ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.84
Committed: Tue Jun 13 00:26:59 2006 UTC (18 years ago) by jsr166
Branch: MAIN
Changes since 1.83: +3 -2 lines
Log Message:
6435792: javadoc is wrong for ThreadPoolExecutor.setMaximumPoolSize(int)

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.9 import java.util.concurrent.locks.*;
9 dl 1.2 import java.util.*;
10 tim 1.1
11     /**
12 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
13 dl 1.28 * one of possibly several pooled threads, normally configured
14     * using {@link Executors} factory methods.
15 tim 1.1 *
16 dl 1.17 * <p>Thread pools address two different problems: they usually
17     * provide improved performance when executing large numbers of
18     * asynchronous tasks, due to reduced per-task invocation overhead,
19     * and they provide a means of bounding and managing the resources,
20     * including threads, consumed when executing a collection of tasks.
21 dl 1.20 * Each <tt>ThreadPoolExecutor</tt> also maintains some basic
22 dl 1.22 * statistics, such as the number of completed tasks.
23 dl 1.17 *
24 tim 1.1 * <p>To be useful across a wide range of contexts, this class
25 dl 1.24 * provides many adjustable parameters and extensibility
26     * hooks. However, programmers are urged to use the more convenient
27 dl 1.20 * {@link Executors} factory methods {@link
28     * Executors#newCachedThreadPool} (unbounded thread pool, with
29     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
30     * (fixed size thread pool) and {@link
31     * Executors#newSingleThreadExecutor} (single background thread), that
32 dl 1.22 * preconfigure settings for the most common usage
33     * scenarios. Otherwise, use the following guide when manually
34 dl 1.24 * configuring and tuning this class:
35 dl 1.17 *
36 tim 1.1 * <dl>
37 dl 1.2 *
38 dl 1.21 * <dt>Core and maximum pool sizes</dt>
39 dl 1.2 *
40 dl 1.19 * <dd>A <tt>ThreadPoolExecutor</tt> will automatically adjust the
41 jsr166 1.66 * pool size
42 dl 1.21 * (see {@link ThreadPoolExecutor#getPoolSize})
43 jsr166 1.66 * according to the bounds set by corePoolSize
44 dl 1.21 * (see {@link ThreadPoolExecutor#getCorePoolSize})
45     * and
46     * maximumPoolSize
47     * (see {@link ThreadPoolExecutor#getMaximumPoolSize}).
48     * When a new task is submitted in method {@link
49     * ThreadPoolExecutor#execute}, and fewer than corePoolSize threads
50     * are running, a new thread is created to handle the request, even if
51     * other worker threads are idle. If there are more than
52     * corePoolSize but less than maximumPoolSize threads running, a new
53     * thread will be created only if the queue is full. By setting
54     * corePoolSize and maximumPoolSize the same, you create a fixed-size
55     * thread pool. By setting maximumPoolSize to an essentially unbounded
56     * value such as <tt>Integer.MAX_VALUE</tt>, you allow the pool to
57 dl 1.27 * accommodate an arbitrary number of concurrent tasks. Most typically,
58 dl 1.21 * core and maximum pool sizes are set only upon construction, but they
59     * may also be changed dynamically using {@link
60     * ThreadPoolExecutor#setCorePoolSize} and {@link
61     * ThreadPoolExecutor#setMaximumPoolSize}. <dd>
62 dl 1.2 *
63 dl 1.21 * <dt> On-demand construction
64 dl 1.2 *
65 dl 1.21 * <dd> By default, even core threads are initially created and
66 dl 1.69 * started only when new tasks arrive, but this can be overridden
67 dl 1.21 * dynamically using method {@link
68     * ThreadPoolExecutor#prestartCoreThread} or
69 dl 1.64 * {@link ThreadPoolExecutor#prestartAllCoreThreads}.
70     * You probably want to prestart threads if you construct the
71     * pool with a non-empty queue. </dd>
72 dl 1.2 *
73 tim 1.1 * <dt>Creating new threads</dt>
74 dl 1.2 *
75 dl 1.33 * <dd>New threads are created using a {@link
76     * java.util.concurrent.ThreadFactory}. If not otherwise specified, a
77 dl 1.34 * {@link Executors#defaultThreadFactory} is used, that creates threads to all
78 dl 1.33 * be in the same {@link ThreadGroup} and with the same
79     * <tt>NORM_PRIORITY</tt> priority and non-daemon status. By supplying
80     * a different ThreadFactory, you can alter the thread's name, thread
81 dl 1.57 * group, priority, daemon status, etc. If a <tt>ThreadFactory</tt> fails to create
82 jsr166 1.66 * a thread when asked by returning null from <tt>newThread</tt>,
83 dl 1.57 * the executor will continue, but might
84 dl 1.56 * not be able to execute any tasks. </dd>
85 dl 1.2 *
86 dl 1.21 * <dt>Keep-alive times</dt>
87     *
88     * <dd>If the pool currently has more than corePoolSize threads,
89     * excess threads will be terminated if they have been idle for more
90     * than the keepAliveTime (see {@link
91     * ThreadPoolExecutor#getKeepAliveTime}). This provides a means of
92     * reducing resource consumption when the pool is not being actively
93     * used. If the pool becomes more active later, new threads will be
94 dl 1.62 * constructed. This parameter can also be changed dynamically using
95     * method {@link ThreadPoolExecutor#setKeepAliveTime}. Using a value
96     * of <tt>Long.MAX_VALUE</tt> {@link TimeUnit#NANOSECONDS} effectively
97     * disables idle threads from ever terminating prior to shut down. By
98     * default, the keep-alive policy applies only when there are more
99     * than corePoolSizeThreads. But method {@link
100     * ThreadPoolExecutor#allowCoreThreadTimeOut} can be used to apply
101 dl 1.64 * this time-out policy to core threads as well, so long as
102     * the keepAliveTime value is non-zero. </dd>
103 dl 1.21 *
104 dl 1.48 * <dt>Queuing</dt>
105 dl 1.21 *
106     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
107     * submitted tasks. The use of this queue interacts with pool sizing:
108 dl 1.2 *
109 dl 1.21 * <ul>
110     *
111 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
112     * always prefers adding a new thread
113 dl 1.48 * rather than queuing.</li>
114 dl 1.21 *
115 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
116     * always prefers queuing a request rather than adding a new
117     * thread.</li>
118 jsr166 1.66 *
119 dl 1.21 * <li> If a request cannot be queued, a new thread is created unless
120     * this would exceed maximumPoolSize, in which case, the task will be
121     * rejected.</li>
122     *
123     * </ul>
124     *
125     * There are three general strategies for queuing:
126     * <ol>
127     *
128     * <li> <em> Direct handoffs.</em> A good default choice for a work
129     * queue is a {@link SynchronousQueue} that hands off tasks to threads
130     * without otherwise holding them. Here, an attempt to queue a task
131     * will fail if no threads are immediately available to run it, so a
132     * new thread will be constructed. This policy avoids lockups when
133     * handling sets of requests that might have internal dependencies.
134     * Direct handoffs generally require unbounded maximumPoolSizes to
135 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
136 dl 1.21 * possibility of unbounded thread growth when commands continue to
137     * arrive on average faster than they can be processed. </li>
138     *
139     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
140     * example a {@link LinkedBlockingQueue} without a predefined
141 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
142 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
143     * threads will ever be created. (And the value of the maximumPoolSize
144     * therefore doesn't have any effect.) This may be appropriate when
145     * each task is completely independent of others, so tasks cannot
146     * affect each others execution; for example, in a web page server.
