ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.51
Committed: Mon Jan 19 15:49:02 2004 UTC (20 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.50: +1 -1 lines
Log Message:
Javadoc fixes

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.9 import java.util.concurrent.locks.*;
9 dl 1.2 import java.util.*;
10 tim 1.1
11     /**
12 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
13 dl 1.28 * one of possibly several pooled threads, normally configured
14     * using {@link Executors} factory methods.
15 tim 1.1 *
16 dl 1.17 * <p>Thread pools address two different problems: they usually
17     * provide improved performance when executing large numbers of
18     * asynchronous tasks, due to reduced per-task invocation overhead,
19     * and they provide a means of bounding and managing the resources,
20     * including threads, consumed when executing a collection of tasks.
21 dl 1.20 * Each <tt>ThreadPoolExecutor</tt> also maintains some basic
22 dl 1.22 * statistics, such as the number of completed tasks.
23 dl 1.17 *
24 tim 1.1 * <p>To be useful across a wide range of contexts, this class
25 dl 1.24 * provides many adjustable parameters and extensibility
26     * hooks. However, programmers are urged to use the more convenient
27 dl 1.20 * {@link Executors} factory methods {@link
28     * Executors#newCachedThreadPool} (unbounded thread pool, with
29     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
30     * (fixed size thread pool) and {@link
31     * Executors#newSingleThreadExecutor} (single background thread), that
32 dl 1.22 * preconfigure settings for the most common usage
33     * scenarios. Otherwise, use the following guide when manually
34 dl 1.24 * configuring and tuning this class:
35 dl 1.17 *
36 tim 1.1 * <dl>
37 dl 1.2 *
38 dl 1.21 * <dt>Core and maximum pool sizes</dt>
39 dl 1.2 *
40 dl 1.19 * <dd>A <tt>ThreadPoolExecutor</tt> will automatically adjust the
41 dl 1.21 * pool size
42     * (see {@link ThreadPoolExecutor#getPoolSize})
43     * according to the bounds set by corePoolSize
44     * (see {@link ThreadPoolExecutor#getCorePoolSize})
45     * and
46     * maximumPoolSize
47     * (see {@link ThreadPoolExecutor#getMaximumPoolSize}).
48     * When a new task is submitted in method {@link
49     * ThreadPoolExecutor#execute}, and fewer than corePoolSize threads
50     * are running, a new thread is created to handle the request, even if
51     * other worker threads are idle. If there are more than
52     * corePoolSize but less than maximumPoolSize threads running, a new
53     * thread will be created only if the queue is full. By setting
54     * corePoolSize and maximumPoolSize the same, you create a fixed-size
55     * thread pool. By setting maximumPoolSize to an essentially unbounded
56     * value such as <tt>Integer.MAX_VALUE</tt>, you allow the pool to
57 dl 1.27 * accommodate an arbitrary number of concurrent tasks. Most typically,
58 dl 1.21 * core and maximum pool sizes are set only upon construction, but they
59     * may also be changed dynamically using {@link
60     * ThreadPoolExecutor#setCorePoolSize} and {@link
61     * ThreadPoolExecutor#setMaximumPoolSize}. <dd>
62 dl 1.2 *
63 dl 1.21 * <dt> On-demand construction
64 dl 1.2 *
65 dl 1.21 * <dd> By default, even core threads are initially created and
66     * started only when needed by new tasks, but this can be overridden
67     * dynamically using method {@link
68     * ThreadPoolExecutor#prestartCoreThread} or
69     * {@link ThreadPoolExecutor#prestartAllCoreThreads}. </dd>
70 dl 1.2 *
71 tim 1.1 * <dt>Creating new threads</dt>
72 dl 1.2 *
73 dl 1.33 * <dd>New threads are created using a {@link
74     * java.util.concurrent.ThreadFactory}. If not otherwise specified, a
75 dl 1.34 * {@link Executors#defaultThreadFactory} is used, that creates threads to all
76 dl 1.33 * be in the same {@link ThreadGroup} and with the same
77     * <tt>NORM_PRIORITY</tt> priority and non-daemon status. By supplying
78     * a different ThreadFactory, you can alter the thread's name, thread
79     * group, priority, daemon status, etc. </dd>
80 dl 1.2 *
81 dl 1.21 * <dt>Keep-alive times</dt>
82     *
83     * <dd>If the pool currently has more than corePoolSize threads,
84     * excess threads will be terminated if they have been idle for more
85     * than the keepAliveTime (see {@link
86     * ThreadPoolExecutor#getKeepAliveTime}). This provides a means of
87     * reducing resource consumption when the pool is not being actively
88     * used. If the pool becomes more active later, new threads will be
89     * constructed. This parameter can also be changed dynamically
90     * using method {@link ThreadPoolExecutor#setKeepAliveTime}. Using
91     * a value of <tt>Long.MAX_VALUE</tt> {@link TimeUnit#NANOSECONDS}
92     * effectively disables idle threads from ever terminating prior
93     * to shut down.
94     * </dd>
95     *
96 dl 1.48 * <dt>Queuing</dt>
97 dl 1.21 *
98     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
99     * submitted tasks. The use of this queue interacts with pool sizing:
100 dl 1.2 *
101 dl 1.21 * <ul>
102     *
103 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
104     * always prefers adding a new thread
105 dl 1.48 * rather than queuing.</li>
106 dl 1.21 *
107 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
108     * always prefers queuing a request rather than adding a new
109     * thread.</li>
110 dl 1.21 *
111     * <li> If a request cannot be queued, a new thread is created unless
112     * this would exceed maximumPoolSize, in which case, the task will be
113     * rejected.</li>
114     *
115     * </ul>
116     *
117     * There are three general strategies for queuing:
118     * <ol>
119     *
120     * <li> <em> Direct handoffs.</em> A good default choice for a work
121     * queue is a {@link SynchronousQueue} that hands off tasks to threads
122     * without otherwise holding them. Here, an attempt to queue a task
123     * will fail if no threads are immediately available to run it, so a
124     * new thread will be constructed. This policy avoids lockups when
125     * handling sets of requests that might have internal dependencies.
126     * Direct handoffs generally require unbounded maximumPoolSizes to
127 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
128 dl 1.21 * possibility of unbounded thread growth when commands continue to
129     * arrive on average faster than they can be processed. </li>
130     *
131     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
132     * example a {@link LinkedBlockingQueue} without a predefined
133     * capacity) will cause new tasks to be queued in cases where all
134 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
135     * threads will ever be created. (And the value of the maximumPoolSize
136     * therefore doesn't have any effect.) This may be appropriate when
137     * each task is completely independent of others, so tasks cannot
138     * affect each others execution; for example, in a web page server.
