ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.86
Committed: Sun Jun 18 22:11:48 2006 UTC (17 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.85: +644 -482 lines
Log Message:
Refactor

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.9 import java.util.concurrent.locks.*;
9 dl 1.2 import java.util.*;
10 tim 1.1
11     /**
12 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
13 dl 1.28 * one of possibly several pooled threads, normally configured
14     * using {@link Executors} factory methods.
15 tim 1.1 *
16 dl 1.17 * <p>Thread pools address two different problems: they usually
17     * provide improved performance when executing large numbers of
18     * asynchronous tasks, due to reduced per-task invocation overhead,
19     * and they provide a means of bounding and managing the resources,
20     * including threads, consumed when executing a collection of tasks.
21 dl 1.20 * Each <tt>ThreadPoolExecutor</tt> also maintains some basic
22 dl 1.22 * statistics, such as the number of completed tasks.
23 dl 1.17 *
24 tim 1.1 * <p>To be useful across a wide range of contexts, this class
25 dl 1.24 * provides many adjustable parameters and extensibility
26     * hooks. However, programmers are urged to use the more convenient
27 dl 1.20 * {@link Executors} factory methods {@link
28     * Executors#newCachedThreadPool} (unbounded thread pool, with
29     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
30     * (fixed size thread pool) and {@link
31     * Executors#newSingleThreadExecutor} (single background thread), that
32 dl 1.22 * preconfigure settings for the most common usage
33     * scenarios. Otherwise, use the following guide when manually
34 dl 1.24 * configuring and tuning this class:
35 dl 1.17 *
36 tim 1.1 * <dl>
37 dl 1.2 *
38 dl 1.21 * <dt>Core and maximum pool sizes</dt>
39 dl 1.2 *
40 dl 1.19 * <dd>A <tt>ThreadPoolExecutor</tt> will automatically adjust the
41 jsr166 1.66 * pool size
42 dl 1.21 * (see {@link ThreadPoolExecutor#getPoolSize})
43 jsr166 1.66 * according to the bounds set by corePoolSize
44 dl 1.21 * (see {@link ThreadPoolExecutor#getCorePoolSize})
45     * and
46     * maximumPoolSize
47     * (see {@link ThreadPoolExecutor#getMaximumPoolSize}).
48     * When a new task is submitted in method {@link
49     * ThreadPoolExecutor#execute}, and fewer than corePoolSize threads
50     * are running, a new thread is created to handle the request, even if
51     * other worker threads are idle. If there are more than
52     * corePoolSize but less than maximumPoolSize threads running, a new
53     * thread will be created only if the queue is full. By setting
54     * corePoolSize and maximumPoolSize the same, you create a fixed-size
55     * thread pool. By setting maximumPoolSize to an essentially unbounded
56     * value such as <tt>Integer.MAX_VALUE</tt>, you allow the pool to
57 dl 1.27 * accommodate an arbitrary number of concurrent tasks. Most typically,
58 dl 1.21 * core and maximum pool sizes are set only upon construction, but they
59     * may also be changed dynamically using {@link
60     * ThreadPoolExecutor#setCorePoolSize} and {@link
61     * ThreadPoolExecutor#setMaximumPoolSize}. <dd>
62 dl 1.2 *
63 dl 1.21 * <dt> On-demand construction
64 dl 1.2 *
65 dl 1.21 * <dd> By default, even core threads are initially created and
66 dl 1.69 * started only when new tasks arrive, but this can be overridden
67 dl 1.21 * dynamically using method {@link
68     * ThreadPoolExecutor#prestartCoreThread} or
69 dl 1.64 * {@link ThreadPoolExecutor#prestartAllCoreThreads}.
