ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.57
Committed: Mon Apr 12 12:02:39 2004 UTC (20 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.56: +9 -10 lines
Log Message:
Warn about exceptions in hooks; Don't swallow newThread exceptions

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.9 import java.util.concurrent.locks.*;
9 dl 1.2 import java.util.*;
10 tim 1.1
11     /**
12 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
13 dl 1.28 * one of possibly several pooled threads, normally configured
14     * using {@link Executors} factory methods.
15 tim 1.1 *
16 dl 1.17 * <p>Thread pools address two different problems: they usually
17     * provide improved performance when executing large numbers of
18     * asynchronous tasks, due to reduced per-task invocation overhead,
19     * and they provide a means of bounding and managing the resources,
20     * including threads, consumed when executing a collection of tasks.
21 dl 1.20 * Each <tt>ThreadPoolExecutor</tt> also maintains some basic
22 dl 1.22 * statistics, such as the number of completed tasks.
23 dl 1.17 *
24 tim 1.1 * <p>To be useful across a wide range of contexts, this class
25 dl 1.24 * provides many adjustable parameters and extensibility
26     * hooks. However, programmers are urged to use the more convenient
27 dl 1.20 * {@link Executors} factory methods {@link
28     * Executors#newCachedThreadPool} (unbounded thread pool, with
29     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
30     * (fixed size thread pool) and {@link
31     * Executors#newSingleThreadExecutor} (single background thread), that
32 dl 1.22 * preconfigure settings for the most common usage
33     * scenarios. Otherwise, use the following guide when manually
34 dl 1.24 * configuring and tuning this class:
35 dl 1.17 *
36 tim 1.1 * <dl>
37 dl 1.2 *
38 dl 1.21 * <dt>Core and maximum pool sizes</dt>
39 dl 1.2 *
40 dl 1.19 * <dd>A <tt>ThreadPoolExecutor</tt> will automatically adjust the
41 dl 1.21 * pool size
42     * (see {@link ThreadPoolExecutor#getPoolSize})
43     * according to the bounds set by corePoolSize
44     * (see {@link ThreadPoolExecutor#getCorePoolSize})
45     * and
46     * maximumPoolSize
47     * (see {@link ThreadPoolExecutor#getMaximumPoolSize}).
48     * When a new task is submitted in method {@link
49     * ThreadPoolExecutor#execute}, and fewer than corePoolSize threads
50     * are running, a new thread is created to handle the request, even if
51     * other worker threads are idle. If there are more than
52     * corePoolSize but less than maximumPoolSize threads running, a new
53     * thread will be created only if the queue is full. By setting
54     * corePoolSize and maximumPoolSize the same, you create a fixed-size
55     * thread pool. By setting maximumPoolSize to an essentially unbounded
56     * value such as <tt>Integer.MAX_VALUE</tt>, you allow the pool to
57 dl 1.27 * accommodate an arbitrary number of concurrent tasks. Most typically,
58 dl 1.21 * core and maximum pool sizes are set only upon construction, but they
59     * may also be changed dynamically using {@link
60     * ThreadPoolExecutor#setCorePoolSize} and {@link
61     * ThreadPoolExecutor#setMaximumPoolSize}. <dd>
62 dl 1.2 *
63 dl 1.21 * <dt> On-demand construction
64 dl 1.2 *
65 dl 1.21 * <dd> By default, even core threads are initially created and
66     * started only when needed by new tasks, but this can be overridden
67     * dynamically using method {@link
68     * ThreadPoolExecutor#prestartCoreThread} or
69     * {@link ThreadPoolExecutor#prestartAllCoreThreads}. </dd>
70 dl 1.2 *
71 tim 1.1 * <dt>Creating new threads</dt>
72 dl 1.2 *
73 dl 1.33 * <dd>New threads are created using a {@link
74     * java.util.concurrent.ThreadFactory}. If not otherwise specified, a
75 dl 1.34 * {@link Executors#defaultThreadFactory} is used, that creates threads to all
76 dl 1.33 * be in the same {@link ThreadGroup} and with the same
77     * <tt>NORM_PRIORITY</tt> priority and non-daemon status. By supplying
78     * a different ThreadFactory, you can alter the thread's name, thread
79 dl 1.57 * group, priority, daemon status, etc. If a <tt>ThreadFactory</tt> fails to create
80     * a thread when asked by returning null from <tt>newThread</tt>,
81     * the executor will continue, but might
82 dl 1.56 * not be able to execute any tasks. </dd>
83 dl 1.2 *
84 dl 1.21 * <dt>Keep-alive times</dt>
85     *
86     * <dd>If the pool currently has more than corePoolSize threads,
87     * excess threads will be terminated if they have been idle for more
88     * than the keepAliveTime (see {@link
89     * ThreadPoolExecutor#getKeepAliveTime}). This provides a means of
90     * reducing resource consumption when the pool is not being actively
91     * used. If the pool becomes more active later, new threads will be
92     * constructed. This parameter can also be changed dynamically
93     * using method {@link ThreadPoolExecutor#setKeepAliveTime}. Using
94     * a value of <tt>Long.MAX_VALUE</tt> {@link TimeUnit#NANOSECONDS}
95     * effectively disables idle threads from ever terminating prior
96     * to shut down.
97     * </dd>
98     *
99 dl 1.48 * <dt>Queuing</dt>
100 dl 1.21 *
101     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
102     * submitted tasks. The use of this queue interacts with pool sizing:
103 dl 1.2 *
104 dl 1.21 * <ul>
105     *
106 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
107     * always prefers adding a new thread
108 dl 1.48 * rather than queuing.</li>
109 dl 1.21 *
110 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
111     * always prefers queuing a request rather than adding a new
112     * thread.</li>
113 dl 1.21 *
114     * <li> If a request cannot be queued, a new thread is created unless
115     * this would exceed maximumPoolSize, in which case, the task will be
116     * rejected.</li>
117     *
118     * </ul>
119     *
120     * There are three general strategies for queuing:
121     * <ol>
122     *
123     * <li> <em> Direct handoffs.</em> A good default choice for a work
124     * queue is a {@link SynchronousQueue} that hands off tasks to threads
125     * without otherwise holding them. Here, an attempt to queue a task
126     * will fail if no threads are immediately available to run it, so a
127     * new thread will be constructed. This policy avoids lockups when
128     * handling sets of requests that might have internal dependencies.
129     * Direct handoffs generally require unbounded maximumPoolSizes to
130 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
131 dl 1.21 * possibility of unbounded thread growth when commands continue to
132     * arrive on average faster than they can be processed. </li>
133     *
134     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
135     * example a {@link LinkedBlockingQueue} without a predefined
136     * capacity) will cause new tasks to be queued in cases where all
137 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
138     * threads will ever be created. (And the value of the maximumPoolSize
139     * therefore doesn't have any effect.) This may be appropriate when
140     * each task is completely independent of others, so tasks cannot
141     * affect each others execution; for example, in a web page server.