147     * While this style of queuing can be useful in smoothing out
148     * transient bursts of requests, it admits the possibility of
149     * unbounded work queue growth when commands continue to arrive on
150     * average faster than they can be processed. </li>
151 dl 1.21 *
152     * <li><em>Bounded queues.</em> A bounded queue (for example, an
153     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
154     * used with finite maximumPoolSizes, but can be more difficult to
155     * tune and control. Queue sizes and maximum pool sizes may be traded
156     * off for each other: Using large queues and small pools minimizes
157     * CPU usage, OS resources, and context-switching overhead, but can
158 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
159 dl 1.21 * example if they are I/O bound), a system may be able to schedule
160     * time for more threads than you otherwise allow. Use of small queues
161 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
162     * may encounter unacceptable scheduling overhead, which also
163     * decreases throughput. </li>
164 dl 1.21 *
165     * </ol>
166     *
167     * </dd>
168     *
169     * <dt>Rejected tasks</dt>
170     *
171     * <dd> New tasks submitted in method {@link
172     * ThreadPoolExecutor#execute} will be <em>rejected</em> when the
173     * Executor has been shut down, and also when the Executor uses finite
174     * bounds for both maximum threads and work queue capacity, and is
175 dl 1.22 * saturated. In either case, the <tt>execute</tt> method invokes the
176     * {@link RejectedExecutionHandler#rejectedExecution} method of its
177     * {@link RejectedExecutionHandler}. Four predefined handler policies
178     * are provided:
179 dl 1.21 *
180     * <ol>
181     *
182     * <li> In the
183     * default {@link ThreadPoolExecutor.AbortPolicy}, the handler throws a
184     * runtime {@link RejectedExecutionException} upon rejection. </li>
185 jsr166 1.66 *
186 dl 1.21 * <li> In {@link
187     * ThreadPoolExecutor.CallerRunsPolicy}, the thread that invokes
188     * <tt>execute</tt> itself runs the task. This provides a simple
189     * feedback control mechanism that will slow down the rate that new
190     * tasks are submitted. </li>
191     *
192     * <li> In {@link ThreadPoolExecutor.DiscardPolicy},
193     * a task that cannot be executed is simply dropped. </li>
194     *
195     * <li>In {@link
196     * ThreadPoolExecutor.DiscardOldestPolicy}, if the executor is not
197     * shut down, the task at the head of the work queue is dropped, and
198     * then execution is retried (which can fail again, causing this to be
199     * repeated.) </li>
200     *
201     * </ol>
202     *
203     * It is possible to define and use other kinds of {@link
204     * RejectedExecutionHandler} classes. Doing so requires some care
205     * especially when policies are designed to work only under particular
206 dl 1.48 * capacity or queuing policies. </dd>
207 dl 1.21 *
208     * <dt>Hook methods</dt>
209     *
210 dl 1.23 * <dd>This class provides <tt>protected</tt> overridable {@link
211 dl 1.21 * ThreadPoolExecutor#beforeExecute} and {@link
212     * ThreadPoolExecutor#afterExecute} methods that are called before and
213 dl 1.19 * after execution of each task. These can be used to manipulate the
214 dl 1.59 * execution environment; for example, reinitializing ThreadLocals,
215 dl 1.21 * gathering statistics, or adding log entries. Additionally, method
216     * {@link ThreadPoolExecutor#terminated} can be overridden to perform
217     * any special processing that needs to be done once the Executor has
218 jsr166 1.66 * fully terminated.
219 dl 1.57 *
220 jsr166 1.66 * <p>If hook or callback methods throw
221 dl 1.57 * exceptions, internal worker threads may in turn fail and
222 jsr166 1.66 * abruptly terminate.</dd>
223 dl 1.2 *
224 dl 1.21 * <dt>Queue maintenance</dt>
225 dl 1.2 *
226 dl 1.24 * <dd> Method {@link ThreadPoolExecutor#getQueue} allows access to
227     * the work queue for purposes of monitoring and debugging. Use of
228     * this method for any other purpose is strongly discouraged. Two
229     * supplied methods, {@link ThreadPoolExecutor#remove} and {@link
230     * ThreadPoolExecutor#purge} are available to assist in storage
231     * reclamation when large numbers of queued tasks become
232 jsr166 1.80 * cancelled.</dd>
233 dl 1.79 *
234     * <dt>Finalization</dt>
235     *
236     * <dd> A pool that is no longer referenced in a program <em>AND</em>
237     * has no remaining threads will be <tt>shutdown</tt>
238     * automatically. If you would like to ensure that unreferenced pools
239     * are reclaimed even if users forget to call {@link
240     * ThreadPoolExecutor#shutdown}, then you must arrange that unused
241     * threads eventually die, by setting appropriate keep-alive times,
242     * using a lower bound of zero core threads and/or setting {@link
243     * ThreadPoolExecutor#allowCoreThreadTimeOut}. </dd> </dl>
244 tim 1.1 *
245 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
246     * override one or more of the protected hook methods. For example,
247     * here is a subclass that adds a simple pause/resume feature:
248     *
249     * <pre>
250     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
251     * private boolean isPaused;
252     * private ReentrantLock pauseLock = new ReentrantLock();
253     * private Condition unpaused = pauseLock.newCondition();
254     *
255     * public PausableThreadPoolExecutor(...) { super(...); }
256 jsr166 1.66 *
257 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
258     * super.beforeExecute(t, r);
259     * pauseLock.lock();
260     * try {
261     * while (isPaused) unpaused.await();
262 jsr166 1.66 * } catch (InterruptedException ie) {
263 dl 1.53 * t.interrupt();
264 dl 1.43 * } finally {
265 dl 1.53 * pauseLock.unlock();
266 dl 1.43 * }
267     * }
268 jsr166 1.66 *
269 dl 1.43 * public void pause() {
270     * pauseLock.lock();
271     * try {
272     * isPaused = true;
273     * } finally {
274 dl 1.53 * pauseLock.unlock();
275 dl 1.43 * }
276     * }
277 jsr166 1.66 *
278 dl 1.43 * public void resume() {
279     * pauseLock.lock();
280     * try {
281     * isPaused = false;
282     * unpaused.signalAll();
283     * } finally {
284 dl 1.53 * pauseLock.unlock();
285 dl 1.43 * }
286     * }
287     * }
288     * </pre>
289 tim 1.1 * @since 1.5
290 dl 1.8 * @author Doug Lea
291 tim 1.1 */
292 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
293 dl 1.2 /**
294 tim 1.41 * Only used to force toArray() to produce a Runnable[].
295     */
296     private static final Runnable[] EMPTY_RUNNABLE_ARRAY = new Runnable[0];
297    
298     /**
299 dl 1.43 * Permission for checking shutdown
300     */
301     private static final RuntimePermission shutdownPerm =
302     new RuntimePermission("modifyThread");
303    
304     /**
305 dl 1.2 * Queue used for holding tasks and handing off to worker threads.
306 tim 1.10 */
307 dl 1.2 private final BlockingQueue<Runnable> workQueue;
308    
309     /**
310     * Lock held on updates to poolSize, corePoolSize, maximumPoolSize, and
311     * workers set.
312 tim 1.10 */
313 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
314    
315     /**
316     * Wait condition to support awaitTermination
317 tim 1.10 */
318 dl 1.46 private final Condition termination = mainLock.newCondition();
319 dl 1.2
320     /**
321     * Set containing all worker threads in pool.
322 tim 1.10 */
323 dl 1.17 private final HashSet<Worker> workers = new HashSet<Worker>();
324 dl 1.2
325     /**
326 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
327 dl 1.2 * Threads use this timeout only when there are more than
328     * corePoolSize present. Otherwise they wait forever for new work.
329 tim 1.10 */
330 dl 1.2 private volatile long keepAliveTime;
331    
332     /**
333 dl 1.62 * If false (default) core threads stay alive even when idle.
334     * If true, core threads use keepAliveTime to time out waiting for work.
335     */
336 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
337 dl 1.62
338     /**
339 dl 1.2 * Core pool size, updated only while holding mainLock,
340     * but volatile to allow concurrent readability even
341     * during updates.
342 tim 1.10 */
343 dl 1.2 private volatile int corePoolSize;
344    
345     /**
346     * Maximum pool size, updated only while holding mainLock
347     * but volatile to allow concurrent readability even
348     * during updates.
349 tim 1.10 */
350 dl 1.2 private volatile int maximumPoolSize;
351    
352     /**
353     * Current pool size, updated only while holding mainLock
354     * but volatile to allow concurrent readability even
355     * during updates.