139     * While this style of queuing can be useful in smoothing out
140     * transient bursts of requests, it admits the possibility of
141     * unbounded work queue growth when commands continue to arrive on
142     * average faster than they can be processed. </li>
143 dl 1.21 *
144     * <li><em>Bounded queues.</em> A bounded queue (for example, an
145     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
146     * used with finite maximumPoolSizes, but can be more difficult to
147     * tune and control. Queue sizes and maximum pool sizes may be traded
148     * off for each other: Using large queues and small pools minimizes
149     * CPU usage, OS resources, and context-switching overhead, but can
150 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
151 dl 1.21 * example if they are I/O bound), a system may be able to schedule
152     * time for more threads than you otherwise allow. Use of small queues
153 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
154     * may encounter unacceptable scheduling overhead, which also
155     * decreases throughput. </li>
156 dl 1.21 *
157     * </ol>
158     *
159     * </dd>
160     *
161     * <dt>Rejected tasks</dt>
162     *
163     * <dd> New tasks submitted in method {@link
164     * ThreadPoolExecutor#execute} will be <em>rejected</em> when the
165     * Executor has been shut down, and also when the Executor uses finite
166     * bounds for both maximum threads and work queue capacity, and is
167 dl 1.22 * saturated. In either case, the <tt>execute</tt> method invokes the
168     * {@link RejectedExecutionHandler#rejectedExecution} method of its
169     * {@link RejectedExecutionHandler}. Four predefined handler policies
170     * are provided:
171 dl 1.21 *
172     * <ol>
173     *
174     * <li> In the
175     * default {@link ThreadPoolExecutor.AbortPolicy}, the handler throws a
176     * runtime {@link RejectedExecutionException} upon rejection. </li>
177     *
178     * <li> In {@link
179     * ThreadPoolExecutor.CallerRunsPolicy}, the thread that invokes
180     * <tt>execute</tt> itself runs the task. This provides a simple
181     * feedback control mechanism that will slow down the rate that new
182     * tasks are submitted. </li>
183     *
184     * <li> In {@link ThreadPoolExecutor.DiscardPolicy},
185     * a task that cannot be executed is simply dropped. </li>
186     *
187     * <li>In {@link
188     * ThreadPoolExecutor.DiscardOldestPolicy}, if the executor is not
189     * shut down, the task at the head of the work queue is dropped, and
190     * then execution is retried (which can fail again, causing this to be
191     * repeated.) </li>
192     *
193     * </ol>
194     *
195     * It is possible to define and use other kinds of {@link
196     * RejectedExecutionHandler} classes. Doing so requires some care
197     * especially when policies are designed to work only under particular
198 dl 1.48 * capacity or queuing policies. </dd>
199 dl 1.21 *
200     * <dt>Hook methods</dt>
201     *
202 dl 1.23 * <dd>This class provides <tt>protected</tt> overridable {@link
203 dl 1.21 * ThreadPoolExecutor#beforeExecute} and {@link
204     * ThreadPoolExecutor#afterExecute} methods that are called before and
205 dl 1.19 * after execution of each task. These can be used to manipulate the
206     * execution environment, for example, reinitializing ThreadLocals,
207 dl 1.21 * gathering statistics, or adding log entries. Additionally, method
208     * {@link ThreadPoolExecutor#terminated} can be overridden to perform
209     * any special processing that needs to be done once the Executor has
210     * fully terminated.</dd>
211 dl 1.2 *
212 dl 1.21 * <dt>Queue maintenance</dt>
213 dl 1.2 *
214 dl 1.24 * <dd> Method {@link ThreadPoolExecutor#getQueue} allows access to
215     * the work queue for purposes of monitoring and debugging. Use of
216     * this method for any other purpose is strongly discouraged. Two
217     * supplied methods, {@link ThreadPoolExecutor#remove} and {@link
218     * ThreadPoolExecutor#purge} are available to assist in storage
219     * reclamation when large numbers of queued tasks become
220     * cancelled.</dd> </dl>
221 tim 1.1 *
222 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
223     * override one or more of the protected hook methods. For example,
224     * here is a subclass that adds a simple pause/resume feature:
225     *
226     * <pre>
227     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
228     * private boolean isPaused;
229     * private ReentrantLock pauseLock = new ReentrantLock();
230     * private Condition unpaused = pauseLock.newCondition();
231     *
232     * public PausableThreadPoolExecutor(...) { super(...); }
233     *
234     * protected void beforeExecute(Thread t, Runnable r) {
235     * super.beforeExecute(t, r);
236     * pauseLock.lock();
237     * try {
238     * while (isPaused) unpaused.await();
239     * } catch(InterruptedException ie) {
240     * Thread.currentThread().interrupt();
241     * } finally {
242     * pauseLock.unlock();
243     * }
244     * }
245     *
246     * public void pause() {
247     * pauseLock.lock();
248     * try {
249     * isPaused = true;
250     * } finally {
251     * pauseLock.unlock();
252     * }
253     * }
254     *
255     * public void resume() {
256     * pauseLock.lock();
257     * try {
258     * isPaused = false;
259     * unpaused.signalAll();
260     * } finally {
261     * pauseLock.unlock();
262     * }
263     * }
264     * }
265     * </pre>
266 tim 1.1 * @since 1.5
267 dl 1.8 * @author Doug Lea
268 tim 1.1 */
269 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
270 dl 1.2 /**
271 tim 1.41 * Only used to force toArray() to produce a Runnable[].
272     */
273     private static final Runnable[] EMPTY_RUNNABLE_ARRAY = new Runnable[0];
274    
275     /**
276 dl 1.43 * Permission for checking shutdown
277     */
278     private static final RuntimePermission shutdownPerm =
279     new RuntimePermission("modifyThread");
280    
281     /**
282 dl 1.2 * Queue used for holding tasks and handing off to worker threads.
283 tim 1.10 */
284 dl 1.2 private final BlockingQueue<Runnable> workQueue;
285    
286     /**
287     * Lock held on updates to poolSize, corePoolSize, maximumPoolSize, and
288     * workers set.
289 tim 1.10 */
290 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
291    
292     /**
293     * Wait condition to support awaitTermination
294 tim 1.10 */
295 dl 1.46 private final Condition termination = mainLock.newCondition();
296 dl 1.2
297     /**
298     * Set containing all worker threads in pool.
299 tim 1.10 */
300 dl 1.17 private final HashSet<Worker> workers = new HashSet<Worker>();
301 dl 1.2
302     /**
303 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
304 dl 1.2 * Threads use this timeout only when there are more than
305     * corePoolSize present. Otherwise they wait forever for new work.
306 tim 1.10 */
307 dl 1.2 private volatile long keepAliveTime;
308    
309     /**
310     * Core pool size, updated only while holding mainLock,
311     * but volatile to allow concurrent readability even
312     * during updates.
313 tim 1.10 */
314 dl 1.2 private volatile int corePoolSize;
315    
316     /**
317     * Maximum pool size, updated only while holding mainLock
318     * but volatile to allow concurrent readability even
319     * during updates.
320 tim 1.10 */
321 dl 1.2 private volatile int maximumPoolSize;
322    
323     /**
324     * Current pool size, updated only while holding mainLock
325     * but volatile to allow concurrent readability even
326     * during updates.
