0)
1258     throw new IllegalArgumentException();
1259     this.keepAliveTime = unit.toNanos(time);
1260     }
1261 tim 1.1
1262     /**
1263     * Returns the thread keep-alive time, which is the amount of time
1264 dl 1.2 * which threads in excess of the core pool size may remain
1265 tim 1.10 * idle before being terminated.
1266 tim 1.1 *
1267 dl 1.2 * @param unit the desired time unit of the result
1268 tim 1.1 * @return the time limit
1269 tim 1.11 * @see #setKeepAliveTime
1270 tim 1.1 */
1271 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1272 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1273     }
1274 tim 1.1
1275     /* Statistics */
1276    
1277     /**
1278     * Returns the current number of threads in the pool.
1279     *
1280     * @return the number of threads
1281     */
1282 tim 1.10 public int getPoolSize() {
1283 dl 1.2 return poolSize;
1284     }
1285 tim 1.1
1286     /**
1287 dl 1.2 * Returns the approximate number of threads that are actively
1288 tim 1.1 * executing tasks.
1289     *
1290     * @return the number of threads
1291     */
1292 tim 1.10 public int getActiveCount() {
1293 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1294 dl 1.2 mainLock.lock();
1295     try {
1296     int n = 0;
1297 tim 1.39 for (Worker w : workers) {
1298     if (w.isActive())
1299 dl 1.2 ++n;
1300     }
1301     return n;
1302 tim 1.14 } finally {
1303 dl 1.2 mainLock.unlock();
1304     }
1305     }
1306 tim 1.1
1307     /**
1308 dl 1.2 * Returns the largest number of threads that have ever
1309     * simultaneously been in the pool.
1310 tim 1.1 *
1311     * @return the number of threads
1312     */
1313 tim 1.10 public int getLargestPoolSize() {
1314 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1315 dl 1.2 mainLock.lock();
1316     try {
1317     return largestPoolSize;
1318 tim 1.14 } finally {
1319 dl 1.2 mainLock.unlock();
1320     }
1321     }
1322 tim 1.1
1323     /**
1324 dl 1.2 * Returns the approximate total number of tasks that have been
1325     * scheduled for execution. Because the states of tasks and
1326     * threads may change dynamically during computation, the returned
1327 dl 1.17 * value is only an approximation, but one that does not ever
1328     * decrease across successive calls.
1329 tim 1.1 *
1330     * @return the number of tasks
1331     */
1332 tim 1.10 public long getTaskCount() {
1333 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1334 dl 1.2 mainLock.lock();
1335     try {
1336     long n = completedTaskCount;
1337 tim 1.39 for (Worker w : workers) {
1338 dl 1.2 n += w.completedTasks;
1339     if (w.isActive())
1340     ++n;
1341     }
1342     return n + workQueue.size();
1343 tim 1.14 } finally {
1344 dl 1.2 mainLock.unlock();
1345     }
1346     }
1347 tim 1.1
1348     /**
1349 dl 1.2 * Returns the approximate total number of tasks that have
1350     * completed execution. Because the states of tasks and threads
1351     * may change dynamically during computation, the returned value
1352 dl 1.17 * is only an approximation, but one that does not ever decrease
1353     * across successive calls.
1354 tim 1.1 *
1355     * @return the number of tasks
1356     */
1357 tim 1.10 public long getCompletedTaskCount() {
1358 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1359 dl 1.2 mainLock.lock();
1360     try {
1361     long n = completedTaskCount;
1362 tim 1.39 for (Worker w : workers)
1363     n += w.completedTasks;
1364 dl 1.2 return n;
1365 tim 1.14 } finally {
1366 dl 1.2 mainLock.unlock();
1367     }
1368     }
1369 tim 1.1
1370     /**
1371 dl 1.17 * Method invoked prior to executing the given Runnable in the
1372 dl 1.43 * given thread. This method is invoked by thread <tt>t</tt> that
1373     * will execute task <tt>r</tt>, and may be used to re-initialize
1374 dl 1.17 * ThreadLocals, or to perform logging. Note: To properly nest
1375     * multiple overridings, subclasses should generally invoke
1376 dl 1.5 * <tt>super.beforeExecute</tt> at the end of this method.
1377 tim 1.1 *
1378 dl 1.2 * @param t the thread that will run task r.