356 tim 1.10 */
357 dl 1.2 private volatile int poolSize;
358    
359     /**
360 dl 1.16 * Lifecycle state
361 tim 1.10 */
362 dl 1.52 volatile int runState;
363 dl 1.2
364 dl 1.16 // Special values for runState
365 dl 1.8 /** Normal, not-shutdown mode */
366 dl 1.52 static final int RUNNING = 0;
367 dl 1.8 /** Controlled shutdown mode */
368 dl 1.52 static final int SHUTDOWN = 1;
369 dl 1.16 /** Immediate shutdown mode */
370 dl 1.52 static final int STOP = 2;
371 dl 1.16 /** Final state */
372 dl 1.52 static final int TERMINATED = 3;
373 dl 1.2
374     /**
375     * Handler called when saturated or shutdown in execute.
376 tim 1.10 */
377 dl 1.33 private volatile RejectedExecutionHandler handler;
378 dl 1.2
379     /**
380     * Factory for new threads.
381 tim 1.10 */
382 dl 1.33 private volatile ThreadFactory threadFactory;
383 dl 1.2
384     /**
385     * Tracks largest attained pool size.
386 tim 1.10 */
387 dl 1.2 private int largestPoolSize;
388    
389     /**
390     * Counter for completed tasks. Updated only on termination of
391     * worker threads.
392 tim 1.10 */
393 dl 1.2 private long completedTaskCount;
394 jsr166 1.66
395 dl 1.8 /**
396 dl 1.35 * The default rejected execution handler
397 dl 1.8 */
398 tim 1.10 private static final RejectedExecutionHandler defaultHandler =
399 dl 1.2 new AbortPolicy();
400    
401     /**
402 jsr166 1.66 * Invokes the rejected execution handler for the given command.
403 dl 1.13 */
404     void reject(Runnable command) {
405     handler.rejectedExecution(command, this);
406     }
407    
408 dl 1.33 /**
409 jsr166 1.66 * Creates and returns a new thread running firstTask as its first
410     * task. Call only while holding mainLock.
411 dl 1.8 * @param firstTask the task the new thread should run first (or
412     * null if none)
413 dl 1.56 * @return the new thread, or null if threadFactory fails to create thread
414 dl 1.2 */
415     private Thread addThread(Runnable firstTask) {
416 dl 1.83 if (runState == TERMINATED) // Don't create thread if terminated
417     return null;
418 dl 1.2 Worker w = new Worker(firstTask);
419 dl 1.57 Thread t = threadFactory.newThread(w);
420 dl 1.56 if (t != null) {
421     w.thread = t;
422     workers.add(w);
423     int nt = ++poolSize;
424     if (nt > largestPoolSize)
425     largestPoolSize = nt;
426     }
427 dl 1.2 return t;
428     }
429 dl 1.15
430 dl 1.2 /**
431 jsr166 1.66 * Creates and starts a new thread running firstTask as its first
432 dl 1.50 * task, only if fewer than corePoolSize threads are running.
433 dl 1.8 * @param firstTask the task the new thread should run first (or
434     * null if none)
435 dl 1.2 * @return true if successful.
436     */
437 dl 1.16 private boolean addIfUnderCorePoolSize(Runnable firstTask) {
438 dl 1.2 Thread t = null;
439 dl 1.45 final ReentrantLock mainLock = this.mainLock;
440 dl 1.2 mainLock.lock();
441     try {
442 tim 1.10 if (poolSize < corePoolSize)
443 dl 1.8 t = addThread(firstTask);
444 tim 1.14 } finally {
445 dl 1.2 mainLock.unlock();
446     }
447     if (t == null)
448     return false;
449     t.start();
450     return true;
451     }
452    
453     /**
454 jsr166 1.66 * Creates and starts a new thread only if fewer than maximumPoolSize
455 dl 1.2 * threads are running. The new thread runs as its first task the
456     * next task in queue, or if there is none, the given task.
457 dl 1.8 * @param firstTask the task the new thread should run first (or
458     * null if none)
459 dl 1.74 * @return 0 if a new thread cannot be created, a positive number
460     * if firstTask will be run in a new thread, or a negative number
461     * if a new thread was created but is running some other task, in
462     * which case the caller must try some other way to run firstTask
463     * (perhaps by calling this method again).
464 dl 1.2 */
465 dl 1.74 private int addIfUnderMaximumPoolSize(Runnable firstTask) {
466 dl 1.2 Thread t = null;
467 dl 1.74 int status = 0;
468 dl 1.45 final ReentrantLock mainLock = this.mainLock;
469 dl 1.2 mainLock.lock();
470     try {
471     if (poolSize < maximumPoolSize) {
472 dl 1.74 Runnable next = workQueue.poll();
473     if (next == null) {
474 dl 1.8 next = firstTask;
475 dl 1.74 status = 1;
476     } else
477     status = -1;
478 dl 1.2 t = addThread(next);
479     }
480 tim 1.14 } finally {
481 dl 1.2 mainLock.unlock();
482     }
483     if (t == null)
484 dl 1.74 return 0;
485 dl 1.2 t.start();
486 dl 1.74 return status;
487 dl 1.2 }
488    
489    
490     /**
491 jsr166 1.66 * Gets the next task for a worker thread to run.
492 dl 1.8 * @return the task
493 dl 1.2 */
494 dl 1.63 Runnable getTask() {
495 dl 1.2 for (;;) {
496 dl 1.63 try {
497 jsr166 1.73 switch (runState) {
498 dl 1.63 case RUNNING: {
499     // untimed wait if core and not allowing core timeout
500     if (poolSize <= corePoolSize && !allowCoreThreadTimeOut)
501     return workQueue.take();
502 jsr166 1.66
503 dl 1.63 long timeout = keepAliveTime;
504     if (timeout <= 0) // die immediately for 0 timeout
505     return null;
506 jsr166 1.70 Runnable r = workQueue.poll(timeout, TimeUnit.NANOSECONDS);
507 dl 1.63 if (r != null)
508     return r;
509 jsr166 1.66 if (poolSize > corePoolSize || allowCoreThreadTimeOut)
510 dl 1.63 return null; // timed out
511     // Else, after timeout, the pool shrank. Retry
512     break;
513     }
514 jsr166 1.66
515 dl 1.63 case SHUTDOWN: {
516 jsr166 1.66 // Help drain queue
517 dl 1.63 Runnable r = workQueue.poll();
518     if (r != null)
519     return r;
520 jsr166 1.66
521 dl 1.63 // Check if can terminate
522     if (workQueue.isEmpty()) {
523     interruptIdleWorkers();
524     return null;
525     }
526 jsr166 1.66
527 dl 1.63 // Else there could still be delayed tasks in queue.
528 dl 1.16 return workQueue.take();
529 dl 1.63 }
530 jsr166 1.66
531 dl 1.63 case STOP:
532 dl 1.16 return null;
533 dl 1.63 default:
534 jsr166 1.66 assert false;
535 dl 1.16 }
536 jsr166 1.66 } catch (InterruptedException ie) {
537 dl 1.63 // On interruption, re-check runstate
538 dl 1.16 }
539     }
540     }
541    
542     /**
543 jsr166 1.66 * Wakes up all threads that might be waiting for tasks.
544 dl 1.16 */
545     void interruptIdleWorkers() {
546 dl 1.45 final ReentrantLock mainLock = this.mainLock;
547 dl 1.16 mainLock.lock();
548     try {
549 tim 1.39 for (Worker w : workers)
550     w.interruptIfIdle();
551 dl 1.16 } finally {
552     mainLock.unlock();
553 dl 1.2 }
554     }
555    
556     /**
557 jsr166 1.66 * Performs bookkeeping for a terminated worker thread.
558 tim 1.10 * @param w the worker
559 dl 1.2 */
560 dl 1.52 void workerDone(Worker w) {
561 dl 1.45 final ReentrantLock mainLock = this.mainLock;
562 dl 1.2 mainLock.lock();
563     try {
564     completedTaskCount += w.completedTasks;
565     workers.remove(w);
566 tim 1.10 if (--poolSize > 0)
567 dl 1.2 return;
568    
569 dl 1.16 // Else, this is the last thread. Deal with potential shutdown.