327 tim 1.10 */
328 dl 1.2 private volatile int poolSize;
329    
330     /**
331 dl 1.16 * Lifecycle state
332 tim 1.10 */
333 dl 1.16 private volatile int runState;
334 dl 1.2
335 dl 1.16 // Special values for runState
336 dl 1.8 /** Normal, not-shutdown mode */
337 dl 1.16 private static final int RUNNING = 0;
338 dl 1.8 /** Controlled shutdown mode */
339 dl 1.16 private static final int SHUTDOWN = 1;
340     /** Immediate shutdown mode */
341     private static final int STOP = 2;
342     /** Final state */
343     private static final int TERMINATED = 3;
344 dl 1.2
345     /**
346     * Handler called when saturated or shutdown in execute.
347 tim 1.10 */
348 dl 1.33 private volatile RejectedExecutionHandler handler;
349 dl 1.2
350     /**
351     * Factory for new threads.
352 tim 1.10 */
353 dl 1.33 private volatile ThreadFactory threadFactory;
354 dl 1.2
355     /**
356     * Tracks largest attained pool size.
357 tim 1.10 */
358 dl 1.2 private int largestPoolSize;
359    
360     /**
361     * Counter for completed tasks. Updated only on termination of
362     * worker threads.
363 tim 1.10 */
364 dl 1.2 private long completedTaskCount;
365 tim 1.41
366 dl 1.8 /**
367 dl 1.35 * The default rejected execution handler
368 dl 1.8 */
369 tim 1.10 private static final RejectedExecutionHandler defaultHandler =
370 dl 1.2 new AbortPolicy();
371    
372     /**
373 dl 1.17 * Invoke the rejected execution handler for the given command.
374 dl 1.13 */
375     void reject(Runnable command) {
376     handler.rejectedExecution(command, this);
377     }
378    
379 dl 1.33 /**
380 dl 1.2 * Create and return a new thread running firstTask as its first
381     * task. Call only while holding mainLock
382 dl 1.8 * @param firstTask the task the new thread should run first (or
383     * null if none)
384     * @return the new thread
385 dl 1.2 */
386     private Thread addThread(Runnable firstTask) {
387     Worker w = new Worker(firstTask);
388     Thread t = threadFactory.newThread(w);
389     w.thread = t;
390     workers.add(w);
391     int nt = ++poolSize;
392     if (nt > largestPoolSize)
393     largestPoolSize = nt;
394     return t;
395     }
396 dl 1.15
397 dl 1.2 /**
398     * Create and start a new thread running firstTask as its first
399 dl 1.50 * task, only if fewer than corePoolSize threads are running.
400 dl 1.8 * @param firstTask the task the new thread should run first (or
401     * null if none)
402 dl 1.2 * @return true if successful.
403     */
404 dl 1.16 private boolean addIfUnderCorePoolSize(Runnable firstTask) {
405 dl 1.2 Thread t = null;
406 dl 1.45 final ReentrantLock mainLock = this.mainLock;
407 dl 1.2 mainLock.lock();
408     try {
409 tim 1.10 if (poolSize < corePoolSize)
410 dl 1.8 t = addThread(firstTask);
411 tim 1.14 } finally {
412 dl 1.2 mainLock.unlock();
413     }
414     if (t == null)
415     return false;
416     t.start();
417     return true;
418     }
419    
420     /**
421 dl 1.50 * Create and start a new thread only if fewer than maximumPoolSize
422 dl 1.2 * threads are running. The new thread runs as its first task the
423     * next task in queue, or if there is none, the given task.
424 dl 1.8 * @param firstTask the task the new thread should run first (or
425     * null if none)
426 dl 1.2 * @return null on failure, else the first task to be run by new thread.
427     */
428 dl 1.8 private Runnable addIfUnderMaximumPoolSize(Runnable firstTask) {
429 dl 1.2 Thread t = null;
430     Runnable next = null;
431 dl 1.45 final ReentrantLock mainLock = this.mainLock;
432 dl 1.2 mainLock.lock();
433     try {
434     if (poolSize < maximumPoolSize) {
435     next = workQueue.poll();
436     if (next == null)
437 dl 1.8 next = firstTask;
438 dl 1.2 t = addThread(next);
439     }
440 tim 1.14 } finally {
441 dl 1.2 mainLock.unlock();
442     }
443     if (t == null)
444     return null;
445     t.start();
446     return next;
447     }
448    
449    
450     /**
451     * Get the next task for a worker thread to run.
452 dl 1.8 * @return the task
453     * @throws InterruptedException if interrupted while waiting for task
454 dl 1.2 */
455     private Runnable getTask() throws InterruptedException {
456     for (;;) {
457 dl 1.16 switch(runState) {
458     case RUNNING: {
459     if (poolSize <= corePoolSize) // untimed wait if core
460     return workQueue.take();
461    
462     long timeout = keepAliveTime;
463     if (timeout <= 0) // die immediately for 0 timeout
464     return null;
465     Runnable r = workQueue.poll(timeout, TimeUnit.NANOSECONDS);
466     if (r != null)
467     return r;
468     if (poolSize > corePoolSize) // timed out
469     return null;
470     // else, after timeout, pool shrank so shouldn't die, so retry
471     break;
472     }
473    
474     case SHUTDOWN: {
475     // Help drain queue
476     Runnable r = workQueue.poll();
477     if (r != null)
478     return r;
479    
480     // Check if can terminate
481     if (workQueue.isEmpty()) {
482     interruptIdleWorkers();
483     return null;
484     }
485    
486     // There could still be delayed tasks in queue.
487     // Wait for one, re-checking state upon interruption
488     try {
489     return workQueue.take();
490 dl 1.50 } catch(InterruptedException ignore) {}
491 dl 1.16 break;
492     }
493    
494     case STOP:
495 dl 1.2 return null;
496 dl 1.16 default:
497     assert false;
498     }
499     }
500     }
501    
502     /**
503     * Wake up all threads that might be waiting for tasks.
504     */
505     void interruptIdleWorkers() {
506 dl 1.45 final ReentrantLock mainLock = this.mainLock;
507 dl 1.16 mainLock.lock();
508     try {
509 tim 1.39 for (Worker w : workers)
510     w.interruptIfIdle();
511 dl 1.16 } finally {
512     mainLock.unlock();
513 dl 1.2 }
514     }
515    
516     /**
517     * Perform bookkeeping for a terminated worker thread.
518 tim 1.10 * @param w the worker
519 dl 1.2 */
520     private void workerDone(Worker w) {
521 dl 1.45 final ReentrantLock mainLock = this.mainLock;
522 dl 1.2 mainLock.lock();
523     try {
524     completedTaskCount += w.completedTasks;
525     workers.remove(w);
526 tim 1.10 if (--poolSize > 0)
527 dl 1.2 return;
528    
529 dl 1.16 // Else, this is the last thread. Deal with potential shutdown.
530    
531     int state = runState;
532     assert state != TERMINATED;
533 tim 1.10
534 dl 1.16 if (state != STOP) {
535     // If there are queued tasks but no threads, create
536     // replacement.