142     * While this style of queuing can be useful in smoothing out
143     * transient bursts of requests, it admits the possibility of
144     * unbounded work queue growth when commands continue to arrive on
145     * average faster than they can be processed. </li>
146 dl 1.21 *
147     * <li><em>Bounded queues.</em> A bounded queue (for example, an
148     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
149     * used with finite maximumPoolSizes, but can be more difficult to
150     * tune and control. Queue sizes and maximum pool sizes may be traded
151     * off for each other: Using large queues and small pools minimizes
152     * CPU usage, OS resources, and context-switching overhead, but can
153 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
154 dl 1.21 * example if they are I/O bound), a system may be able to schedule
155     * time for more threads than you otherwise allow. Use of small queues
156 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
157     * may encounter unacceptable scheduling overhead, which also
158     * decreases throughput. </li>
159 dl 1.21 *
160     * </ol>
161     *
162     * </dd>
163     *
164     * <dt>Rejected tasks</dt>
165     *
166     * <dd> New tasks submitted in method {@link
167     * ThreadPoolExecutor#execute} will be <em>rejected</em> when the
168     * Executor has been shut down, and also when the Executor uses finite
169     * bounds for both maximum threads and work queue capacity, and is
170 dl 1.22 * saturated. In either case, the <tt>execute</tt> method invokes the
171     * {@link RejectedExecutionHandler#rejectedExecution} method of its
172     * {@link RejectedExecutionHandler}. Four predefined handler policies
173     * are provided:
174 dl 1.21 *
175     * <ol>
176     *
177     * <li> In the
178     * default {@link ThreadPoolExecutor.AbortPolicy}, the handler throws a
179     * runtime {@link RejectedExecutionException} upon rejection. </li>
180     *
181     * <li> In {@link
182     * ThreadPoolExecutor.CallerRunsPolicy}, the thread that invokes
183     * <tt>execute</tt> itself runs the task. This provides a simple
184     * feedback control mechanism that will slow down the rate that new
185     * tasks are submitted. </li>
186     *
187     * <li> In {@link ThreadPoolExecutor.DiscardPolicy},
188     * a task that cannot be executed is simply dropped. </li>
189     *
190     * <li>In {@link
191     * ThreadPoolExecutor.DiscardOldestPolicy}, if the executor is not
192     * shut down, the task at the head of the work queue is dropped, and
193     * then execution is retried (which can fail again, causing this to be
194     * repeated.) </li>
195     *
196     * </ol>
197     *
198     * It is possible to define and use other kinds of {@link
199     * RejectedExecutionHandler} classes. Doing so requires some care
200     * especially when policies are designed to work only under particular
201 dl 1.48 * capacity or queuing policies. </dd>
202 dl 1.21 *
203     * <dt>Hook methods</dt>
204     *
205 dl 1.23 * <dd>This class provides <tt>protected</tt> overridable {@link
206 dl 1.21 * ThreadPoolExecutor#beforeExecute} and {@link
207     * ThreadPoolExecutor#afterExecute} methods that are called before and
208 dl 1.19 * after execution of each task. These can be used to manipulate the
209     * execution environment, for example, reinitializing ThreadLocals,
210 dl 1.21 * gathering statistics, or adding log entries. Additionally, method
211     * {@link ThreadPoolExecutor#terminated} can be overridden to perform
212     * any special processing that needs to be done once the Executor has
213 dl 1.57 * fully terminated.
214     *
215     * <p>If hook or callback methods throw
216     * exceptions, internal worker threads may in turn fail and
217     * abruptly terminate.</dd>
218 dl 1.2 *
219 dl 1.21 * <dt>Queue maintenance</dt>
220 dl 1.2 *
221 dl 1.24 * <dd> Method {@link ThreadPoolExecutor#getQueue} allows access to
222     * the work queue for purposes of monitoring and debugging. Use of
223     * this method for any other purpose is strongly discouraged. Two
224     * supplied methods, {@link ThreadPoolExecutor#remove} and {@link
225     * ThreadPoolExecutor#purge} are available to assist in storage
226     * reclamation when large numbers of queued tasks become
227     * cancelled.</dd> </dl>
228 tim 1.1 *
229 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
230     * override one or more of the protected hook methods. For example,
231     * here is a subclass that adds a simple pause/resume feature:
232     *
233     * <pre>
234     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
235     * private boolean isPaused;
236     * private ReentrantLock pauseLock = new ReentrantLock();
237     * private Condition unpaused = pauseLock.newCondition();
238     *
239     * public PausableThreadPoolExecutor(...) { super(...); }
240     *
241     * protected void beforeExecute(Thread t, Runnable r) {
242     * super.beforeExecute(t, r);
243     * pauseLock.lock();
244     * try {
245     * while (isPaused) unpaused.await();
246     * } catch(InterruptedException ie) {
247 dl 1.53 * t.interrupt();
248 dl 1.43 * } finally {
249 dl 1.53 * pauseLock.unlock();
250 dl 1.43 * }
251     * }
252     *
253     * public void pause() {
254     * pauseLock.lock();
255     * try {
256     * isPaused = true;
257     * } finally {
258 dl 1.53 * pauseLock.unlock();
259 dl 1.43 * }
260     * }
261     *
262     * public void resume() {
263     * pauseLock.lock();
264     * try {
265     * isPaused = false;
266     * unpaused.signalAll();
267     * } finally {
268 dl 1.53 * pauseLock.unlock();
269 dl 1.43 * }
270     * }
271     * }
272     * </pre>
273 tim 1.1 * @since 1.5
274 dl 1.8 * @author Doug Lea
275 tim 1.1 */
276 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
277 dl 1.2 /**
278 tim 1.41 * Only used to force toArray() to produce a Runnable[].
279     */
280     private static final Runnable[] EMPTY_RUNNABLE_ARRAY = new Runnable[0];
281    
282     /**
283 dl 1.43 * Permission for checking shutdown
284     */
285     private static final RuntimePermission shutdownPerm =
286     new RuntimePermission("modifyThread");
287    
288     /**
289 dl 1.2 * Queue used for holding tasks and handing off to worker threads.
290 tim 1.10 */
291 dl 1.2 private final BlockingQueue<Runnable> workQueue;
292    
293     /**
294     * Lock held on updates to poolSize, corePoolSize, maximumPoolSize, and
295     * workers set.
296 tim 1.10 */
297 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
298    
299     /**
300     * Wait condition to support awaitTermination
301 tim 1.10 */
302 dl 1.46 private final Condition termination = mainLock.newCondition();
303 dl 1.2
304     /**
305     * Set containing all worker threads in pool.
306 tim 1.10 */
307 dl 1.17 private final HashSet<Worker> workers = new HashSet<Worker>();
308 dl 1.2
309     /**
310 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
311 dl 1.2 * Threads use this timeout only when there are more than
312     * corePoolSize present. Otherwise they wait forever for new work.
313 tim 1.10 */
314 dl 1.2 private volatile long keepAliveTime;
315    
316     /**
317     * Core pool size, updated only while holding mainLock,
318     * but volatile to allow concurrent readability even
319     * during updates.
320 tim 1.10 */
321 dl 1.2 private volatile int corePoolSize;
322    
323     /**
324     * Maximum pool size, updated only while holding mainLock
325     * but volatile to allow concurrent readability even
326     * during updates.
327 tim 1.10 */
328 dl 1.2 private volatile int maximumPoolSize;
329    
330     /**
331     * Current pool size, updated only while holding mainLock
332     * but volatile to allow concurrent readability even
333     * during updates.