70     * You probably want to prestart threads if you construct the
71     * pool with a non-empty queue. </dd>
72 dl 1.2 *
73 tim 1.1 * <dt>Creating new threads</dt>
74 dl 1.2 *
75 dl 1.33 * <dd>New threads are created using a {@link
76     * java.util.concurrent.ThreadFactory}. If not otherwise specified, a
77 dl 1.34 * {@link Executors#defaultThreadFactory} is used, that creates threads to all
78 dl 1.33 * be in the same {@link ThreadGroup} and with the same
79     * <tt>NORM_PRIORITY</tt> priority and non-daemon status. By supplying
80     * a different ThreadFactory, you can alter the thread's name, thread
81 dl 1.57 * group, priority, daemon status, etc. If a <tt>ThreadFactory</tt> fails to create
82 jsr166 1.66 * a thread when asked by returning null from <tt>newThread</tt>,
83 dl 1.57 * the executor will continue, but might
84 dl 1.56 * not be able to execute any tasks. </dd>
85 dl 1.2 *
86 dl 1.21 * <dt>Keep-alive times</dt>
87     *
88     * <dd>If the pool currently has more than corePoolSize threads,
89     * excess threads will be terminated if they have been idle for more
90     * than the keepAliveTime (see {@link
91     * ThreadPoolExecutor#getKeepAliveTime}). This provides a means of
92     * reducing resource consumption when the pool is not being actively
93     * used. If the pool becomes more active later, new threads will be
94 dl 1.62 * constructed. This parameter can also be changed dynamically using
95     * method {@link ThreadPoolExecutor#setKeepAliveTime}. Using a value
96     * of <tt>Long.MAX_VALUE</tt> {@link TimeUnit#NANOSECONDS} effectively
97     * disables idle threads from ever terminating prior to shut down. By
98     * default, the keep-alive policy applies only when there are more
99     * than corePoolSizeThreads. But method {@link
100     * ThreadPoolExecutor#allowCoreThreadTimeOut} can be used to apply
101 dl 1.64 * this time-out policy to core threads as well, so long as
102     * the keepAliveTime value is non-zero. </dd>
103 dl 1.21 *
104 dl 1.48 * <dt>Queuing</dt>
105 dl 1.21 *
106     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
107     * submitted tasks. The use of this queue interacts with pool sizing:
108 dl 1.2 *
109 dl 1.21 * <ul>
110     *
111 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
112     * always prefers adding a new thread
113 dl 1.48 * rather than queuing.</li>
114 dl 1.21 *
115 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
116     * always prefers queuing a request rather than adding a new
117     * thread.</li>
118 jsr166 1.66 *
119 dl 1.21 * <li> If a request cannot be queued, a new thread is created unless
120     * this would exceed maximumPoolSize, in which case, the task will be
121     * rejected.</li>
122     *
123     * </ul>
124     *
125     * There are three general strategies for queuing:
126     * <ol>
127     *
128     * <li> <em> Direct handoffs.</em> A good default choice for a work
129     * queue is a {@link SynchronousQueue} that hands off tasks to threads
130     * without otherwise holding them. Here, an attempt to queue a task
131     * will fail if no threads are immediately available to run it, so a
132     * new thread will be constructed. This policy avoids lockups when
133     * handling sets of requests that might have internal dependencies.
134     * Direct handoffs generally require unbounded maximumPoolSizes to
135 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
136 dl 1.21 * possibility of unbounded thread growth when commands continue to
137     * arrive on average faster than they can be processed. </li>
138     *
139     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
140     * example a {@link LinkedBlockingQueue} without a predefined
141 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
142 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
143     * threads will ever be created. (And the value of the maximumPoolSize
144     * therefore doesn't have any effect.) This may be appropriate when
145     * each task is completely independent of others, so tasks cannot
146     * affect each others execution; for example, in a web page server.