537 dl 1.2 Runnable r = workQueue.poll();
538     if (r != null) {
539     addThread(r).start();
540     return;
541     }
542 dl 1.16
543     // If there are some (presumably delayed) tasks but
544     // none pollable, create an idle replacement to wait.
545     if (!workQueue.isEmpty()) {
546     addThread(null).start();
547     return;
548     }
549    
550     // Otherwise, we can exit without replacement
551     if (state == RUNNING)
552     return;
553 dl 1.2 }
554    
555 dl 1.16 // Either state is STOP, or state is SHUTDOWN and there is
556     // no work to do. So we can terminate.
557 dl 1.45 termination.signalAll();
558 dl 1.16 runState = TERMINATED;
559     // fall through to call terminate() outside of lock.
560 tim 1.14 } finally {
561 dl 1.2 mainLock.unlock();
562     }
563    
564 dl 1.16 assert runState == TERMINATED;
565     terminated();
566 dl 1.2 }
567    
568     /**
569 tim 1.10 * Worker threads
570 dl 1.2 */
571     private class Worker implements Runnable {
572    
573     /**
574     * The runLock is acquired and released surrounding each task
575     * execution. It mainly protects against interrupts that are
576     * intended to cancel the worker thread from instead
577     * interrupting the task being run.
578     */
579     private final ReentrantLock runLock = new ReentrantLock();
580    
581     /**
582     * Initial task to run before entering run loop
583     */
584     private Runnable firstTask;
585    
586     /**
587     * Per thread completed task counter; accumulated
588     * into completedTaskCount upon termination.
589     */
590     volatile long completedTasks;
591    
592     /**
593     * Thread this worker is running in. Acts as a final field,
594     * but cannot be set until thread is created.
595     */
596     Thread thread;
597    
598     Worker(Runnable firstTask) {
599     this.firstTask = firstTask;
600     }
601    
602     boolean isActive() {
603     return runLock.isLocked();
604     }
605    
606     /**
607     * Interrupt thread if not running a task
608 tim 1.10 */
609 dl 1.2 void interruptIfIdle() {
610 dl 1.45 final ReentrantLock runLock = this.runLock;
611 dl 1.2 if (runLock.tryLock()) {
612     try {
613     thread.interrupt();
614 tim 1.14 } finally {
615 dl 1.2 runLock.unlock();
616     }
617     }
618     }
619    
620     /**
621     * Cause thread to die even if running a task.
622 tim 1.10 */
623 dl 1.2 void interruptNow() {
624     thread.interrupt();
625     }
626    
627     /**
628     * Run a single task between before/after methods.
629     */
630     private void runTask(Runnable task) {
631 dl 1.45 final ReentrantLock runLock = this.runLock;
632 dl 1.2 runLock.lock();
633     try {
634     // Abort now if immediate cancel. Otherwise, we have
635     // committed to run this task.
636 dl 1.16 if (runState == STOP)
637 dl 1.2 return;
638    
639     Thread.interrupted(); // clear interrupt status on entry
640     boolean ran = false;
641     beforeExecute(thread, task);
642     try {
643     task.run();
644     ran = true;
645     afterExecute(task, null);
646     ++completedTasks;
647 tim 1.14 } catch(RuntimeException ex) {
648 dl 1.2 if (!ran)
649     afterExecute(task, ex);
650 dl 1.17 // Else the exception occurred within
651 dl 1.2 // afterExecute itself in which case we don't
652     // want to call it again.
653     throw ex;
654     }
655 tim 1.14 } finally {
656 dl 1.2 runLock.unlock();
657     }
658     }
659    
660     /**
661     * Main run loop
662     */
663     public void run() {
664     try {
665 dl 1.50 Runnable task = firstTask;
666     firstTask = null;
667     while (task != null || (task = getTask()) != null) {
668 dl 1.2 runTask(task);
669     task = null; // unnecessary but can help GC
670     }
671 tim 1.14 } catch(InterruptedException ie) {
672 dl 1.2 // fall through
673 tim 1.14 } finally {
674 dl 1.2 workerDone(this);
675     }
676     }
677     }
678 tim 1.1
679 dl 1.17 // Public methods
680    
681 tim 1.1 /**
682 dl 1.17 * Creates a new <tt>ThreadPoolExecutor</tt> with the given
683 dl 1.34 * initial parameters and default thread factory and handler. It
684     * may be more convenient to use one of the {@link Executors}
685     * factory methods instead of this general purpose constructor.
686 tim 1.1 *
687 dl 1.2 * @param corePoolSize the number of threads to keep in the
688 tim 1.1 * pool, even if they are idle.
689 dl 1.2 * @param maximumPoolSize the maximum number of threads to allow in the
690 tim 1.1 * pool.
691     * @param keepAliveTime when the number of threads is greater than
692 dl 1.2 * the core, this is the maximum time that excess idle threads
693 tim 1.1 * will wait for new tasks before terminating.
694 dl 1.2 * @param unit the time unit for the keepAliveTime
695 tim 1.1 * argument.
696 dl 1.36 * @param workQueue the queue to use for holding tasks before they
697 tim 1.1 * are executed. This queue will hold only the <tt>Runnable</tt>
698     * tasks submitted by the <tt>execute</tt> method.
699 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
700     * keepAliveTime less than zero, or if maximumPoolSize less than or
701     * equal to zero, or if corePoolSize greater than maximumPoolSize.
702 tim 1.1 * @throws NullPointerException if <tt>workQueue</tt> is null
703     */
704 dl 1.2 public ThreadPoolExecutor(int corePoolSize,
705     int maximumPoolSize,
706 tim 1.1 long keepAliveTime,
707 dl 1.2 TimeUnit unit,
708     BlockingQueue<Runnable> workQueue) {
709 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
710 dl 1.34 Executors.defaultThreadFactory(), defaultHandler);
711 dl 1.2 }
712 tim 1.1
713 dl 1.2 /**
714     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
715     * parameters.
716     *
717     * @param corePoolSize the number of threads to keep in the
718     * pool, even if they are idle.
719     * @param maximumPoolSize the maximum number of threads to allow in the
720     * pool.
721     * @param keepAliveTime when the number of threads is greater than
722     * the core, this is the maximum time that excess idle threads
723     * will wait for new tasks before terminating.
724     * @param unit the time unit for the keepAliveTime
725     * argument.
726 dl 1.36 * @param workQueue the queue to use for holding tasks before they
727 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
728     * tasks submitted by the <tt>execute</tt> method.
729     * @param threadFactory the factory to use when the executor
730 tim 1.10 * creates a new thread.
731 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
732     * keepAliveTime less than zero, or if maximumPoolSize less than or
733     * equal to zero, or if corePoolSize greater than maximumPoolSize.
734 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
735 dl 1.2 * or <tt>threadFactory</tt> are null.
736     */
737     public ThreadPoolExecutor(int corePoolSize,
738     int maximumPoolSize,
739     long keepAliveTime,
740     TimeUnit unit,
741     BlockingQueue<Runnable> workQueue,
742     ThreadFactory threadFactory) {
743 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
744 dl 1.2 threadFactory, defaultHandler);
745     }
746 tim 1.1
747 dl 1.2 /**
748     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
749     * parameters.