334 tim 1.10 */
335 dl 1.2 private volatile int poolSize;
336    
337     /**
338 dl 1.16 * Lifecycle state
339 tim 1.10 */
340 dl 1.52 volatile int runState;
341 dl 1.2
342 dl 1.16 // Special values for runState
343 dl 1.8 /** Normal, not-shutdown mode */
344 dl 1.52 static final int RUNNING = 0;
345 dl 1.8 /** Controlled shutdown mode */
346 dl 1.52 static final int SHUTDOWN = 1;
347 dl 1.16 /** Immediate shutdown mode */
348 dl 1.52 static final int STOP = 2;
349 dl 1.16 /** Final state */
350 dl 1.52 static final int TERMINATED = 3;
351 dl 1.2
352     /**
353     * Handler called when saturated or shutdown in execute.
354 tim 1.10 */
355 dl 1.33 private volatile RejectedExecutionHandler handler;
356 dl 1.2
357     /**
358     * Factory for new threads.
359 tim 1.10 */
360 dl 1.33 private volatile ThreadFactory threadFactory;
361 dl 1.2
362     /**
363     * Tracks largest attained pool size.
364 tim 1.10 */
365 dl 1.2 private int largestPoolSize;
366    
367     /**
368     * Counter for completed tasks. Updated only on termination of
369     * worker threads.
370 tim 1.10 */
371 dl 1.2 private long completedTaskCount;
372 tim 1.41
373 dl 1.8 /**
374 dl 1.35 * The default rejected execution handler
375 dl 1.8 */
376 tim 1.10 private static final RejectedExecutionHandler defaultHandler =
377 dl 1.2 new AbortPolicy();
378    
379     /**
380 dl 1.17 * Invoke the rejected execution handler for the given command.
381 dl 1.13 */
382     void reject(Runnable command) {
383     handler.rejectedExecution(command, this);
384     }
385    
386 dl 1.33 /**
387 dl 1.2 * Create and return a new thread running firstTask as its first
388     * task. Call only while holding mainLock
389 dl 1.8 * @param firstTask the task the new thread should run first (or
390     * null if none)
391 dl 1.56 * @return the new thread, or null if threadFactory fails to create thread
392 dl 1.2 */
393     private Thread addThread(Runnable firstTask) {
394     Worker w = new Worker(firstTask);
395 dl 1.57 Thread t = threadFactory.newThread(w);
396 dl 1.56 if (t != null) {
397     w.thread = t;
398     workers.add(w);
399     int nt = ++poolSize;
400     if (nt > largestPoolSize)
401     largestPoolSize = nt;
402     }
403 dl 1.2 return t;
404     }
405 dl 1.15
406 dl 1.2 /**
407     * Create and start a new thread running firstTask as its first
408 dl 1.50 * task, only if fewer than corePoolSize threads are running.
409 dl 1.8 * @param firstTask the task the new thread should run first (or
410     * null if none)
411 dl 1.2 * @return true if successful.
412     */
413 dl 1.16 private boolean addIfUnderCorePoolSize(Runnable firstTask) {
414 dl 1.2 Thread t = null;
415 dl 1.45 final ReentrantLock mainLock = this.mainLock;
416 dl 1.2 mainLock.lock();
417     try {
418 tim 1.10 if (poolSize < corePoolSize)
419 dl 1.8 t = addThread(firstTask);
420 tim 1.14 } finally {
421 dl 1.2 mainLock.unlock();
422     }
423     if (t == null)
424     return false;
425     t.start();
426     return true;
427     }
428    
429     /**
430 dl 1.50 * Create and start a new thread only if fewer than maximumPoolSize
431 dl 1.2 * threads are running. The new thread runs as its first task the
432     * next task in queue, or if there is none, the given task.
433 dl 1.8 * @param firstTask the task the new thread should run first (or
434     * null if none)
435 dl 1.2 * @return null on failure, else the first task to be run by new thread.
436     */
437 dl 1.8 private Runnable addIfUnderMaximumPoolSize(Runnable firstTask) {
438 dl 1.2 Thread t = null;
439     Runnable next = null;
440 dl 1.45 final ReentrantLock mainLock = this.mainLock;
441 dl 1.2 mainLock.lock();
442     try {
443     if (poolSize < maximumPoolSize) {
444     next = workQueue.poll();
445     if (next == null)
446 dl 1.8 next = firstTask;
447 dl 1.2 t = addThread(next);
448     }
449 tim 1.14 } finally {
450 dl 1.2 mainLock.unlock();
451     }
452     if (t == null)
453     return null;
454     t.start();
455     return next;
456     }
457    
458    
459     /**
460     * Get the next task for a worker thread to run.
461 dl 1.8 * @return the task
462     * @throws InterruptedException if interrupted while waiting for task
463 dl 1.2 */
464 dl 1.52 Runnable getTask() throws InterruptedException {
465 dl 1.2 for (;;) {
466 dl 1.16 switch(runState) {
467     case RUNNING: {
468     if (poolSize <= corePoolSize) // untimed wait if core
469     return workQueue.take();
470    
471     long timeout = keepAliveTime;
472     if (timeout <= 0) // die immediately for 0 timeout
473     return null;
474     Runnable r = workQueue.poll(timeout, TimeUnit.NANOSECONDS);
475     if (r != null)
476     return r;
477     if (poolSize > corePoolSize) // timed out
478     return null;
479     // else, after timeout, pool shrank so shouldn't die, so retry
480     break;
481     }
482    
483     case SHUTDOWN: {
484     // Help drain queue
485     Runnable r = workQueue.poll();
486     if (r != null)
487     return r;
488    
489     // Check if can terminate
490     if (workQueue.isEmpty()) {
491     interruptIdleWorkers();
492     return null;
493     }
494    
495     // There could still be delayed tasks in queue.
496     // Wait for one, re-checking state upon interruption
497     try {
498     return workQueue.take();
499 dl 1.50 } catch(InterruptedException ignore) {}
500 dl 1.16 break;
501     }
502    
503     case STOP:
504 dl 1.2 return null;
505 dl 1.16 default:
506     assert false;
507     }
508     }
509     }
510    
511     /**
512     * Wake up all threads that might be waiting for tasks.
513     */
514     void interruptIdleWorkers() {
515 dl 1.45 final ReentrantLock mainLock = this.mainLock;
516 dl 1.16 mainLock.lock();
517     try {
518 tim 1.39 for (Worker w : workers)
519     w.interruptIfIdle();
520 dl 1.16 } finally {
521     mainLock.unlock();
522 dl 1.2 }
523     }
524    
525     /**
526     * Perform bookkeeping for a terminated worker thread.
527 tim 1.10 * @param w the worker
528 dl 1.2 */
529 dl 1.52 void workerDone(Worker w) {
530 dl 1.45 final ReentrantLock mainLock = this.mainLock;
531 dl 1.2 mainLock.lock();
532     try {
533     completedTaskCount += w.completedTasks;
534     workers.remove(w);
535 tim 1.10 if (--poolSize > 0)
536 dl 1.2 return;
537    
538 dl 1.16 // Else, this is the last thread. Deal with potential shutdown.
539    
540     int state = runState;
541     assert state != TERMINATED;
542 tim 1.10
543 dl 1.16 if (state != STOP) {
544     // If there are queued tasks but no threads, create
545 dl 1.56 // replacement thread. We must create it initially
546     // idle to avoid orphaned tasks in case addThread
547     // fails. This also handles case of delayed tasks
548     // that will sometime later become runnable.