570    
571     int state = runState;
572     assert state != TERMINATED;
573 tim 1.10
574 dl 1.16 if (state != STOP) {
575     // If there are queued tasks but no threads, create
576 dl 1.56 // replacement thread. We must create it initially
577     // idle to avoid orphaned tasks in case addThread
578     // fails. This also handles case of delayed tasks
579     // that will sometime later become runnable.
580 jsr166 1.66 if (!workQueue.isEmpty()) {
581 dl 1.56 Thread t = addThread(null);
582     if (t != null)
583     t.start();
584 dl 1.16 return;
585     }
586    
587     // Otherwise, we can exit without replacement
588     if (state == RUNNING)
589     return;
590 dl 1.2 }
591    
592 dl 1.16 // Either state is STOP, or state is SHUTDOWN and there is
593     // no work to do. So we can terminate.
594 dl 1.45 termination.signalAll();
595 dl 1.16 runState = TERMINATED;
596     // fall through to call terminate() outside of lock.
597 tim 1.14 } finally {
598 dl 1.2 mainLock.unlock();
599     }
600    
601 dl 1.16 assert runState == TERMINATED;
602 jsr166 1.66 terminated();
603 dl 1.2 }
604    
605     /**
606 tim 1.10 * Worker threads
607 dl 1.2 */
608     private class Worker implements Runnable {
609    
610     /**
611     * The runLock is acquired and released surrounding each task
612     * execution. It mainly protects against interrupts that are
613     * intended to cancel the worker thread from instead
614     * interrupting the task being run.
615     */
616     private final ReentrantLock runLock = new ReentrantLock();
617    
618     /**
619     * Initial task to run before entering run loop
620     */
621     private Runnable firstTask;
622    
623     /**
624     * Per thread completed task counter; accumulated
625     * into completedTaskCount upon termination.
626     */
627     volatile long completedTasks;
628    
629     /**
630     * Thread this worker is running in. Acts as a final field,
631     * but cannot be set until thread is created.
632     */
633     Thread thread;
634    
635     Worker(Runnable firstTask) {
636     this.firstTask = firstTask;
637     }
638    
639     boolean isActive() {
640     return runLock.isLocked();
641     }
642    
643     /**
644 jsr166 1.73 * Interrupts thread if not running a task.
645 tim 1.10 */
646 dl 1.2 void interruptIfIdle() {
647 dl 1.45 final ReentrantLock runLock = this.runLock;
648 dl 1.2 if (runLock.tryLock()) {
649     try {
650     thread.interrupt();
651 tim 1.14 } finally {
652 dl 1.2 runLock.unlock();
653     }
654     }
655     }
656    
657     /**
658 jsr166 1.73 * Interrupts thread even if running a task.
659 tim 1.10 */
660 dl 1.2 void interruptNow() {
661     thread.interrupt();
662     }
663    
664     /**
665 jsr166 1.73 * Runs a single task between before/after methods.
666 dl 1.2 */
667     private void runTask(Runnable task) {
668 dl 1.45 final ReentrantLock runLock = this.runLock;
669 dl 1.2 runLock.lock();
670     try {
671 dl 1.81 // If not shutting down then clear an outstanding interrupt.
672     if (runState != STOP &&
673     Thread.interrupted() &&
674     runState == STOP) // Re-interrupt if stopped after clearing
675     thread.interrupt();
676 dl 1.2 boolean ran = false;
677     beforeExecute(thread, task);
678     try {
679     task.run();
680     ran = true;
681     afterExecute(task, null);
682     ++completedTasks;
683 jsr166 1.66 } catch (RuntimeException ex) {
684 dl 1.2 if (!ran)
685     afterExecute(task, ex);
686 dl 1.17 // Else the exception occurred within
687 dl 1.2 // afterExecute itself in which case we don't
688     // want to call it again.
689     throw ex;
690     }
691 tim 1.14 } finally {
692 dl 1.2 runLock.unlock();
693     }
694     }
695    
696     /**
697     * Main run loop
698     */
699     public void run() {
700     try {
701 dl 1.50 Runnable task = firstTask;
702     firstTask = null;
703     while (task != null || (task = getTask()) != null) {
704 dl 1.2 runTask(task);
705     task = null; // unnecessary but can help GC
706     }
707 tim 1.14 } finally {
708 dl 1.2 workerDone(this);
709     }
710     }
711     }
712 tim 1.1
713 dl 1.17 // Public methods
714    
715 tim 1.1 /**
716 jsr166 1.67 * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
717     * parameters and default thread factory and rejected execution handler.
718     * It may be more convenient to use one of the {@link Executors} factory
719     * methods instead of this general purpose constructor.
720 tim 1.1 *
721 dl 1.2 * @param corePoolSize the number of threads to keep in the
722 tim 1.1 * pool, even if they are idle.
723 dl 1.2 * @param maximumPoolSize the maximum number of threads to allow in the
724 tim 1.1 * pool.
725     * @param keepAliveTime when the number of threads is greater than
726 dl 1.2 * the core, this is the maximum time that excess idle threads
727 tim 1.1 * will wait for new tasks before terminating.
728 dl 1.2 * @param unit the time unit for the keepAliveTime
729 tim 1.1 * argument.
730 dl 1.36 * @param workQueue the queue to use for holding tasks before they
731 tim 1.1 * are executed. This queue will hold only the <tt>Runnable</tt>
732     * tasks submitted by the <tt>execute</tt> method.
733 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
734     * keepAliveTime less than zero, or if maximumPoolSize less than or
735     * equal to zero, or if corePoolSize greater than maximumPoolSize.
736 tim 1.1 * @throws NullPointerException if <tt>workQueue</tt> is null
737     */
738 dl 1.2 public ThreadPoolExecutor(int corePoolSize,
739     int maximumPoolSize,
740 tim 1.1 long keepAliveTime,
741 dl 1.2 TimeUnit unit,
742     BlockingQueue<Runnable> workQueue) {
743 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
744 dl 1.34 Executors.defaultThreadFactory(), defaultHandler);
745 dl 1.2 }
746 tim 1.1
747 dl 1.2 /**
748     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
749 jsr166 1.67 * parameters and default rejected execution handler.
750 dl 1.2 *
751     * @param corePoolSize the number of threads to keep in the
752     * pool, even if they are idle.
753     * @param maximumPoolSize the maximum number of threads to allow in the
754     * pool.
755     * @param keepAliveTime when the number of threads is greater than
756     * the core, this is the maximum time that excess idle threads
757     * will wait for new tasks before terminating.
758     * @param unit the time unit for the keepAliveTime
759     * argument.
760 dl 1.36 * @param workQueue the queue to use for holding tasks before they
761 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
762     * tasks submitted by the <tt>execute</tt> method.
763     * @param threadFactory the factory to use when the executor
764 tim 1.10 * creates a new thread.
765 dl 1.2 * @throws IllegalArgumentException if corePoolSize, or
766     * keepAliveTime less than zero, or if maximumPoolSize less than or
767     * equal to zero, or if corePoolSize greater than maximumPoolSize.
768 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
769 dl 1.2 * or <tt>threadFactory</tt> are null.
770     */
771     public ThreadPoolExecutor(int corePoolSize,
772     int maximumPoolSize,
773     long keepAliveTime,
774     TimeUnit unit,
775     BlockingQueue<Runnable> workQueue,
776     ThreadFactory threadFactory) {
777 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
778 dl 1.2 threadFactory, defaultHandler);
779     }
780 tim 1.1
781 dl 1.2 /**
782     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
783 jsr166 1.67 * parameters and default thread factory.
784 dl 1.2 *
785     * @param corePoolSize the number of threads to keep in the
786     * pool, even if they are idle.
787     * @param maximumPoolSize the maximum number of threads to allow in the
788     * pool.