1379     * @param r the task that will be executed.
1380 tim 1.1 */
1381 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1382 tim 1.1
1383     /**
1384 dl 1.2 * Method invoked upon completion of execution of the given
1385 dl 1.43 * Runnable. This method is invoked by the thread that executed
1386     * the task. If non-null, the Throwable is the uncaught exception
1387 dl 1.5 * that caused execution to terminate abruptly. Note: To properly
1388     * nest multiple overridings, subclasses should generally invoke
1389     * <tt>super.afterExecute</tt> at the beginning of this method.
1390 tim 1.1 *
1391 dl 1.2 * @param r the runnable that has completed.
1392 dl 1.24 * @param t the exception that caused termination, or null if
1393 dl 1.2 * execution completed normally.
1394 tim 1.1 */
1395 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1396 tim 1.1
1397 dl 1.2 /**
1398     * Method invoked when the Executor has terminated. Default
1399 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1400     * overridings, subclasses should generally invoke
1401     * <tt>super.terminated</tt> within this method.
1402 dl 1.2 */
1403     protected void terminated() { }
1404 tim 1.1
1405     /**
1406 dl 1.21 * A handler for rejected tasks that runs the rejected task
1407     * directly in the calling thread of the <tt>execute</tt> method,
1408     * unless the executor has been shut down, in which case the task
1409     * is discarded.
1410 tim 1.1 */
1411 dl 1.2 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1412 tim 1.1
1413     /**
1414 dl 1.24 * Creates a <tt>CallerRunsPolicy</tt>.
1415 tim 1.1 */
1416     public CallerRunsPolicy() { }
1417    
1418 dl 1.24 /**
1419     * Executes task r in the caller's thread, unless the executor
1420     * has been shut down, in which case the task is discarded.
1421     * @param r the runnable task requested to be executed
1422     * @param e the executor attempting to execute this task
1423     */
1424 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1425     if (!e.isShutdown()) {
1426 tim 1.1 r.run();
1427     }
1428     }
1429     }
1430    
1431     /**
1432 dl 1.21 * A handler for rejected tasks that throws a
1433 dl 1.8 * <tt>RejectedExecutionException</tt>.
1434 tim 1.1 */
1435 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
1436 tim 1.1
1437     /**
1438 dl 1.29 * Creates an <tt>AbortPolicy</tt>.
1439 tim 1.1 */
1440     public AbortPolicy() { }
1441    
1442 dl 1.24 /**
1443     * Always throws RejectedExecutionException
1444     * @param r the runnable task requested to be executed
1445     * @param e the executor attempting to execute this task
1446     * @throws RejectedExecutionException always.
1447     */
1448 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1449     throw new RejectedExecutionException();
1450 tim 1.1 }
1451     }
1452    
1453     /**
1454 dl 1.21 * A handler for rejected tasks that silently discards the
1455     * rejected task.
1456 tim 1.1 */
1457 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
1458 tim 1.1
1459     /**
1460 dl 1.24 * Creates <tt>DiscardPolicy</tt>.
1461 tim 1.1 */
1462     public DiscardPolicy() { }
1463    
1464 dl 1.24 /**
1465     * Does nothing, which has the effect of discarding task r.
1466     * @param r the runnable task requested to be executed
1467     * @param e the executor attempting to execute this task
1468     */
1469 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1470 tim 1.1 }
1471     }
1472    
1473     /**
1474 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
1475     * request and then retries <tt>execute</tt>, unless the executor
1476     * is shut down, in which case the task is discarded.
1477 tim 1.1 */
1478 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
1479 tim 1.1 /**
1480 dl 1.24 * Creates a <tt>DiscardOldestPolicy</tt> for the given executor.
1481 tim 1.1 */
1482     public DiscardOldestPolicy() { }
1483    
1484 dl 1.24 /**
1485     * Obtains and ignores the next task that the executor
1486     * would otherwise execute, if one is immediately available,
1487     * and then retries execution of task r, unless the executor
1488     * is shut down, in which case task r is instead discarded.
1489     * @param r the runnable task requested to be executed
1490     * @param e the executor attempting to execute this task
1491     */
1492 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1493     if (!e.isShutdown()) {
1494     e.getQueue().poll();
1495     e.execute(r);
1496 tim 1.1 }
1497     }
1498     }
1499     }