549 dl 1.16 if (!workQueue.isEmpty()) {
550 dl 1.56 Thread t = addThread(null);
551     if (t != null)
552     t.start();
553 dl 1.16 return;
554     }
555    
556     // Otherwise, we can exit without replacement
557     if (state == RUNNING)
558     return;
559 dl 1.2 }
560    
561 dl 1.16 // Either state is STOP, or state is SHUTDOWN and there is
562     // no work to do. So we can terminate.
563 dl 1.45 termination.signalAll();
564 dl 1.16 runState = TERMINATED;
565     // fall through to call terminate() outside of lock.
566 tim 1.14 } finally {
567 dl 1.2 mainLock.unlock();
568     }
569    
570 dl 1.16 assert runState == TERMINATED;
571     terminated();
572 dl 1.2 }
573    
574     /**
575 tim 1.10 * Worker threads
576 dl 1.2 */
577     private class Worker implements Runnable {
578    
579     /**
580     * The runLock is acquired and released surrounding each task
581     * execution. It mainly protects against interrupts that are
582     * intended to cancel the worker thread from instead
583     * interrupting the task being run.
584     */
585     private final ReentrantLock runLock = new ReentrantLock();
586    
587     /**
588     * Initial task to run before entering run loop
589     */
590     private Runnable firstTask;
591    
592     /**
593     * Per thread completed task counter; accumulated
594     * into completedTaskCount upon termination.
595     */
596     volatile long completedTasks;
597    
598     /**
599     * Thread this worker is running in. Acts as a final field,
600     * but cannot be set until thread is created.
601     */
602     Thread thread;
603    
604     Worker(Runnable firstTask) {
605     this.firstTask = firstTask;
606     }
607    
608     boolean isActive() {
609     return runLock.isLocked();
610     }
611    
612     /**
613     * Interrupt thread if not running a task
614 tim 1.10 */
615 dl 1.2 void interruptIfIdle() {
616 dl 1.45 final ReentrantLock runLock = this.runLock;
617 dl 1.2 if (runLock.tryLock()) {
618     try {
619     thread.interrupt();
620 tim 1.14 } finally {
621 dl 1.2 runLock.unlock();
622     }
623     }
624     }
625    
626     /**
627     * Cause thread to die even if running a task.
628 tim 1.10 */
629 dl 1.2 void interruptNow() {
630     thread.interrupt();
631     }
632    
633     /**
634     * Run a single task between before/after methods.
635     */
636     private void runTask(Runnable task) {
637 dl 1.45 final ReentrantLock runLock = this.runLock;
638 dl 1.2 runLock.lock();
639     try {
640     // Abort now if immediate cancel. Otherwise, we have
641     // committed to run this task.
642 dl 1.16 if (runState == STOP)
643 dl 1.2 return;
644    
645     Thread.interrupted(); // clear interrupt status on entry
646     boolean ran = false;
647     beforeExecute(thread, task);
648     try {
649     task.run();
650     ran = true;
651     afterExecute(task, null);
652     ++completedTasks;
653 tim 1.14 } catch(RuntimeException ex) {
654 dl 1.2 if (!ran)
655     afterExecute(task, ex);
656 dl 1.17 // Else the exception occurred within
657 dl 1.2 // afterExecute itself in which case we don't
658     // want to call it again.
659     throw ex;
660     }
661 tim 1.14 } finally {
662 dl 1.2 runLock.unlock();
663     }
664     }
665    
666     /**
667     * Main run loop
668     */
669     public void run() {
670     try {
671 dl 1.50 Runnable task = firstTask;
672     firstTask = null;
673     while (task != null || (task = getTask()) != null) {
674 dl 1.2 runTask(task);
675     task = null; // unnecessary but can help GC
676     }
677 tim 1.14 } catch(InterruptedException ie) {
678 dl 1.2 // fall through
679 tim 1.14 } finally {
680 dl 1.2 workerDone(this);
681     }
682     }
683     }
684 tim 1.1
685 dl 1.17 // Public methods
686    
687 tim 1.1 /**
688 dl 1.17 * Creates a new <tt>ThreadPoolExecutor</tt> with the given
689 dl 1.34 * initial parameters and default thread factory and handler. It
690     * may be more convenient to use one of the {@link Executors}
691     * factory methods instead of this general purpose constructor.
692 tim 1.1 *
693 dl 1.2 * @param corePoolSize the number of threads to keep in the
694 tim 1.1 * pool, even if they are idle.
695 dl 1.2 * @param maximumPoolSize the maximum number of threads to allow in the
696 tim 1.1 * pool.
697     * @param keepAliveTime when the number of threads is greater than
698 dl 1.2 * the core, this is the maximum time that excess idle threads
699 tim 1.1 * will wait for new tasks before terminating.
700 dl 1.2 * @param unit the time unit for the keepAliveTime
701 tim 1.1 * argument.
702 dl 1.36 * @param workQueue the queue to use for holding tasks before they
703 tim 1.1 * are executed. This queue will hold only the <tt>Runnable</tt>
704     * tasks submitted by the <tt>execute</tt> method.
705 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
706     * keepAliveTime less than zero, or if maximumPoolSize less than or
707     * equal to zero, or if corePoolSize greater than maximumPoolSize.
708 tim 1.1 * @throws NullPointerException if <tt>workQueue</tt> is null
709     */
710 dl 1.2 public ThreadPoolExecutor(int corePoolSize,
711     int maximumPoolSize,
712 tim 1.1 long keepAliveTime,
713 dl 1.2 TimeUnit unit,
714     BlockingQueue<Runnable> workQueue) {
715 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
716 dl 1.34 Executors.defaultThreadFactory(), defaultHandler);
717 dl 1.2 }
718 tim 1.1
719 dl 1.2 /**
720     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
721     * parameters.
722     *
723     * @param corePoolSize the number of threads to keep in the
724     * pool, even if they are idle.
725     * @param maximumPoolSize the maximum number of threads to allow in the
726     * pool.
727     * @param keepAliveTime when the number of threads is greater than
728     * the core, this is the maximum time that excess idle threads
729     * will wait for new tasks before terminating.
730     * @param unit the time unit for the keepAliveTime
731     * argument.
732 dl 1.36 * @param workQueue the queue to use for holding tasks before they
733 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
734     * tasks submitted by the <tt>execute</tt> method.
735     * @param threadFactory the factory to use when the executor
736 tim 1.10 * creates a new thread.
737 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
738     * keepAliveTime less than zero, or if maximumPoolSize less than or
739     * equal to zero, or if corePoolSize greater than maximumPoolSize.
740 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
741 dl 1.2 * or <tt>threadFactory</tt> are null.
742     */
743     public ThreadPoolExecutor(int corePoolSize,
744     int maximumPoolSize,
745     long keepAliveTime,
746     TimeUnit unit,
747     BlockingQueue<Runnable> workQueue,
748     ThreadFactory threadFactory) {
749 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
750 dl 1.2 threadFactory, defaultHandler);
751     }
752 tim 1.1
753 dl 1.2 /**
754     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
755     * parameters.
756     *
757     * @param corePoolSize the number of threads to keep in the
758     * pool, even if they are idle.