789     * @param keepAliveTime when the number of threads is greater than
790     * the core, this is the maximum time that excess idle threads
791     * will wait for new tasks before terminating.
792     * @param unit the time unit for the keepAliveTime
793     * argument.
794 dl 1.36 * @param workQueue the queue to use for holding tasks before they
795 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
796     * tasks submitted by the <tt>execute</tt> method.
797     * @param handler the handler to use when execution is blocked
798     * because the thread bounds and queue capacities are reached.
799     * @throws IllegalArgumentException if corePoolSize, or
800     * keepAliveTime less than zero, or if maximumPoolSize less than or
801     * equal to zero, or if corePoolSize greater than maximumPoolSize.
802 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
803 jsr166 1.68 * or <tt>handler</tt> are null.
804 dl 1.2 */
805     public ThreadPoolExecutor(int corePoolSize,
806     int maximumPoolSize,
807     long keepAliveTime,
808     TimeUnit unit,
809     BlockingQueue<Runnable> workQueue,
810     RejectedExecutionHandler handler) {
811 tim 1.10 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
812 dl 1.34 Executors.defaultThreadFactory(), handler);
813 dl 1.2 }
814 tim 1.1
815 dl 1.2 /**
816     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
817     * parameters.
818     *
819     * @param corePoolSize the number of threads to keep in the
820     * pool, even if they are idle.
821     * @param maximumPoolSize the maximum number of threads to allow in the
822     * pool.
823     * @param keepAliveTime when the number of threads is greater than
824     * the core, this is the maximum time that excess idle threads
825     * will wait for new tasks before terminating.
826     * @param unit the time unit for the keepAliveTime
827     * argument.
828 dl 1.36 * @param workQueue the queue to use for holding tasks before they
829 dl 1.2 * are executed. This queue will hold only the <tt>Runnable</tt>
830     * tasks submitted by the <tt>execute</tt> method.
831     * @param threadFactory the factory to use when the executor
832 tim 1.10 * creates a new thread.
833 dl 1.2 * @param handler the handler to use when execution is blocked
834     * because the thread bounds and queue capacities are reached.
835     * @throws IllegalArgumentException if corePoolSize, or
836     * keepAliveTime less than zero, or if maximumPoolSize less than or
837     * equal to zero, or if corePoolSize greater than maximumPoolSize.
838 tim 1.10 * @throws NullPointerException if <tt>workQueue</tt>
839 dl 1.2 * or <tt>threadFactory</tt> or <tt>handler</tt> are null.
840     */
841     public ThreadPoolExecutor(int corePoolSize,
842     int maximumPoolSize,
843     long keepAliveTime,
844     TimeUnit unit,
845     BlockingQueue<Runnable> workQueue,
846     ThreadFactory threadFactory,
847     RejectedExecutionHandler handler) {
848 tim 1.10 if (corePoolSize < 0 ||
849 dl 1.2 maximumPoolSize <= 0 ||
850 tim 1.10 maximumPoolSize < corePoolSize ||
851 dl 1.2 keepAliveTime < 0)
852     throw new IllegalArgumentException();
853     if (workQueue == null || threadFactory == null || handler == null)
854     throw new NullPointerException();
855     this.corePoolSize = corePoolSize;
856     this.maximumPoolSize = maximumPoolSize;
857     this.workQueue = workQueue;
858     this.keepAliveTime = unit.toNanos(keepAliveTime);
859     this.threadFactory = threadFactory;
860     this.handler = handler;
861 tim 1.1 }
862    
863 dl 1.2
864     /**
865     * Executes the given task sometime in the future. The task
866     * may execute in a new thread or in an existing pooled thread.
867     *
868     * If the task cannot be submitted for execution, either because this
869     * executor has been shutdown or because its capacity has been reached,
870 tim 1.10 * the task is handled by the current <tt>RejectedExecutionHandler</tt>.
871 dl 1.2 *
872     * @param command the task to execute
873     * @throws RejectedExecutionException at discretion of
874 dl 1.8 * <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
875     * for execution
876 dl 1.26 * @throws NullPointerException if command is null
877 dl 1.2 */
878 tim 1.10 public void execute(Runnable command) {
879 dl 1.26 if (command == null)
880     throw new NullPointerException();
881 dl 1.2 for (;;) {
882 dl 1.16 if (runState != RUNNING) {
883 dl 1.13 reject(command);
884 dl 1.2 return;
885     }
886     if (poolSize < corePoolSize && addIfUnderCorePoolSize(command))
887     return;
888     if (workQueue.offer(command))
889     return;
890 dl 1.74 int status = addIfUnderMaximumPoolSize(command);
891     if (status > 0) // created new thread
892 dl 1.2 return;
893 dl 1.74 if (status == 0) { // failed to create thread
894 dl 1.13 reject(command);
895 dl 1.2 return;
896     }
897 dl 1.74 // Retry if created a new thread but it is busy with another task
898 dl 1.2 }
899 tim 1.1 }
900 dl 1.4
901 dl 1.53 /**
902     * Initiates an orderly shutdown in which previously submitted
903     * tasks are executed, but no new tasks will be
904     * accepted. Invocation has no additional effect if already shut
905     * down.
906     * @throws SecurityException if a security manager exists and
907     * shutting down this ExecutorService may manipulate threads that
908     * the caller is not permitted to modify because it does not hold
909     * {@link java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
910 jsr166 1.68 * or the security manager's <tt>checkAccess</tt> method denies access.
911 dl 1.53 */
912 dl 1.2 public void shutdown() {
913 jsr166 1.80 // Fail if caller doesn't have modifyThread permission.
914 dl 1.42 SecurityManager security = System.getSecurityManager();
915 jsr166 1.66 if (security != null)
916 dl 1.78 security.checkPermission(shutdownPerm);
917 dl 1.42
918 dl 1.25 boolean fullyTerminated = false;
919 dl 1.45 final ReentrantLock mainLock = this.mainLock;
920 dl 1.2 mainLock.lock();
921     try {
922 dl 1.25 if (workers.size() > 0) {
923 dl 1.50 // Check if caller can modify worker threads. This
924     // might not be true even if passed above check, if
925     // the SecurityManager treats some threads specially.
926 dl 1.43 if (security != null) {
927     for (Worker w: workers)
928     security.checkAccess(w.thread);
929     }
930    
931     int state = runState;
932     if (state == RUNNING) // don't override shutdownNow
933 dl 1.25 runState = SHUTDOWN;
934 dl 1.43
935     try {
936     for (Worker w: workers)
937     w.interruptIfIdle();
938 jsr166 1.66 } catch (SecurityException se) {
939 dl 1.50 // If SecurityManager allows above checks, but
940     // then unexpectedly throws exception when
941     // interrupting threads (which it ought not do),
942     // back out as cleanly as we can. Some threads may
943     // have been killed but we remain in non-shutdown
944     // state.
945 jsr166 1.66 runState = state;
946 dl 1.43 throw se;
947     }
948 dl 1.25 }
949     else { // If no workers, trigger full termination now
950     fullyTerminated = true;
951     runState = TERMINATED;
952     termination.signalAll();
953     }
954 tim 1.14 } finally {
955 dl 1.2 mainLock.unlock();
956     }
957 dl 1.25 if (fullyTerminated)
958     terminated();
959 tim 1.1 }
960    
961 dl 1.16
962 dl 1.53 /**
963     * Attempts to stop all actively executing tasks, halts the
964 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
965     * that were awaiting execution.
966 jsr166 1.66 *
967 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
968     * processing actively executing tasks. This implementation
969     * cancels tasks via {@link Thread#interrupt}, so any task that
970     * fails to respond to interrupts may never terminate.
971 dl 1.53 *
972     * @return list of tasks that never commenced execution
973     * @throws SecurityException if a security manager exists and
974     * shutting down this ExecutorService may manipulate threads that
975     * the caller is not permitted to modify because it does not hold
976     * {@link java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
977     * or the security manager's <tt>checkAccess</tt> method denies access.