147     * While this style of queuing can be useful in smoothing out
148     * transient bursts of requests, it admits the possibility of
149     * unbounded work queue growth when commands continue to arrive on
150     * average faster than they can be processed. </li>
151 dl 1.21 *
152     * <li><em>Bounded queues.</em> A bounded queue (for example, an
153     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
154     * used with finite maximumPoolSizes, but can be more difficult to
155     * tune and control. Queue sizes and maximum pool sizes may be traded
156     * off for each other: Using large queues and small pools minimizes
157     * CPU usage, OS resources, and context-switching overhead, but can
158 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
159 dl 1.21 * example if they are I/O bound), a system may be able to schedule
160     * time for more threads than you otherwise allow. Use of small queues
161 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
162     * may encounter unacceptable scheduling overhead, which also
163     * decreases throughput. </li>
164 dl 1.21 *
165     * </ol>
166     *
167     * </dd>
168     *
169     * <dt>Rejected tasks</dt>
170     *
171     * <dd> New tasks submitted in method {@link
172     * ThreadPoolExecutor#execute} will be <em>rejected</em> when the
173     * Executor has been shut down, and also when the Executor uses finite
174     * bounds for both maximum threads and work queue capacity, and is
175 dl 1.22 * saturated. In either case, the <tt>execute</tt> method invokes the
176     * {@link RejectedExecutionHandler#rejectedExecution} method of its
177     * {@link RejectedExecutionHandler}. Four predefined handler policies
178     * are provided:
179 dl 1.21 *
180     * <ol>
181     *
182     * <li> In the
183     * default {@link ThreadPoolExecutor.AbortPolicy}, the handler throws a
184     * runtime {@link RejectedExecutionException} upon rejection. </li>
185 jsr166 1.66 *
186 dl 1.21 * <li> In {@link
187     * ThreadPoolExecutor.CallerRunsPolicy}, the thread that invokes
188     * <tt>execute</tt> itself runs the task. This provides a simple
189     * feedback control mechanism that will slow down the rate that new
190     * tasks are submitted. </li>
191     *
192     * <li> In {@link ThreadPoolExecutor.DiscardPolicy},
193     * a task that cannot be executed is simply dropped. </li>
194     *
195     * <li>In {@link
196     * ThreadPoolExecutor.DiscardOldestPolicy}, if the executor is not
197     * shut down, the task at the head of the work queue is dropped, and
198     * then execution is retried (which can fail again, causing this to be
199     * repeated.) </li>
200     *
201     * </ol>
202     *
203     * It is possible to define and use other kinds of {@link
204     * RejectedExecutionHandler} classes. Doing so requires some care
205     * especially when policies are designed to work only under particular
206 dl 1.48 * capacity or queuing policies. </dd>
207 dl 1.21 *
208     * <dt>Hook methods</dt>
209     *
210 dl 1.23 * <dd>This class provides <tt>protected</tt> overridable {@link
211 dl 1.21 * ThreadPoolExecutor#beforeExecute} and {@link
212     * ThreadPoolExecutor#afterExecute} methods that are called before and
213 dl 1.19 * after execution of each task. These can be used to manipulate the
214 dl 1.59 * execution environment; for example, reinitializing ThreadLocals,
215 dl 1.21 * gathering statistics, or adding log entries. Additionally, method
216     * {@link ThreadPoolExecutor#terminated} can be overridden to perform
217     * any special processing that needs to be done once the Executor has
218 jsr166 1.66 * fully terminated.
219 dl 1.57 *
220 jsr166 1.66 * <p>If hook or callback methods throw
221 dl 1.57 * exceptions, internal worker threads may in turn fail and
222 jsr166 1.66 * abruptly terminate.</dd>
223 dl 1.2 *
224 dl 1.21 * <dt>Queue maintenance</dt>
225 dl 1.2 *
226 dl 1.24 * <dd> Method {@link ThreadPoolExecutor#getQueue} allows access to
227     * the work queue for purposes of monitoring and debugging. Use of
228     * this method for any other purpose is strongly discouraged. Two
229     * supplied methods, {@link ThreadPoolExecutor#remove} and {@link
230     * ThreadPoolExecutor#purge} are available to assist in storage
231     * reclamation when large numbers of queued tasks become
232 jsr166 1.80 * cancelled.</dd>
233 dl 1.79 *
234     * <dt>Finalization</dt>
235     *
236     * <dd> A pool that is no longer referenced in a program <em>AND</em>
237     * has no remaining threads will be <tt>shutdown</tt>
238     * automatically. If you would like to ensure that unreferenced pools
239     * are reclaimed even if users forget to call {@link