759     * @param maximumPoolSize the maximum number of threads to allow in the
760     * pool.
761     * @param keepAliveTime when the number of threads is greater than
762     * the core, this is the maximum time that excess idle threads
763     * will wait for new tasks before terminating.
764     * @param unit the time unit for the keepAliveTime
765     * argument.
766 dl 1.36 * @param workQueue the queue to use for holding tasks before they
767 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
768     * tasks submitted by the <tt>execute</tt> method.
769     * @param handler the handler to use when execution is blocked
770     * because the thread bounds and queue capacities are reached.
771     * @throws IllegalArgumentException if corePoolSize, or
772     * keepAliveTime less than zero, or if maximumPoolSize less than or
773     * equal to zero, or if corePoolSize greater than maximumPoolSize.
774 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
775 dl 1.2 * or <tt>handler</tt> are null.
776     */
777     public ThreadPoolExecutor(int corePoolSize,
778     int maximumPoolSize,
779     long keepAliveTime,
780     TimeUnit unit,
781     BlockingQueue<Runnable> workQueue,
782     RejectedExecutionHandler handler) {
783 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
784 dl 1.34 Executors.defaultThreadFactory(), handler);
785 dl 1.2 }
786 tim 1.1
787 dl 1.2 /**
788     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
789     * parameters.
790     *
791     * @param corePoolSize the number of threads to keep in the
792     * pool, even if they are idle.
793     * @param maximumPoolSize the maximum number of threads to allow in the
794     * pool.
795     * @param keepAliveTime when the number of threads is greater than
796     * the core, this is the maximum time that excess idle threads
797     * will wait for new tasks before terminating.
798     * @param unit the time unit for the keepAliveTime
799     * argument.
800 dl 1.36 * @param workQueue the queue to use for holding tasks before they
801 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
802     * tasks submitted by the <tt>execute</tt> method.
803     * @param threadFactory the factory to use when the executor
804 tim 1.10 * creates a new thread.
805 dl 1.2 * @param handler the handler to use when execution is blocked
806     * because the thread bounds and queue capacities are reached.
807     * @throws IllegalArgumentException if corePoolSize, or
808     * keepAliveTime less than zero, or if maximumPoolSize less than or
809     * equal to zero, or if corePoolSize greater than maximumPoolSize.
810 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
811 dl 1.2 * or <tt>threadFactory</tt> or <tt>handler</tt> are null.
812     */
813     public ThreadPoolExecutor(int corePoolSize,
814     int maximumPoolSize,
815     long keepAliveTime,
816     TimeUnit unit,
817     BlockingQueue<Runnable> workQueue,
818     ThreadFactory threadFactory,
819     RejectedExecutionHandler handler) {
820 tim 1.10 if (corePoolSize < 0 ||
821 dl 1.2 maximumPoolSize <= 0 ||
822 tim 1.10 maximumPoolSize < corePoolSize ||
823 dl 1.2 keepAliveTime < 0)
824     throw new IllegalArgumentException();
825     if (workQueue == null || threadFactory == null || handler == null)
826     throw new NullPointerException();
827     this.corePoolSize = corePoolSize;
828     this.maximumPoolSize = maximumPoolSize;
829     this.workQueue = workQueue;
830     this.keepAliveTime = unit.toNanos(keepAliveTime);
831     this.threadFactory = threadFactory;
832     this.handler = handler;
833 tim 1.1 }
834    
835 dl 1.2
836     /**
837     * Executes the given task sometime in the future. The task
838     * may execute in a new thread or in an existing pooled thread.
839     *
840     * If the task cannot be submitted for execution, either because this
841     * executor has been shutdown or because its capacity has been reached,
842 tim 1.10 * the task is handled by the current <tt>RejectedExecutionHandler</tt>.
843 dl 1.2 *
844     * @param command the task to execute
845     * @throws RejectedExecutionException at discretion of
846 dl 1.8 * <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
847     * for execution
848 dl 1.26 * @throws NullPointerException if command is null
849 dl 1.2 */
850 tim 1.10 public void execute(Runnable command) {
851 dl 1.26 if (command == null)
852     throw new NullPointerException();
853 dl 1.2 for (;;) {
854 dl 1.16 if (runState != RUNNING) {
855 dl 1.13 reject(command);
856 dl 1.2 return;
857     }
858     if (poolSize < corePoolSize && addIfUnderCorePoolSize(command))
859     return;
860     if (workQueue.offer(command))
861     return;
862     Runnable r = addIfUnderMaximumPoolSize(command);
863     if (r == command)
864     return;
865     if (r == null) {
866 dl 1.13 reject(command);
867 dl 1.2 return;
868     }
869     // else retry
870     }
871 tim 1.1 }
872 dl 1.4
873 dl 1.53 /**
874     * Initiates an orderly shutdown in which previously submitted
875     * tasks are executed, but no new tasks will be
876     * accepted. Invocation has no additional effect if already shut
877     * down.
878     * @throws SecurityException if a security manager exists and
879     * shutting down this ExecutorService may manipulate threads that
880     * the caller is not permitted to modify because it does not hold
881     * {@link java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
882     * or the security manager's <tt>checkAccess</tt> method denies access.
883     */
884 dl 1.2 public void shutdown() {
885 dl 1.43 // Fail if caller doesn't have modifyThread permission
886 dl 1.42 SecurityManager security = System.getSecurityManager();
887     if (security != null)
888 dl 1.43 java.security.AccessController.checkPermission(shutdownPerm);
889 dl 1.42
890 dl 1.25 boolean fullyTerminated = false;
891 dl 1.45 final ReentrantLock mainLock = this.mainLock;
892 dl 1.2 mainLock.lock();
893     try {
894 dl 1.25 if (workers.size() > 0) {
895 dl 1.50 // Check if caller can modify worker threads. This
896     // might not be true even if passed above check, if
897     // the SecurityManager treats some threads specially.
898 dl 1.43 if (security != null) {
899     for (Worker w: workers)
900     security.checkAccess(w.thread);
901     }
902    
903     int state = runState;
904     if (state == RUNNING) // don't override shutdownNow
905 dl 1.25 runState = SHUTDOWN;
906 dl 1.43
907     try {
908     for (Worker w: workers)
909     w.interruptIfIdle();
910     } catch(SecurityException se) {
911 dl 1.50 // If SecurityManager allows above checks, but
912     // then unexpectedly throws exception when
913     // interrupting threads (which it ought not do),
914     // back out as cleanly as we can. Some threads may
915     // have been killed but we remain in non-shutdown
916     // state.
917 dl 1.43 runState = state;
918     throw se;
919     }
920 dl 1.25 }
921     else { // If no workers, trigger full termination now
922     fullyTerminated = true;
923     runState = TERMINATED;
924     termination.signalAll();
925     }
926 tim 1.14 } finally {
927 dl 1.2 mainLock.unlock();
928     }
929 dl 1.25 if (fullyTerminated)
930     terminated();
931 tim 1.1 }
932    
933 dl 1.16
934 dl 1.53 /**
935     * Attempts to stop all actively executing tasks, halts the
936     * processing of waiting tasks, and returns a list of the tasks that were
937     * awaiting execution.
938     *
939     * <p>This implementation cancels tasks via {@link
940     * Thread#interrupt}, so if any tasks mask or fail to respond to
941     * interrupts, they may never terminate.