978     */
979 tim 1.39 public List<Runnable> shutdownNow() {
980 dl 1.43 // Almost the same code as shutdown()
981 dl 1.42 SecurityManager security = System.getSecurityManager();
982 jsr166 1.66 if (security != null)
983 dl 1.78 security.checkPermission(shutdownPerm);
984 dl 1.43
985 dl 1.25 boolean fullyTerminated = false;
986 dl 1.45 final ReentrantLock mainLock = this.mainLock;
987 dl 1.2 mainLock.lock();
988     try {
989 dl 1.25 if (workers.size() > 0) {
990 dl 1.43 if (security != null) {
991     for (Worker w: workers)
992     security.checkAccess(w.thread);
993     }
994    
995     int state = runState;
996     if (state != TERMINATED)
997 dl 1.25 runState = STOP;
998 dl 1.43 try {
999     for (Worker w : workers)
1000     w.interruptNow();
1001 jsr166 1.66 } catch (SecurityException se) {
1002 dl 1.43 runState = state; // back out;
1003     throw se;
1004     }
1005 dl 1.25 }
1006     else { // If no workers, trigger full termination now
1007     fullyTerminated = true;
1008     runState = TERMINATED;
1009     termination.signalAll();
1010     }
1011 tim 1.14 } finally {
1012 dl 1.2 mainLock.unlock();
1013     }
1014 dl 1.25 if (fullyTerminated)
1015     terminated();
1016 tim 1.41 return Arrays.asList(workQueue.toArray(EMPTY_RUNNABLE_ARRAY));
1017 tim 1.1 }
1018    
1019 dl 1.2 public boolean isShutdown() {
1020 dl 1.16 return runState != RUNNING;
1021     }
1022    
1023 jsr166 1.66 /**
1024 dl 1.55 * Returns true if this executor is in the process of terminating
1025 dl 1.16 * after <tt>shutdown</tt> or <tt>shutdownNow</tt> but has not
1026     * completely terminated. This method may be useful for
1027     * debugging. A return of <tt>true</tt> reported a sufficient
1028     * period after shutdown may indicate that submitted tasks have
1029     * ignored or suppressed interruption, causing this executor not
1030     * to properly terminate.
1031     * @return true if terminating but not yet terminated.
1032     */
1033     public boolean isTerminating() {
1034     return runState == STOP;
1035 tim 1.1 }
1036    
1037 dl 1.2 public boolean isTerminated() {
1038 dl 1.16 return runState == TERMINATED;
1039 dl 1.2 }
1040 tim 1.1
1041 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1042     throws InterruptedException {
1043 dl 1.50 long nanos = unit.toNanos(timeout);
1044 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1045 dl 1.2 mainLock.lock();
1046     try {
1047 dl 1.25 for (;;) {
1048 jsr166 1.66 if (runState == TERMINATED)
1049 dl 1.25 return true;
1050     if (nanos <= 0)
1051     return false;
1052     nanos = termination.awaitNanos(nanos);
1053     }
1054 tim 1.14 } finally {
1055 dl 1.2 mainLock.unlock();
1056     }
1057 dl 1.15 }
1058    
1059     /**
1060     * Invokes <tt>shutdown</tt> when this executor is no longer
1061     * referenced.
1062 jsr166 1.66 */
1063 dl 1.15 protected void finalize() {
1064     shutdown();
1065 dl 1.2 }
1066 tim 1.10
1067 dl 1.2 /**
1068     * Sets the thread factory used to create new threads.
1069     *
1070     * @param threadFactory the new thread factory
1071 dl 1.30 * @throws NullPointerException if threadFactory is null
1072 tim 1.11 * @see #getThreadFactory
1073 dl 1.2 */
1074     public void setThreadFactory(ThreadFactory threadFactory) {
1075 dl 1.30 if (threadFactory == null)
1076     throw new NullPointerException();
1077 dl 1.2 this.threadFactory = threadFactory;
1078 tim 1.1 }
1079    
1080 dl 1.2 /**
1081     * Returns the thread factory used to create new threads.
1082     *
1083     * @return the current thread factory
1084 tim 1.11 * @see #setThreadFactory
1085 dl 1.2 */
1086     public ThreadFactory getThreadFactory() {
1087     return threadFactory;
1088 tim 1.1 }
1089    
1090 dl 1.2 /**
1091     * Sets a new handler for unexecutable tasks.
1092     *
1093     * @param handler the new handler
1094 dl 1.31 * @throws NullPointerException if handler is null
1095 tim 1.11 * @see #getRejectedExecutionHandler
1096 dl 1.2 */
1097     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1098 dl 1.31 if (handler == null)
1099     throw new NullPointerException();
1100 dl 1.2 this.handler = handler;
1101     }
1102 tim 1.1
1103 dl 1.2 /**
1104     * Returns the current handler for unexecutable tasks.
1105     *
1106     * @return the current handler
1107 tim 1.11 * @see #setRejectedExecutionHandler
1108 dl 1.2 */
1109     public RejectedExecutionHandler getRejectedExecutionHandler() {
1110     return handler;
1111 tim 1.1 }
1112    
1113 dl 1.2 /**
1114 dl 1.17 * Returns the task queue used by this executor. Access to the
1115     * task queue is intended primarily for debugging and monitoring.
1116 dl 1.27 * This queue may be in active use. Retrieving the task queue
1117 dl 1.2 * does not prevent queued tasks from executing.
1118     *
1119     * @return the task queue
1120     */
1121     public BlockingQueue<Runnable> getQueue() {
1122     return workQueue;
1123 tim 1.1 }
1124 dl 1.4
1125     /**
1126 dl 1.44 * Removes this task from the executor's internal queue if it is
1127     * present, thus causing it not to be run if it has not already
1128     * started.
1129 jsr166 1.66 *
1130 dl 1.44 * <p> This method may be useful as one part of a cancellation
1131     * scheme. It may fail to remove tasks that have been converted
1132     * into other forms before being placed on the internal queue. For
1133     * example, a task entered using <tt>submit</tt> might be
1134     * converted into a form that maintains <tt>Future</tt> status.
1135     * However, in such cases, method {@link ThreadPoolExecutor#purge}
1136     * may be used to remove those Futures that have been cancelled.
1137 jsr166 1.66 *
1138 dl 1.8 * @param task the task to remove
1139     * @return true if the task was removed
1140 dl 1.4 */
1141 dl 1.5 public boolean remove(Runnable task) {
1142 dl 1.4 return getQueue().remove(task);
1143     }
1144    
1145 dl 1.7
1146     /**
1147 dl 1.37 * Tries to remove from the work queue all {@link Future}
1148 dl 1.16 * tasks that have been cancelled. This method can be useful as a
1149     * storage reclamation operation, that has no other impact on
1150     * functionality. Cancelled tasks are never executed, but may
1151     * accumulate in work queues until worker threads can actively
1152     * remove them. Invoking this method instead tries to remove them now.
1153 dl 1.23 * However, this method may fail to remove tasks in
1154 dl 1.16 * the presence of interference by other threads.
1155 dl 1.7 */
1156     public void purge() {
1157 dl 1.16 // Fail if we encounter interference during traversal
1158     try {
1159     Iterator<Runnable> it = getQueue().iterator();
1160     while (it.hasNext()) {
1161     Runnable r = it.next();
1162 dl 1.37 if (r instanceof Future<?>) {
1163     Future<?> c = (Future<?>)r;
1164 dl 1.16 if (c.isCancelled())
1165     it.remove();
1166     }
1167 dl 1.7 }
1168     }
1169 jsr166 1.66 catch (ConcurrentModificationException ex) {
1170     return;
1171 dl 1.16 }
1172 dl 1.7 }
1173 tim 1.1
1174     /**
1175 dl 1.2 * Sets the core number of threads. This overrides any value set
1176     * in the constructor. If the new value is smaller than the
1177     * current value, excess existing threads will be terminated when
1178 dl 1.34 * they next become idle. If larger, new threads will, if needed,
1179     * be started to execute any queued tasks.