750     *
751     * @param corePoolSize the number of threads to keep in the
752     * pool, even if they are idle.
753     * @param maximumPoolSize the maximum number of threads to allow in the
754     * pool.
755     * @param keepAliveTime when the number of threads is greater than
756     * the core, this is the maximum time that excess idle threads
757     * will wait for new tasks before terminating.
758     * @param unit the time unit for the keepAliveTime
759     * argument.
760 dl 1.36 * @param workQueue the queue to use for holding tasks before they
761 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
762     * tasks submitted by the <tt>execute</tt> method.
763     * @param handler the handler to use when execution is blocked
764     * because the thread bounds and queue capacities are reached.
765     * @throws IllegalArgumentException if corePoolSize, or
766     * keepAliveTime less than zero, or if maximumPoolSize less than or
767     * equal to zero, or if corePoolSize greater than maximumPoolSize.
768 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
769 dl 1.2 * or <tt>handler</tt> are null.
770     */
771     public ThreadPoolExecutor(int corePoolSize,
772     int maximumPoolSize,
773     long keepAliveTime,
774     TimeUnit unit,
775     BlockingQueue<Runnable> workQueue,
776     RejectedExecutionHandler handler) {
777 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
778 dl 1.34 Executors.defaultThreadFactory(), handler);
779 dl 1.2 }
780 tim 1.1
781 dl 1.2 /**
782     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
783     * parameters.
784     *
785     * @param corePoolSize the number of threads to keep in the
786     * pool, even if they are idle.
787     * @param maximumPoolSize the maximum number of threads to allow in the
788     * pool.
789     * @param keepAliveTime when the number of threads is greater than
790     * the core, this is the maximum time that excess idle threads
791     * will wait for new tasks before terminating.
792     * @param unit the time unit for the keepAliveTime
793     * argument.
794 dl 1.36 * @param workQueue the queue to use for holding tasks before they
795 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
796     * tasks submitted by the <tt>execute</tt> method.
797     * @param threadFactory the factory to use when the executor
798 tim 1.10 * creates a new thread.
799 dl 1.2 * @param handler the handler to use when execution is blocked
800     * because the thread bounds and queue capacities are reached.
801     * @throws IllegalArgumentException if corePoolSize, or
802     * keepAliveTime less than zero, or if maximumPoolSize less than or
803     * equal to zero, or if corePoolSize greater than maximumPoolSize.
804 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
805 dl 1.2 * or <tt>threadFactory</tt> or <tt>handler</tt> are null.
806     */
807     public ThreadPoolExecutor(int corePoolSize,
808     int maximumPoolSize,
809     long keepAliveTime,
810     TimeUnit unit,
811     BlockingQueue<Runnable> workQueue,
812     ThreadFactory threadFactory,
813     RejectedExecutionHandler handler) {
814 tim 1.10 if (corePoolSize < 0 ||
815 dl 1.2 maximumPoolSize <= 0 ||
816 tim 1.10 maximumPoolSize < corePoolSize ||
817 dl 1.2 keepAliveTime < 0)
818     throw new IllegalArgumentException();
819     if (workQueue == null || threadFactory == null || handler == null)
820     throw new NullPointerException();
821     this.corePoolSize = corePoolSize;
822     this.maximumPoolSize = maximumPoolSize;
823     this.workQueue = workQueue;
824     this.keepAliveTime = unit.toNanos(keepAliveTime);
825     this.threadFactory = threadFactory;
826     this.handler = handler;
827 tim 1.1 }
828    
829 dl 1.2
830     /**
831     * Executes the given task sometime in the future. The task
832     * may execute in a new thread or in an existing pooled thread.
833     *
834     * If the task cannot be submitted for execution, either because this
835     * executor has been shutdown or because its capacity has been reached,
836 tim 1.10 * the task is handled by the current <tt>RejectedExecutionHandler</tt>.
837 dl 1.2 *
838     * @param command the task to execute
839     * @throws RejectedExecutionException at discretion of
840 dl 1.8 * <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
841     * for execution
842 dl 1.26 * @throws NullPointerException if command is null
843 dl 1.2 */
844 tim 1.10 public void execute(Runnable command) {
845 dl 1.26 if (command == null)
846     throw new NullPointerException();
847 dl 1.2 for (;;) {
848 dl 1.16 if (runState != RUNNING) {
849 dl 1.13 reject(command);
850 dl 1.2 return;
851     }
852     if (poolSize < corePoolSize && addIfUnderCorePoolSize(command))
853     return;
854     if (workQueue.offer(command))
855     return;
856     Runnable r = addIfUnderMaximumPoolSize(command);
857     if (r == command)
858     return;
859     if (r == null) {
860 dl 1.13 reject(command);
861 dl 1.2 return;
862     }
863     // else retry
864     }
865 tim 1.1 }
866 dl 1.4
867 dl 1.2 public void shutdown() {
868 dl 1.43 // Fail if caller doesn't have modifyThread permission
869 dl 1.42 SecurityManager security = System.getSecurityManager();
870     if (security != null)
871 dl 1.43 java.security.AccessController.checkPermission(shutdownPerm);
872 dl 1.42
873 dl 1.25 boolean fullyTerminated = false;
874 dl 1.45 final ReentrantLock mainLock = this.mainLock;
875 dl 1.2 mainLock.lock();
876     try {
877 dl 1.25 if (workers.size() > 0) {
878 dl 1.50 // Check if caller can modify worker threads. This
879     // might not be true even if passed above check, if
880     // the SecurityManager treats some threads specially.
881 dl 1.43 if (security != null) {
882     for (Worker w: workers)
883     security.checkAccess(w.thread);
884     }
885    
886     int state = runState;
887     if (state == RUNNING) // don't override shutdownNow
888 dl 1.25 runState = SHUTDOWN;
889 dl 1.43
890     try {
891     for (Worker w: workers)
892     w.interruptIfIdle();
893     } catch(SecurityException se) {
894 dl 1.50 // If SecurityManager allows above checks, but
895     // then unexpectedly throws exception when
896     // interrupting threads (which it ought not do),
897     // back out as cleanly as we can. Some threads may
898     // have been killed but we remain in non-shutdown
899     // state.