942     *
943     * @return list of tasks that never commenced execution
944     * @throws SecurityException if a security manager exists and
945     * shutting down this ExecutorService may manipulate threads that
946     * the caller is not permitted to modify because it does not hold
947     * {@link java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
948     * or the security manager's <tt>checkAccess</tt> method denies access.
949     */
950 tim 1.39 public List<Runnable> shutdownNow() {
951 dl 1.43 // Almost the same code as shutdown()
952 dl 1.42 SecurityManager security = System.getSecurityManager();
953     if (security != null)
954 dl 1.43 java.security.AccessController.checkPermission(shutdownPerm);
955    
956 dl 1.25 boolean fullyTerminated = false;
957 dl 1.45 final ReentrantLock mainLock = this.mainLock;
958 dl 1.2 mainLock.lock();
959     try {
960 dl 1.25 if (workers.size() > 0) {
961 dl 1.43 if (security != null) {
962     for (Worker w: workers)
963     security.checkAccess(w.thread);
964     }
965    
966     int state = runState;
967     if (state != TERMINATED)
968 dl 1.25 runState = STOP;
969 dl 1.43 try {
970     for (Worker w : workers)
971     w.interruptNow();
972     } catch(SecurityException se) {
973     runState = state; // back out;
974     throw se;
975     }
976 dl 1.25 }
977     else { // If no workers, trigger full termination now
978     fullyTerminated = true;
979     runState = TERMINATED;
980     termination.signalAll();
981     }
982 tim 1.14 } finally {
983 dl 1.2 mainLock.unlock();
984     }
985 dl 1.25 if (fullyTerminated)
986     terminated();
987 tim 1.41 return Arrays.asList(workQueue.toArray(EMPTY_RUNNABLE_ARRAY));
988 tim 1.1 }
989    
990 dl 1.2 public boolean isShutdown() {
991 dl 1.16 return runState != RUNNING;
992     }
993    
994     /**
995 dl 1.55 * Returns true if this executor is in the process of terminating
996 dl 1.16 * after <tt>shutdown</tt> or <tt>shutdownNow</tt> but has not
997     * completely terminated. This method may be useful for
998     * debugging. A return of <tt>true</tt> reported a sufficient
999     * period after shutdown may indicate that submitted tasks have
1000     * ignored or suppressed interruption, causing this executor not
1001     * to properly terminate.
1002     * @return true if terminating but not yet terminated.
1003     */
1004     public boolean isTerminating() {
1005     return runState == STOP;
1006 tim 1.1 }
1007    
1008 dl 1.2 public boolean isTerminated() {
1009 dl 1.16 return runState == TERMINATED;
1010 dl 1.2 }
1011 tim 1.1
1012 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1013     throws InterruptedException {
1014 dl 1.50 long nanos = unit.toNanos(timeout);
1015 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1016 dl 1.2 mainLock.lock();
1017     try {
1018 dl 1.25 for (;;) {
1019     if (runState == TERMINATED)
1020     return true;
1021     if (nanos <= 0)
1022     return false;
1023     nanos = termination.awaitNanos(nanos);
1024     }
1025 tim 1.14 } finally {
1026 dl 1.2 mainLock.unlock();
1027     }
1028 dl 1.15 }
1029    
1030     /**
1031     * Invokes <tt>shutdown</tt> when this executor is no longer
1032     * referenced.
1033     */
1034     protected void finalize() {
1035     shutdown();
1036 dl 1.2 }
1037 tim 1.10
1038 dl 1.2 /**
1039     * Sets the thread factory used to create new threads.
1040     *
1041     * @param threadFactory the new thread factory
1042 dl 1.30 * @throws NullPointerException if threadFactory is null
1043 tim 1.11 * @see #getThreadFactory
1044 dl 1.2 */
1045     public void setThreadFactory(ThreadFactory threadFactory) {
1046 dl 1.30 if (threadFactory == null)
1047     throw new NullPointerException();
1048 dl 1.2 this.threadFactory = threadFactory;
1049 tim 1.1 }
1050    
1051 dl 1.2 /**
1052     * Returns the thread factory used to create new threads.
1053     *
1054     * @return the current thread factory
1055 tim 1.11 * @see #setThreadFactory
1056 dl 1.2 */
1057     public ThreadFactory getThreadFactory() {
1058     return threadFactory;
1059 tim 1.1 }
1060    
1061 dl 1.2 /**
1062     * Sets a new handler for unexecutable tasks.
1063     *
1064     * @param handler the new handler
1065 dl 1.31 * @throws NullPointerException if handler is null
1066 tim 1.11 * @see #getRejectedExecutionHandler
1067 dl 1.2 */
1068     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1069 dl 1.31 if (handler == null)
1070     throw new NullPointerException();
1071 dl 1.2 this.handler = handler;
1072     }
1073 tim 1.1
1074 dl 1.2 /**
1075     * Returns the current handler for unexecutable tasks.
1076     *
1077     * @return the current handler
1078 tim 1.11 * @see #setRejectedExecutionHandler
1079 dl 1.2 */
1080     public RejectedExecutionHandler getRejectedExecutionHandler() {
1081     return handler;
1082 tim 1.1 }
1083    
1084 dl 1.2 /**
1085 dl 1.17 * Returns the task queue used by this executor. Access to the
1086     * task queue is intended primarily for debugging and monitoring.
1087 dl 1.27 * This queue may be in active use. Retrieving the task queue
1088 dl 1.2 * does not prevent queued tasks from executing.
1089     *
1090     * @return the task queue
1091     */
1092     public BlockingQueue<Runnable> getQueue() {
1093     return workQueue;
1094 tim 1.1 }
1095 dl 1.4
1096     /**
1097 dl 1.44 * Removes this task from the executor's internal queue if it is
1098     * present, thus causing it not to be run if it has not already
1099     * started.
1100     *
1101     * <p> This method may be useful as one part of a cancellation
1102     * scheme. It may fail to remove tasks that have been converted
1103     * into other forms before being placed on the internal queue. For
1104     * example, a task entered using <tt>submit</tt> might be
1105     * converted into a form that maintains <tt>Future</tt> status.
1106     * However, in such cases, method {@link ThreadPoolExecutor#purge}
1107     * may be used to remove those Futures that have been cancelled.
1108     *
1109 tim 1.10 *
1110 dl 1.8 * @param task the task to remove
1111     * @return true if the task was removed
1112 dl 1.4 */
1113 dl 1.5 public boolean remove(Runnable task) {
1114 dl 1.4 return getQueue().remove(task);
1115     }
1116    
1117 dl 1.7
1118     /**
1119 dl 1.37 * Tries to remove from the work queue all {@link Future}
1120 dl 1.16 * tasks that have been cancelled. This method can be useful as a
1121     * storage reclamation operation, that has no other impact on
1122     * functionality. Cancelled tasks are never executed, but may
1123     * accumulate in work queues until worker threads can actively
1124     * remove them. Invoking this method instead tries to remove them now.
1125 dl 1.23 * However, this method may fail to remove tasks in
1126 dl 1.16 * the presence of interference by other threads.