1180 tim 1.1 *
1181 dl 1.2 * @param corePoolSize the new core size
1182 tim 1.10 * @throws IllegalArgumentException if <tt>corePoolSize</tt>
1183 dl 1.8 * less than zero
1184 tim 1.11 * @see #getCorePoolSize
1185 tim 1.1 */
1186 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1187     if (corePoolSize < 0)
1188     throw new IllegalArgumentException();
1189 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1190 dl 1.2 mainLock.lock();
1191     try {
1192     int extra = this.corePoolSize - corePoolSize;
1193     this.corePoolSize = corePoolSize;
1194 tim 1.38 if (extra < 0) {
1195 dl 1.56 int n = workQueue.size();
1196     // We have to create initially-idle threads here
1197     // because we otherwise have no recourse about
1198     // what to do with a dequeued task if addThread fails.
1199     while (extra++ < 0 && n-- > 0 && poolSize < corePoolSize ) {
1200     Thread t = addThread(null);
1201 jsr166 1.66 if (t != null)
1202 dl 1.56 t.start();
1203     else
1204     break;
1205     }
1206 tim 1.38 }
1207     else if (extra > 0 && poolSize > corePoolSize) {
1208 dl 1.2 Iterator<Worker> it = workers.iterator();
1209 tim 1.10 while (it.hasNext() &&
1210 dl 1.34 extra-- > 0 &&
1211 dl 1.2 poolSize > corePoolSize &&
1212 jsr166 1.66 workQueue.remainingCapacity() == 0)
1213 dl 1.2 it.next().interruptIfIdle();
1214     }
1215 tim 1.14 } finally {
1216 dl 1.2 mainLock.unlock();
1217     }
1218     }
1219 tim 1.1
1220     /**
1221 dl 1.2 * Returns the core number of threads.
1222 tim 1.1 *
1223 dl 1.2 * @return the core number of threads
1224 tim 1.11 * @see #setCorePoolSize
1225 tim 1.1 */
1226 tim 1.10 public int getCorePoolSize() {
1227 dl 1.2 return corePoolSize;
1228 dl 1.16 }
1229    
1230     /**
1231 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1232 dl 1.16 * overrides the default policy of starting core threads only when
1233     * new tasks are executed. This method will return <tt>false</tt>
1234     * if all core threads have already been started.
1235     * @return true if a thread was started
1236 jsr166 1.66 */
1237 dl 1.16 public boolean prestartCoreThread() {
1238     return addIfUnderCorePoolSize(null);
1239     }
1240    
1241     /**
1242 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1243 dl 1.16 * overrides the default policy of starting core threads only when
1244 jsr166 1.66 * new tasks are executed.
1245 dl 1.16 * @return the number of threads started.
1246 jsr166 1.66 */
1247 dl 1.16 public int prestartAllCoreThreads() {
1248     int n = 0;
1249     while (addIfUnderCorePoolSize(null))
1250     ++n;
1251     return n;
1252 dl 1.2 }
1253 tim 1.1
1254     /**
1255 dl 1.62 * Returns true if this pool allows core threads to time out and
1256     * terminate if no tasks arrive within the keepAlive time, being
1257     * replaced if needed when new tasks arrive. When true, the same
1258     * keep-alive policy applying to non-core threads applies also to
1259     * core threads. When false (the default), core threads are never
1260     * terminated due to lack of incoming tasks.
1261     * @return <tt>true</tt> if core threads are allowed to time out,
1262     * else <tt>false</tt>
1263 jsr166 1.72 *
1264     * @since 1.6
1265 dl 1.62 */
1266     public boolean allowsCoreThreadTimeOut() {
1267     return allowCoreThreadTimeOut;
1268     }
1269    
1270     /**
1271     * Sets the policy governing whether core threads may time out and
1272     * terminate if no tasks arrive within the keep-alive time, being
1273     * replaced if needed when new tasks arrive. When false, core
1274     * threads are never terminated due to lack of incoming
1275     * tasks. When true, the same keep-alive policy applying to
1276     * non-core threads applies also to core threads. To avoid
1277     * continual thread replacement, the keep-alive time must be
1278 dl 1.64 * greater than zero when setting <tt>true</tt>. This method
1279     * should in general be called before the pool is actively used.
1280 dl 1.62 * @param value <tt>true</tt> if should time out, else <tt>false</tt>
1281 dl 1.64 * @throws IllegalArgumentException if value is <tt>true</tt>
1282     * and the current keep-alive time is not greater than zero.
1283 jsr166 1.72 *
1284     * @since 1.6
1285 dl 1.62 */
1286     public void allowCoreThreadTimeOut(boolean value) {
1287 dl 1.64 if (value && keepAliveTime <= 0)
1288     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1289    
1290 dl 1.62 allowCoreThreadTimeOut = value;
1291     }
1292    
1293     /**
1294 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1295 dl 1.2 * value set in the constructor. If the new value is smaller than
1296     * the current value, excess existing threads will be
1297     * terminated when they next become idle.
1298 tim 1.1 *
1299 dl 1.2 * @param maximumPoolSize the new maximum
1300 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1301     * less than or equal to zero, or
1302     * less than the {@linkplain #getCorePoolSize core pool size}
1303 tim 1.11 * @see #getMaximumPoolSize
1304 dl 1.2 */
1305     public void setMaximumPoolSize(int maximumPoolSize) {
1306     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1307     throw new IllegalArgumentException();
1308 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1309 dl 1.2 mainLock.lock();
1310     try {
1311     int extra = this.maximumPoolSize - maximumPoolSize;
1312     this.maximumPoolSize = maximumPoolSize;
1313     if (extra > 0 && poolSize > maximumPoolSize) {
1314     Iterator<Worker> it = workers.iterator();
1315 tim 1.10 while (it.hasNext() &&
1316     extra > 0 &&
1317 dl 1.2 poolSize > maximumPoolSize) {
1318     it.next().interruptIfIdle();
1319     --extra;
1320     }
1321     }
1322 tim 1.14 } finally {
1323 dl 1.2 mainLock.unlock();
1324     }
1325     }
1326 tim 1.1
1327     /**
1328     * Returns the maximum allowed number of threads.
1329     *
1330 dl 1.2 * @return the maximum allowed number of threads
1331 tim 1.11 * @see #setMaximumPoolSize
1332 tim 1.1 */
1333 tim 1.10 public int getMaximumPoolSize() {
1334 dl 1.2 return maximumPoolSize;
1335     }
1336 tim 1.1
1337     /**
1338     * Sets the time limit for which threads may remain idle before
1339 dl 1.2 * being terminated. If there are more than the core number of
1340 tim 1.1 * threads currently in the pool, after waiting this amount of
1341     * time without processing a task, excess threads will be
1342     * terminated. This overrides any value set in the constructor.
1343     * @param time the time to wait. A time value of zero will cause
1344     * excess threads to terminate immediately after executing tasks.
1345 dl 1.2 * @param unit the time unit of the time argument
1346 dl 1.64 * @throws IllegalArgumentException if time less than zero or
1347     * if time is zero and allowsCoreThreadTimeOut
1348 tim 1.11 * @see #getKeepAliveTime
1349 tim 1.1 */
1350 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1351     if (time < 0)
1352     throw new IllegalArgumentException();
1353 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1354     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1355 dl 1.2 this.keepAliveTime = unit.toNanos(time);
1356     }
1357 tim 1.1
1358     /**
1359     * Returns the thread keep-alive time, which is the amount of time
1360 dl 1.2 * which threads in excess of the core pool size may remain
1361 tim 1.10 * idle before being terminated.
1362 tim 1.1 *
1363 dl 1.2 * @param unit the desired time unit of the result
1364 tim 1.1 * @return the time limit
1365 tim 1.11 * @see #setKeepAliveTime
1366 tim 1.1 */
1367 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1368 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1369     }
1370 tim 1.1
1371     /* Statistics */
1372    
1373     /**
1374     * Returns the current number of threads in the pool.
1375     *
1376     * @return the number of threads
1377     */
1378 tim 1.10 public int getPoolSize() {
1379 dl 1.2 return poolSize;
1380     }
1381 tim 1.1
1382     /**
1383 dl 1.2 * Returns the approximate number of threads that are actively
1384 tim 1.1 * executing tasks.