900 dl 1.43 runState = state;
901     throw se;
902     }
903 dl 1.25 }
904     else { // If no workers, trigger full termination now
905     fullyTerminated = true;
906     runState = TERMINATED;
907     termination.signalAll();
908     }
909 tim 1.14 } finally {
910 dl 1.2 mainLock.unlock();
911     }
912 dl 1.25 if (fullyTerminated)
913     terminated();
914 tim 1.1 }
915    
916 dl 1.16
917 tim 1.39 public List<Runnable> shutdownNow() {
918 dl 1.43 // Almost the same code as shutdown()
919 dl 1.42 SecurityManager security = System.getSecurityManager();
920     if (security != null)
921 dl 1.43 java.security.AccessController.checkPermission(shutdownPerm);
922    
923 dl 1.25 boolean fullyTerminated = false;
924 dl 1.45 final ReentrantLock mainLock = this.mainLock;
925 dl 1.2 mainLock.lock();
926     try {
927 dl 1.25 if (workers.size() > 0) {
928 dl 1.43 if (security != null) {
929     for (Worker w: workers)
930     security.checkAccess(w.thread);
931     }
932    
933     int state = runState;
934     if (state != TERMINATED)
935 dl 1.25 runState = STOP;
936 dl 1.43 try {
937     for (Worker w : workers)
938     w.interruptNow();
939     } catch(SecurityException se) {
940     runState = state; // back out;
941     throw se;
942     }
943 dl 1.25 }
944     else { // If no workers, trigger full termination now
945     fullyTerminated = true;
946     runState = TERMINATED;
947     termination.signalAll();
948     }
949 tim 1.14 } finally {
950 dl 1.2 mainLock.unlock();
951     }
952 dl 1.25 if (fullyTerminated)
953     terminated();
954 tim 1.41 return Arrays.asList(workQueue.toArray(EMPTY_RUNNABLE_ARRAY));
955 tim 1.1 }
956    
957 dl 1.2 public boolean isShutdown() {
958 dl 1.16 return runState != RUNNING;
959     }
960    
961     /**
962     * Return true if this executor is in the process of terminating
963     * after <tt>shutdown</tt> or <tt>shutdownNow</tt> but has not
964     * completely terminated. This method may be useful for
965     * debugging. A return of <tt>true</tt> reported a sufficient
966     * period after shutdown may indicate that submitted tasks have
967     * ignored or suppressed interruption, causing this executor not
968     * to properly terminate.
969     * @return true if terminating but not yet terminated.
970     */
971     public boolean isTerminating() {
972     return runState == STOP;
973 tim 1.1 }
974    
975 dl 1.2 public boolean isTerminated() {
976 dl 1.16 return runState == TERMINATED;
977 dl 1.2 }
978 tim 1.1
979 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
980     throws InterruptedException {
981 dl 1.50 long nanos = unit.toNanos(timeout);
982 dl 1.45 final ReentrantLock mainLock = this.mainLock;
983 dl 1.2 mainLock.lock();
984     try {
985 dl 1.25 for (;;) {
986     if (runState == TERMINATED)
987     return true;
988     if (nanos <= 0)
989     return false;
990     nanos = termination.awaitNanos(nanos);
991     }
992 tim 1.14 } finally {
993 dl 1.2 mainLock.unlock();
994     }
995 dl 1.15 }
996    
997     /**
998     * Invokes <tt>shutdown</tt> when this executor is no longer
999     * referenced.
1000     */
1001     protected void finalize() {
1002     shutdown();
1003 dl 1.2 }
1004 tim 1.10
1005 dl 1.2 /**
1006     * Sets the thread factory used to create new threads.
1007     *
1008     * @param threadFactory the new thread factory
1009 dl 1.30 * @throws NullPointerException if threadFactory is null
1010 tim 1.11 * @see #getThreadFactory
1011 dl 1.2 */
1012     public void setThreadFactory(ThreadFactory threadFactory) {
1013 dl 1.30 if (threadFactory == null)
1014     throw new NullPointerException();
1015 dl 1.2 this.threadFactory = threadFactory;
1016 tim 1.1 }
1017    
1018 dl 1.2 /**
1019     * Returns the thread factory used to create new threads.
1020     *
1021     * @return the current thread factory
1022 tim 1.11 * @see #setThreadFactory
1023 dl 1.2 */
1024     public ThreadFactory getThreadFactory() {
1025     return threadFactory;
1026 tim 1.1 }
1027    
1028 dl 1.2 /**
1029     * Sets a new handler for unexecutable tasks.
1030     *
1031     * @param handler the new handler
1032 dl 1.31 * @throws NullPointerException if handler is null
1033 tim 1.11 * @see #getRejectedExecutionHandler
1034 dl 1.2 */
1035     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1036 dl 1.31 if (handler == null)
1037     throw new NullPointerException();
1038 dl 1.2 this.handler = handler;
1039     }
1040 tim 1.1
1041 dl 1.2 /**
1042     * Returns the current handler for unexecutable tasks.
1043     *
1044     * @return the current handler
1045 tim 1.11 * @see #setRejectedExecutionHandler
1046 dl 1.2 */
1047     public RejectedExecutionHandler getRejectedExecutionHandler() {
1048     return handler;
1049 tim 1.1 }
1050    
1051 dl 1.2 /**
1052 dl 1.17 * Returns the task queue used by this executor. Access to the
1053     * task queue is intended primarily for debugging and monitoring.
1054 dl 1.27 * This queue may be in active use. Retrieving the task queue
1055 dl 1.2 * does not prevent queued tasks from executing.
1056     *
1057     * @return the task queue
1058     */
1059     public BlockingQueue<Runnable> getQueue() {
1060     return workQueue;
1061 tim 1.1 }
1062 dl 1.4
1063     /**
1064 dl 1.44 * Removes this task from the executor's internal queue if it is
1065     * present, thus causing it not to be run if it has not already
1066     * started.
1067     *
1068     * <p> This method may be useful as one part of a cancellation
1069     * scheme. It may fail to remove tasks that have been converted
1070     * into other forms before being placed on the internal queue. For
1071     * example, a task entered using <tt>submit</tt> might be
1072     * converted into a form that maintains <tt>Future</tt> status.
1073     * However, in such cases, method {@link ThreadPoolExecutor#purge}
1074     * may be used to remove those Futures that have been cancelled.
1075     *
1076 tim 1.10 *
1077 dl 1.8 * @param task the task to remove
1078     * @return true if the task was removed
1079 dl 1.4 */
1080 dl 1.5 public boolean remove(Runnable task) {
1081 dl 1.4 return getQueue().remove(task);
1082     }
1083    
1084 dl 1.7
1085     /**
1086 dl 1.37 * Tries to remove from the work queue all {@link Future}
1087 dl 1.16 * tasks that have been cancelled. This method can be useful as a
1088     * storage reclamation operation, that has no other impact on
1089     * functionality. Cancelled tasks are never executed, but may
1090     * accumulate in work queues until worker threads can actively
1091     * remove them. Invoking this method instead tries to remove them now.
1092 dl 1.23 * However, this method may fail to remove tasks in
1093 dl 1.16 * the presence of interference by other threads.
1094 dl 1.7 */
1095     public void purge() {
1096 dl 1.16 // Fail if we encounter interference during traversal
1097     try {
1098     Iterator<Runnable> it = getQueue().iterator();
1099     while (it.hasNext()) {
1100     Runnable r = it.next();
1101 dl 1.37 if (r instanceof Future<?>) {
1102     Future<?> c = (Future<?>)r;
1103 dl 1.16 if (c.isCancelled())
1104     it.remove();
1105     }
1106 dl 1.7 }
1107     }
1108 dl 1.16 catch(ConcurrentModificationException ex) {
1109     return;
1110     }
1111 dl 1.7 }
1112 tim 1.1
1113     /**
1114 dl 1.2 * Sets the core number of threads. This overrides any value set
1115     * in the constructor. If the new value is smaller than the
1116     * current value, excess existing threads will be terminated when
1117 dl 1.34 * they next become idle. If larger, new threads will, if needed,
1118     * be started to execute any queued tasks.