1127 dl 1.7 */
1128     public void purge() {
1129 dl 1.16 // Fail if we encounter interference during traversal
1130     try {
1131     Iterator<Runnable> it = getQueue().iterator();
1132     while (it.hasNext()) {
1133     Runnable r = it.next();
1134 dl 1.37 if (r instanceof Future<?>) {
1135     Future<?> c = (Future<?>)r;
1136 dl 1.16 if (c.isCancelled())
1137     it.remove();
1138     }
1139 dl 1.7 }
1140     }
1141 dl 1.16 catch(ConcurrentModificationException ex) {
1142     return;
1143     }
1144 dl 1.7 }
1145 tim 1.1
1146     /**
1147 dl 1.2 * Sets the core number of threads. This overrides any value set
1148     * in the constructor. If the new value is smaller than the
1149     * current value, excess existing threads will be terminated when
1150 dl 1.34 * they next become idle. If larger, new threads will, if needed,
1151     * be started to execute any queued tasks.
1152 tim 1.1 *
1153 dl 1.2 * @param corePoolSize the new core size
1154 tim 1.10 * @throws IllegalArgumentException if <tt>corePoolSize</tt>
1155 dl 1.8 * less than zero
1156 tim 1.11 * @see #getCorePoolSize
1157 tim 1.1 */
1158 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1159     if (corePoolSize < 0)
1160     throw new IllegalArgumentException();
1161 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1162 dl 1.2 mainLock.lock();
1163     try {
1164     int extra = this.corePoolSize - corePoolSize;
1165     this.corePoolSize = corePoolSize;
1166 tim 1.38 if (extra < 0) {
1167 dl 1.56 int n = workQueue.size();
1168     // We have to create initially-idle threads here
1169     // because we otherwise have no recourse about
1170     // what to do with a dequeued task if addThread fails.
1171     while (extra++ < 0 && n-- > 0 && poolSize < corePoolSize ) {
1172     Thread t = addThread(null);
1173     if (t != null)
1174     t.start();
1175     else
1176     break;
1177     }
1178 tim 1.38 }
1179     else if (extra > 0 && poolSize > corePoolSize) {
1180 dl 1.2 Iterator<Worker> it = workers.iterator();
1181 tim 1.10 while (it.hasNext() &&
1182 dl 1.34 extra-- > 0 &&
1183 dl 1.2 poolSize > corePoolSize &&
1184 dl 1.34 workQueue.remainingCapacity() == 0)
1185 dl 1.2 it.next().interruptIfIdle();
1186     }
1187 tim 1.14 } finally {
1188 dl 1.2 mainLock.unlock();
1189     }
1190     }
1191 tim 1.1
1192     /**
1193 dl 1.2 * Returns the core number of threads.
1194 tim 1.1 *
1195 dl 1.2 * @return the core number of threads
1196 tim 1.11 * @see #setCorePoolSize
1197 tim 1.1 */
1198 tim 1.10 public int getCorePoolSize() {
1199 dl 1.2 return corePoolSize;
1200 dl 1.16 }
1201    
1202     /**
1203 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1204 dl 1.16 * overrides the default policy of starting core threads only when
1205     * new tasks are executed. This method will return <tt>false</tt>
1206     * if all core threads have already been started.
1207     * @return true if a thread was started
1208     */
1209     public boolean prestartCoreThread() {
1210     return addIfUnderCorePoolSize(null);
1211     }
1212    
1213     /**
1214 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1215 dl 1.16 * overrides the default policy of starting core threads only when
1216     * new tasks are executed.
1217     * @return the number of threads started.
1218     */
1219     public int prestartAllCoreThreads() {
1220     int n = 0;
1221     while (addIfUnderCorePoolSize(null))
1222     ++n;
1223     return n;
1224 dl 1.2 }
1225 tim 1.1
1226     /**
1227     * Sets the maximum allowed number of threads. This overrides any
1228 dl 1.2 * value set in the constructor. If the new value is smaller than
1229     * the current value, excess existing threads will be
1230     * terminated when they next become idle.
1231 tim 1.1 *
1232 dl 1.2 * @param maximumPoolSize the new maximum
1233     * @throws IllegalArgumentException if maximumPoolSize less than zero or
1234     * the {@link #getCorePoolSize core pool size}
1235 tim 1.11 * @see #getMaximumPoolSize
1236 dl 1.2 */
1237     public void setMaximumPoolSize(int maximumPoolSize) {
1238     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1239     throw new IllegalArgumentException();
1240 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1241 dl 1.2 mainLock.lock();
1242     try {
1243     int extra = this.maximumPoolSize - maximumPoolSize;
1244     this.maximumPoolSize = maximumPoolSize;
1245     if (extra > 0 && poolSize > maximumPoolSize) {
1246     Iterator<Worker> it = workers.iterator();
1247 tim 1.10 while (it.hasNext() &&
1248     extra > 0 &&
1249 dl 1.2 poolSize > maximumPoolSize) {
1250     it.next().interruptIfIdle();
1251     --extra;
1252     }
1253     }
1254 tim 1.14 } finally {
1255 dl 1.2 mainLock.unlock();
1256     }
1257     }
1258 tim 1.1
1259     /**
1260     * Returns the maximum allowed number of threads.
1261     *
1262 dl 1.2 * @return the maximum allowed number of threads
1263 tim 1.11 * @see #setMaximumPoolSize
1264 tim 1.1 */
1265 tim 1.10 public int getMaximumPoolSize() {
1266 dl 1.2 return maximumPoolSize;
1267     }
1268 tim 1.1
1269     /**
1270     * Sets the time limit for which threads may remain idle before
1271 dl 1.2 * being terminated. If there are more than the core number of
1272 tim 1.1 * threads currently in the pool, after waiting this amount of
1273     * time without processing a task, excess threads will be
1274     * terminated. This overrides any value set in the constructor.
1275     * @param time the time to wait. A time value of zero will cause
1276     * excess threads to terminate immediately after executing tasks.
1277 dl 1.2 * @param unit the time unit of the time argument
1278 dl 1.17 * @throws IllegalArgumentException if time less than zero
1279 tim 1.11 * @see #getKeepAliveTime
1280 tim 1.1 */
1281 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1282     if (time < 0)
1283     throw new IllegalArgumentException();
1284     this.keepAliveTime = unit.toNanos(time);
1285     }
1286 tim 1.1
1287     /**
1288     * Returns the thread keep-alive time, which is the amount of time
1289 dl 1.2 * which threads in excess of the core pool size may remain
1290 tim 1.10 * idle before being terminated.
1291 tim 1.1 *
1292 dl 1.2 * @param unit the desired time unit of the result
1293 tim 1.1 * @return the time limit
1294 tim 1.11 * @see #setKeepAliveTime
1295 tim 1.1 */
1296 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1297 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1298     }
1299 tim 1.1
1300     /* Statistics */
1301    
1302     /**
1303     * Returns the current number of threads in the pool.
1304     *
1305     * @return the number of threads
1306     */
1307 tim 1.10 public int getPoolSize() {
1308 dl 1.2 return poolSize;
1309     }
1310 tim 1.1
1311     /**
1312 dl 1.2 * Returns the approximate number of threads that are actively
1313 tim 1.1 * executing tasks.