1385     *
1386     * @return the number of threads
1387     */
1388 tim 1.10 public int getActiveCount() {
1389 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1390 dl 1.2 mainLock.lock();
1391     try {
1392     int n = 0;
1393 tim 1.39 for (Worker w : workers) {
1394     if (w.isActive())
1395 dl 1.2 ++n;
1396     }
1397     return n;
1398 tim 1.14 } finally {
1399 dl 1.2 mainLock.unlock();
1400     }
1401     }
1402 tim 1.1
1403     /**
1404 dl 1.2 * Returns the largest number of threads that have ever
1405     * simultaneously been in the pool.
1406 tim 1.1 *
1407     * @return the number of threads
1408     */
1409 tim 1.10 public int getLargestPoolSize() {
1410 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1411 dl 1.2 mainLock.lock();
1412     try {
1413     return largestPoolSize;
1414 tim 1.14 } finally {
1415 dl 1.2 mainLock.unlock();
1416     }
1417     }
1418 tim 1.1
1419     /**
1420 dl 1.2 * Returns the approximate total number of tasks that have been
1421     * scheduled for execution. Because the states of tasks and
1422     * threads may change dynamically during computation, the returned
1423 dl 1.17 * value is only an approximation, but one that does not ever
1424     * decrease across successive calls.
1425 tim 1.1 *
1426     * @return the number of tasks
1427     */
1428 tim 1.10 public long getTaskCount() {
1429 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1430 dl 1.2 mainLock.lock();
1431     try {
1432     long n = completedTaskCount;
1433 tim 1.39 for (Worker w : workers) {
1434 dl 1.2 n += w.completedTasks;
1435     if (w.isActive())
1436     ++n;
1437     }
1438     return n + workQueue.size();
1439 tim 1.14 } finally {
1440 dl 1.2 mainLock.unlock();
1441     }
1442     }
1443 tim 1.1
1444     /**
1445 dl 1.2 * Returns the approximate total number of tasks that have
1446     * completed execution. Because the states of tasks and threads
1447     * may change dynamically during computation, the returned value
1448 dl 1.17 * is only an approximation, but one that does not ever decrease
1449     * across successive calls.
1450 tim 1.1 *
1451     * @return the number of tasks
1452     */
1453 tim 1.10 public long getCompletedTaskCount() {
1454 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1455 dl 1.2 mainLock.lock();
1456     try {
1457     long n = completedTaskCount;
1458 tim 1.39 for (Worker w : workers)
1459     n += w.completedTasks;
1460 dl 1.2 return n;
1461 tim 1.14 } finally {
1462 dl 1.2 mainLock.unlock();
1463     }
1464     }
1465 tim 1.1
1466     /**
1467 dl 1.17 * Method invoked prior to executing the given Runnable in the
1468 dl 1.43 * given thread. This method is invoked by thread <tt>t</tt> that
1469     * will execute task <tt>r</tt>, and may be used to re-initialize
1470 jsr166 1.73 * ThreadLocals, or to perform logging.
1471     *
1472     * <p>This implementation does nothing, but may be customized in
1473     * subclasses. Note: To properly nest multiple overridings, subclasses
1474     * should generally invoke <tt>super.beforeExecute</tt> at the end of
1475     * this method.
1476 tim 1.1 *
1477 dl 1.2 * @param t the thread that will run task r.
1478     * @param r the task that will be executed.
1479 tim 1.1 */
1480 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1481 tim 1.1
1482     /**
1483 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1484     * This method is invoked by the thread that executed the task. If
1485     * non-null, the Throwable is the uncaught <tt>RuntimeException</tt>
1486     * or <tt>Error</tt> that caused execution to terminate abruptly.
1487 dl 1.69 *
1488     * <p><b>Note:</b> When actions are enclosed in tasks (such as
1489     * {@link FutureTask}) either explicitly or via methods such as
1490     * <tt>submit</tt>, these task objects catch and maintain
1491     * computational exceptions, and so they do not cause abrupt
1492 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1493 dl 1.69 * passed to this method.
1494     *
1495 jsr166 1.70 * <p>This implementation does nothing, but may be customized in
1496     * subclasses. Note: To properly nest multiple overridings, subclasses
1497     * should generally invoke <tt>super.afterExecute</tt> at the
1498     * beginning of this method.
1499 tim 1.1 *
1500 dl 1.2 * @param r the runnable that has completed.
1501 dl 1.24 * @param t the exception that caused termination, or null if
1502 dl 1.2 * execution completed normally.
1503 tim 1.1 */
1504 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1505 tim 1.1
1506 dl 1.2 /**
1507     * Method invoked when the Executor has terminated. Default
1508 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1509     * overridings, subclasses should generally invoke
1510     * <tt>super.terminated</tt> within this method.
1511 dl 1.2 */
1512     protected void terminated() { }
1513 tim 1.1
1514     /**
1515 dl 1.21 * A handler for rejected tasks that runs the rejected task
1516     * directly in the calling thread of the <tt>execute</tt> method,
1517     * unless the executor has been shut down, in which case the task
1518     * is discarded.
1519 tim 1.1 */
1520 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1521 tim 1.1 /**
1522 dl 1.24 * Creates a <tt>CallerRunsPolicy</tt>.
1523 tim 1.1 */
1524     public CallerRunsPolicy() { }
1525    
1526 dl 1.24 /**
1527     * Executes task r in the caller's thread, unless the executor
1528     * has been shut down, in which case the task is discarded.
1529     * @param r the runnable task requested to be executed
1530     * @param e the executor attempting to execute this task
1531     */
1532 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1533     if (!e.isShutdown()) {
1534 tim 1.1 r.run();
1535     }
1536     }
1537     }
1538    
1539     /**
1540 dl 1.21 * A handler for rejected tasks that throws a
1541 dl 1.8 * <tt>RejectedExecutionException</tt>.
1542 tim 1.1 */
1543 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
1544 tim 1.1 /**
1545 dl 1.29 * Creates an <tt>AbortPolicy</tt>.
1546 tim 1.1 */
1547     public AbortPolicy() { }
1548    
1549 dl 1.24 /**
1550 dl 1.54 * Always throws RejectedExecutionException.
1551 dl 1.24 * @param r the runnable task requested to be executed
1552     * @param e the executor attempting to execute this task
1553     * @throws RejectedExecutionException always.
1554     */
1555 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1556     throw new RejectedExecutionException();
1557 tim 1.1 }
1558     }
1559    
1560     /**
1561 dl 1.21 * A handler for rejected tasks that silently discards the
1562     * rejected task.
1563 tim 1.1 */
1564 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
1565 tim 1.1 /**
1566 dl 1.54 * Creates a <tt>DiscardPolicy</tt>.
1567 tim 1.1 */
1568     public DiscardPolicy() { }
1569    
1570 dl 1.24 /**
1571     * Does nothing, which has the effect of discarding task r.
1572     * @param r the runnable task requested to be executed
1573     * @param e the executor attempting to execute this task
1574     */
1575 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1576 tim 1.1 }
1577     }
1578    
1579     /**
1580 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
1581     * request and then retries <tt>execute</tt>, unless the executor
1582     * is shut down, in which case the task is discarded.
1583 tim 1.1 */
1584 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
1585 tim 1.1 /**
1586 dl 1.24 * Creates a <tt>DiscardOldestPolicy</tt> for the given executor.
1587 tim 1.1 */
1588     public DiscardOldestPolicy() { }
1589    
1590 dl 1.24 /**
1591     * Obtains and ignores the next task that the executor
1592     * would otherwise execute, if one is immediately available,
1593     * and then retries execution of task r, unless the executor
1594     * is shut down, in which case task r is instead discarded.
1595     * @param r the runnable task requested to be executed
1596     * @param e the executor attempting to execute this task
1597     */
1598 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1599     if (!e.isShutdown()) {
1600     e.getQueue().poll();
1601     e.execute(r);
1602 tim 1.1 }
1603     }
1604     }
1605     }