1119 tim 1.1 *
1120 dl 1.2 * @param corePoolSize the new core size
1121 tim 1.10 * @throws IllegalArgumentException if <tt>corePoolSize</tt>
1122 dl 1.8 * less than zero
1123 tim 1.11 * @see #getCorePoolSize
1124 tim 1.1 */
1125 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1126     if (corePoolSize < 0)
1127     throw new IllegalArgumentException();
1128 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1129 dl 1.2 mainLock.lock();
1130     try {
1131     int extra = this.corePoolSize - corePoolSize;
1132     this.corePoolSize = corePoolSize;
1133 tim 1.38 if (extra < 0) {
1134     Runnable r;
1135     while (extra++ < 0 && poolSize < corePoolSize &&
1136     (r = workQueue.poll()) != null)
1137     addThread(r).start();
1138     }
1139     else if (extra > 0 && poolSize > corePoolSize) {
1140 dl 1.2 Iterator<Worker> it = workers.iterator();
1141 tim 1.10 while (it.hasNext() &&
1142 dl 1.34 extra-- > 0 &&
1143 dl 1.2 poolSize > corePoolSize &&
1144 dl 1.34 workQueue.remainingCapacity() == 0)
1145 dl 1.2 it.next().interruptIfIdle();
1146     }
1147 tim 1.14 } finally {
1148 dl 1.2 mainLock.unlock();
1149     }
1150     }
1151 tim 1.1
1152     /**
1153 dl 1.2 * Returns the core number of threads.
1154 tim 1.1 *
1155 dl 1.2 * @return the core number of threads
1156 tim 1.11 * @see #setCorePoolSize
1157 tim 1.1 */
1158 tim 1.10 public int getCorePoolSize() {
1159 dl 1.2 return corePoolSize;
1160 dl 1.16 }
1161    
1162     /**
1163     * Start a core thread, causing it to idly wait for work. This
1164     * overrides the default policy of starting core threads only when
1165     * new tasks are executed. This method will return <tt>false</tt>
1166     * if all core threads have already been started.
1167     * @return true if a thread was started
1168     */
1169     public boolean prestartCoreThread() {
1170     return addIfUnderCorePoolSize(null);
1171     }
1172    
1173     /**
1174     * Start all core threads, causing them to idly wait for work. This
1175     * overrides the default policy of starting core threads only when
1176     * new tasks are executed.
1177     * @return the number of threads started.
1178     */
1179     public int prestartAllCoreThreads() {
1180     int n = 0;
1181     while (addIfUnderCorePoolSize(null))
1182     ++n;
1183     return n;
1184 dl 1.2 }
1185 tim 1.1
1186     /**
1187     * Sets the maximum allowed number of threads. This overrides any
1188 dl 1.2 * value set in the constructor. If the new value is smaller than
1189     * the current value, excess existing threads will be
1190     * terminated when they next become idle.
1191 tim 1.1 *
1192 dl 1.2 * @param maximumPoolSize the new maximum
1193     * @throws IllegalArgumentException if maximumPoolSize less than zero or
1194     * the {@link #getCorePoolSize core pool size}
1195 tim 1.11 * @see #getMaximumPoolSize
1196 dl 1.2 */
1197     public void setMaximumPoolSize(int maximumPoolSize) {
1198     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1199     throw new IllegalArgumentException();
1200 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1201 dl 1.2 mainLock.lock();
1202     try {
1203     int extra = this.maximumPoolSize - maximumPoolSize;
1204     this.maximumPoolSize = maximumPoolSize;
1205     if (extra > 0 && poolSize > maximumPoolSize) {
1206     Iterator<Worker> it = workers.iterator();
1207 tim 1.10 while (it.hasNext() &&
1208     extra > 0 &&
1209 dl 1.2 poolSize > maximumPoolSize) {
1210     it.next().interruptIfIdle();
1211     --extra;
1212     }
1213     }
1214 tim 1.14 } finally {
1215 dl 1.2 mainLock.unlock();
1216     }
1217     }
1218 tim 1.1
1219     /**
1220     * Returns the maximum allowed number of threads.
1221     *
1222 dl 1.2 * @return the maximum allowed number of threads
1223 tim 1.11 * @see #setMaximumPoolSize
1224 tim 1.1 */
1225 tim 1.10 public int getMaximumPoolSize() {
1226 dl 1.2 return maximumPoolSize;
1227     }
1228 tim 1.1
1229     /**
1230     * Sets the time limit for which threads may remain idle before
1231 dl 1.2 * being terminated. If there are more than the core number of
1232 tim 1.1 * threads currently in the pool, after waiting this amount of
1233     * time without processing a task, excess threads will be
1234     * terminated. This overrides any value set in the constructor.
1235     * @param time the time to wait. A time value of zero will cause
1236     * excess threads to terminate immediately after executing tasks.
1237 dl 1.2 * @param unit the time unit of the time argument
1238 dl 1.17 * @throws IllegalArgumentException if time less than zero
1239 tim 1.11 * @see #getKeepAliveTime
1240 tim 1.1 */
1241 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1242     if (time < 0)
1243     throw new IllegalArgumentException();
1244     this.keepAliveTime = unit.toNanos(time);
1245     }
1246 tim 1.1
1247     /**
1248     * Returns the thread keep-alive time, which is the amount of time
1249 dl 1.2 * which threads in excess of the core pool size may remain
1250 tim 1.10 * idle before being terminated.
1251 tim 1.1 *
1252 dl 1.2 * @param unit the desired time unit of the result
1253 tim 1.1 * @return the time limit
1254 tim 1.11 * @see #setKeepAliveTime
1255 tim 1.1 */
1256 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1257 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1258     }
1259 tim 1.1
1260     /* Statistics */
1261    
1262     /**
1263     * Returns the current number of threads in the pool.
1264     *
1265     * @return the number of threads
1266     */
1267 tim 1.10 public int getPoolSize() {
1268 dl 1.2 return poolSize;
1269     }
1270 tim 1.1
1271     /**
1272 dl 1.2 * Returns the approximate number of threads that are actively
1273 tim 1.1 * executing tasks.
1274     *
1275     * @return the number of threads
1276     */
1277 tim 1.10 public int getActiveCount() {
1278 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1279 dl 1.2 mainLock.lock();
1280     try {
1281     int n = 0;
1282 tim 1.39 for (Worker w : workers) {
1283     if (w.isActive())
1284 dl 1.2 ++n;
1285     }
1286     return n;
1287 tim 1.14 } finally {
1288 dl 1.2 mainLock.unlock();
1289     }
1290     }
1291 tim 1.1
1292     /**
1293 dl 1.2 * Returns the largest number of threads that have ever
1294     * simultaneously been in the pool.