1314     *
1315     * @return the number of threads
1316     */
1317 tim 1.10 public int getActiveCount() {
1318 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1319 dl 1.2 mainLock.lock();
1320     try {
1321     int n = 0;
1322 tim 1.39 for (Worker w : workers) {
1323     if (w.isActive())
1324 dl 1.2 ++n;
1325     }
1326     return n;
1327 tim 1.14 } finally {
1328 dl 1.2 mainLock.unlock();
1329     }
1330     }
1331 tim 1.1
1332     /**
1333 dl 1.2 * Returns the largest number of threads that have ever
1334     * simultaneously been in the pool.
1335 tim 1.1 *
1336     * @return the number of threads
1337     */
1338 tim 1.10 public int getLargestPoolSize() {
1339 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1340 dl 1.2 mainLock.lock();
1341     try {
1342     return largestPoolSize;
1343 tim 1.14 } finally {
1344 dl 1.2 mainLock.unlock();
1345     }
1346     }
1347 tim 1.1
1348     /**
1349 dl 1.2 * Returns the approximate total number of tasks that have been
1350     * scheduled for execution. Because the states of tasks and
1351     * threads may change dynamically during computation, the returned
1352 dl 1.17 * value is only an approximation, but one that does not ever
1353     * decrease across successive calls.
1354 tim 1.1 *
1355     * @return the number of tasks
1356     */
1357 tim 1.10 public long getTaskCount() {
1358 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1359 dl 1.2 mainLock.lock();
1360     try {
1361     long n = completedTaskCount;
1362 tim 1.39 for (Worker w : workers) {
1363 dl 1.2 n += w.completedTasks;
1364     if (w.isActive())
1365     ++n;
1366     }
1367     return n + workQueue.size();
1368 tim 1.14 } finally {
1369 dl 1.2 mainLock.unlock();
1370     }
1371     }
1372 tim 1.1
1373     /**
1374 dl 1.2 * Returns the approximate total number of tasks that have
1375     * completed execution. Because the states of tasks and threads
1376     * may change dynamically during computation, the returned value
1377 dl 1.17 * is only an approximation, but one that does not ever decrease
1378     * across successive calls.
1379 tim 1.1 *
1380     * @return the number of tasks
1381     */
1382 tim 1.10 public long getCompletedTaskCount() {
1383 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1384 dl 1.2 mainLock.lock();
1385     try {
1386     long n = completedTaskCount;
1387 tim 1.39 for (Worker w : workers)
1388     n += w.completedTasks;
1389 dl 1.2 return n;
1390 tim 1.14 } finally {
1391 dl 1.2 mainLock.unlock();
1392     }
1393     }
1394 tim 1.1
1395     /**
1396 dl 1.17 * Method invoked prior to executing the given Runnable in the
1397 dl 1.43 * given thread. This method is invoked by thread <tt>t</tt> that
1398     * will execute task <tt>r</tt>, and may be used to re-initialize
1399 dl 1.17 * ThreadLocals, or to perform logging. Note: To properly nest
1400     * multiple overridings, subclasses should generally invoke
1401 dl 1.5 * <tt>super.beforeExecute</tt> at the end of this method.
1402 tim 1.1 *
1403 dl 1.2 * @param t the thread that will run task r.
1404     * @param r the task that will be executed.
1405 tim 1.1 */
1406 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1407 tim 1.1
1408     /**
1409 dl 1.2 * Method invoked upon completion of execution of the given
1410 dl 1.43 * Runnable. This method is invoked by the thread that executed
1411     * the task. If non-null, the Throwable is the uncaught exception
1412 dl 1.5 * that caused execution to terminate abruptly. Note: To properly
1413     * nest multiple overridings, subclasses should generally invoke
1414     * <tt>super.afterExecute</tt> at the beginning of this method.
1415 tim 1.1 *
1416 dl 1.2 * @param r the runnable that has completed.
1417 dl 1.24 * @param t the exception that caused termination, or null if
1418 dl 1.2 * execution completed normally.
1419 tim 1.1 */
1420 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1421 tim 1.1
1422 dl 1.2 /**
1423     * Method invoked when the Executor has terminated. Default
1424 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1425     * overridings, subclasses should generally invoke
1426     * <tt>super.terminated</tt> within this method.
1427 dl 1.2 */
1428     protected void terminated() { }
1429 tim 1.1
1430     /**
1431 dl 1.21 * A handler for rejected tasks that runs the rejected task
1432     * directly in the calling thread of the <tt>execute</tt> method,
1433     * unless the executor has been shut down, in which case the task
1434     * is discarded.
1435 tim 1.1 */
1436 dl 1.2 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1437 tim 1.1 /**
1438 dl 1.24 * Creates a <tt>CallerRunsPolicy</tt>.
1439 tim 1.1 */
1440     public CallerRunsPolicy() { }
1441    
1442 dl 1.24 /**
1443     * Executes task r in the caller's thread, unless the executor
1444     * has been shut down, in which case the task is discarded.
1445     * @param r the runnable task requested to be executed
1446     * @param e the executor attempting to execute this task
1447     */
1448 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1449     if (!e.isShutdown()) {
1450 tim 1.1 r.run();
1451     }
1452     }
1453     }
1454    
1455     /**
1456 dl 1.21 * A handler for rejected tasks that throws a
1457 dl 1.8 * <tt>RejectedExecutionException</tt>.
1458 tim 1.1 */
1459 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
1460 tim 1.1 /**
1461 dl 1.29 * Creates an <tt>AbortPolicy</tt>.
1462 tim 1.1 */
1463     public AbortPolicy() { }
1464    
1465 dl 1.24 /**
1466 dl 1.54 * Always throws RejectedExecutionException.
1467 dl 1.24 * @param r the runnable task requested to be executed
1468     * @param e the executor attempting to execute this task
1469     * @throws RejectedExecutionException always.
1470     */
1471 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1472     throw new RejectedExecutionException();
1473 tim 1.1 }
1474     }
1475    
1476     /**
1477 dl 1.21 * A handler for rejected tasks that silently discards the
1478     * rejected task.
1479 tim 1.1 */
1480 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
1481 tim 1.1 /**
1482 dl 1.54 * Creates a <tt>DiscardPolicy</tt>.
1483 tim 1.1 */
1484     public DiscardPolicy() { }
1485    
1486 dl 1.24 /**
1487     * Does nothing, which has the effect of discarding task r.
1488     * @param r the runnable task requested to be executed
1489     * @param e the executor attempting to execute this task
1490     */
1491 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1492 tim 1.1 }
1493     }
1494    
1495     /**
1496 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
1497     * request and then retries <tt>execute</tt>, unless the executor
1498     * is shut down, in which case the task is discarded.
1499 tim 1.1 */
1500 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
1501 tim 1.1 /**
1502 dl 1.24 * Creates a <tt>DiscardOldestPolicy</tt> for the given executor.
1503 tim 1.1 */
1504     public DiscardOldestPolicy() { }
1505    
1506 dl 1.24 /**
1507     * Obtains and ignores the next task that the executor
1508     * would otherwise execute, if one is immediately available,
1509     * and then retries execution of task r, unless the executor
1510     * is shut down, in which case task r is instead discarded.
1511     * @param r the runnable task requested to be executed
1512     * @param e the executor attempting to execute this task
1513     */
1514 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1515     if (!e.isShutdown()) {
1516     e.getQueue().poll();
1517     e.execute(r);
1518 tim 1.1 }
1519     }
1520     }
1521     }