1295 tim 1.1 *
1296     * @return the number of threads
1297     */
1298 tim 1.10 public int getLargestPoolSize() {
1299 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1300 dl 1.2 mainLock.lock();
1301     try {
1302     return largestPoolSize;
1303 tim 1.14 } finally {
1304 dl 1.2 mainLock.unlock();
1305     }
1306     }
1307 tim 1.1
1308     /**
1309 dl 1.2 * Returns the approximate total number of tasks that have been
1310     * scheduled for execution. Because the states of tasks and
1311     * threads may change dynamically during computation, the returned
1312 dl 1.17 * value is only an approximation, but one that does not ever
1313     * decrease across successive calls.
1314 tim 1.1 *
1315     * @return the number of tasks
1316     */
1317 tim 1.10 public long getTaskCount() {
1318 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1319 dl 1.2 mainLock.lock();
1320     try {
1321     long n = completedTaskCount;
1322 tim 1.39 for (Worker w : workers) {
1323 dl 1.2 n += w.completedTasks;
1324     if (w.isActive())
1325     ++n;
1326     }
1327     return n + workQueue.size();
1328 tim 1.14 } finally {
1329 dl 1.2 mainLock.unlock();
1330     }
1331     }
1332 tim 1.1
1333     /**
1334 dl 1.2 * Returns the approximate total number of tasks that have
1335     * completed execution. Because the states of tasks and threads
1336     * may change dynamically during computation, the returned value
1337 dl 1.17 * is only an approximation, but one that does not ever decrease
1338     * across successive calls.
1339 tim 1.1 *
1340     * @return the number of tasks
1341     */
1342 tim 1.10 public long getCompletedTaskCount() {
1343 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1344 dl 1.2 mainLock.lock();
1345     try {
1346     long n = completedTaskCount;
1347 tim 1.39 for (Worker w : workers)
1348     n += w.completedTasks;
1349 dl 1.2 return n;
1350 tim 1.14 } finally {
1351 dl 1.2 mainLock.unlock();
1352     }
1353     }
1354 tim 1.1
1355     /**
1356 dl 1.17 * Method invoked prior to executing the given Runnable in the
1357 dl 1.43 * given thread. This method is invoked by thread <tt>t</tt> that
1358     * will execute task <tt>r</tt>, and may be used to re-initialize
1359 dl 1.17 * ThreadLocals, or to perform logging. Note: To properly nest
1360     * multiple overridings, subclasses should generally invoke
1361 dl 1.5 * <tt>super.beforeExecute</tt> at the end of this method.
1362 tim 1.1 *
1363 dl 1.2 * @param t the thread that will run task r.
1364     * @param r the task that will be executed.
1365 tim 1.1 */
1366 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1367 tim 1.1
1368     /**
1369 dl 1.2 * Method invoked upon completion of execution of the given
1370 dl 1.43 * Runnable. This method is invoked by the thread that executed
1371     * the task. If non-null, the Throwable is the uncaught exception
1372 dl 1.5 * that caused execution to terminate abruptly. Note: To properly
1373     * nest multiple overridings, subclasses should generally invoke
1374     * <tt>super.afterExecute</tt> at the beginning of this method.
1375 tim 1.1 *
1376 dl 1.2 * @param r the runnable that has completed.
1377 dl 1.24 * @param t the exception that caused termination, or null if
1378 dl 1.2 * execution completed normally.
1379 tim 1.1 */
1380 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1381 tim 1.1
1382 dl 1.2 /**
1383     * Method invoked when the Executor has terminated. Default
1384 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1385     * overridings, subclasses should generally invoke
1386     * <tt>super.terminated</tt> within this method.
1387 dl 1.2 */
1388     protected void terminated() { }
1389 tim 1.1
1390     /**
1391 dl 1.21 * A handler for rejected tasks that runs the rejected task
1392     * directly in the calling thread of the <tt>execute</tt> method,
1393     * unless the executor has been shut down, in which case the task
1394     * is discarded.
1395 tim 1.1 */
1396 dl 1.2 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1397 tim 1.1 /**
1398 dl 1.24 * Creates a <tt>CallerRunsPolicy</tt>.
1399 tim 1.1 */
1400     public CallerRunsPolicy() { }
1401    
1402 dl 1.24 /**
1403     * Executes task r in the caller's thread, unless the executor
1404     * has been shut down, in which case the task is discarded.
1405     * @param r the runnable task requested to be executed
1406     * @param e the executor attempting to execute this task
1407     */
1408 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1409     if (!e.isShutdown()) {
1410 tim 1.1 r.run();
1411     }
1412     }
1413     }
1414    
1415     /**
1416 dl 1.21 * A handler for rejected tasks that throws a
1417 dl 1.8 * <tt>RejectedExecutionException</tt>.
1418 tim 1.1 */
1419 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
1420 tim 1.1 /**
1421 dl 1.29 * Creates an <tt>AbortPolicy</tt>.
1422 tim 1.1 */
1423     public AbortPolicy() { }
1424    
1425 dl 1.24 /**
1426 dl 1.51 * Always throws RejectedExecutionException.
1427 dl 1.24 * @param r the runnable task requested to be executed
1428     * @param e the executor attempting to execute this task
1429     * @throws RejectedExecutionException always.
1430     */
1431 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1432     throw new RejectedExecutionException();
1433 tim 1.1 }
1434     }
1435    
1436     /**
1437 dl 1.21 * A handler for rejected tasks that silently discards the
1438     * rejected task.
1439 tim 1.1 */
1440 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
1441 tim 1.1 /**
1442 dl 1.24 * Creates <tt>DiscardPolicy</tt>.
1443 tim 1.1 */
1444     public DiscardPolicy() { }
1445    
1446 dl 1.24 /**
1447     * Does nothing, which has the effect of discarding task r.
1448     * @param r the runnable task requested to be executed
1449     * @param e the executor attempting to execute this task
1450     */
1451 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1452 tim 1.1 }
1453     }
1454    
1455     /**
1456 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
1457     * request and then retries <tt>execute</tt>, unless the executor
1458     * is shut down, in which case the task is discarded.
1459 tim 1.1 */
1460 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
1461 tim 1.1 /**
1462 dl 1.24 * Creates a <tt>DiscardOldestPolicy</tt> for the given executor.
1463 tim 1.1 */
1464     public DiscardOldestPolicy() { }
1465    
1466 dl 1.24 /**
1467     * Obtains and ignores the next task that the executor
1468     * would otherwise execute, if one is immediately available,
1469     * and then retries execution of task r, unless the executor
1470     * is shut down, in which case task r is instead discarded.
1471     * @param r the runnable task requested to be executed
1472     * @param e the executor attempting to execute this task
1473     */
1474 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1475     if (!e.isShutdown()) {
1476     e.getQueue().poll();
1477     e.execute(r);
1478 tim 1.1 }
1479     }
1480     }
1481     }