240     * ThreadPoolExecutor#shutdown}, then you must arrange that unused
241     * threads eventually die, by setting appropriate keep-alive times,
242     * using a lower bound of zero core threads and/or setting {@link
243     * ThreadPoolExecutor#allowCoreThreadTimeOut}. </dd> </dl>
244 tim 1.1 *
245 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
246     * override one or more of the protected hook methods. For example,
247     * here is a subclass that adds a simple pause/resume feature:
248     *
249     * <pre>
250     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
251     * private boolean isPaused;
252     * private ReentrantLock pauseLock = new ReentrantLock();
253     * private Condition unpaused = pauseLock.newCondition();
254     *
255     * public PausableThreadPoolExecutor(...) { super(...); }
256 jsr166 1.66 *
257 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
258     * super.beforeExecute(t, r);
259     * pauseLock.lock();
260     * try {
261     * while (isPaused) unpaused.await();
262 jsr166 1.66 * } catch (InterruptedException ie) {
263 dl 1.53 * t.interrupt();
264 dl 1.43 * } finally {
265 dl 1.53 * pauseLock.unlock();
266 dl 1.43 * }
267     * }
268 jsr166 1.66 *
269 dl 1.43 * public void pause() {
270     * pauseLock.lock();
271     * try {
272     * isPaused = true;
273     * } finally {
274 dl 1.53 * pauseLock.unlock();
275 dl 1.43 * }
276     * }
277 jsr166 1.66 *
278 dl 1.43 * public void resume() {
279     * pauseLock.lock();
280     * try {
281     * isPaused = false;
282     * unpaused.signalAll();
283     * } finally {
284 dl 1.53 * pauseLock.unlock();
285 dl 1.43 * }
286     * }
287     * }
288     * </pre>
289 tim 1.1 * @since 1.5
290 dl 1.8 * @author Doug Lea
291 tim 1.1 */
292 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
293 dl 1.85
294 dl 1.86 /**
295     * Permission for checking shutdown
296     */
297     private static final RuntimePermission shutdownPerm =
298     new RuntimePermission("modifyThread");
299    
300 dl 1.85 /*
301 dl 1.86 * A ThreadPoolExecutor manages a largish set of control fields.
302     * State changes in fields that affect execution control
303     * guarantees only occur within mainLock regions. These include
304     * fields runState, poolSize, corePoolSize, and maximumPoolSize
305     * However, these fields are also declared volatile, so can be
306     * read outside of locked regions. (Also, the workers Set is
307     * accessed only under lock).
308     *
309     * The other fields representng user control parameters do not
310     * affect execution invariants, so are declared volatile and
311     * allowed to change (via user methods) asynchronously with
312     * execution. These fields include: allowCoreThreadTimeOut,
313     * keepAliveTime, the rejected execution handler, and
314     * threadfactory are not updated within locks
315     *
316     * The extensive use of volatiles here enables the most
317     * performance-critical actions, such as enqueuing and dequeing
318     * tasks in the workQueue, to normally proceed without holding the
319     * mainLock when they see that the state allows actions, although,
320     * as described below, sometimes at the expense of re-checks
321     * following these actions.
322     */
323    
324     /**
325     * runState provides the main lifecyle control, taking on values:
326     *
327 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
328     * SHUTDOWN: Don't accept new tasks, but process queued tasks
329     * STOP: Don't accept new tasks, don't process queued tasks,
330     * and interrupt in-progress tasks
331     * TERMINATED: Same as stop, plus all threads have terminated
332 dl 1.86 *
333     * The numerical order among these values matters, to allow
334     * ordered comparisons. The runState monotonically increases over
335     * time, but need not hit each state. The transitions are:
336 dl 1.85 *
337     * RUNNING -> SHUTDOWN
338 dl 1.86 * On invocation of shutdown(), perhaps implicity in finalize()
339     * (RUNNING or SHUTDOWN) -> STOP
340     * On invocation of shutdownNow()
341     * SHUTDOWN -> TERMINATED
342     * When both queue and pool are empty
343     * STOP -> TERMINATED
344     * When pool is empty
345 tim 1.41 */
346 dl 1.86 volatile int runState;
347     static final int RUNNING = 0;
348     static final int SHUTDOWN = 1;
349     static final int STOP = 2;
350     static final int TERMINATED = 3;
351 tim 1.41
352     /**
353 dl 1.86 * The queue used for holding tasks and handing off to worker
354     * threads. Note that when using this queue, we do not require
355     * that workQueue.poll() returning null necessarily means that
356     * workQueue.isEmpty(), so must sometimes check both. This
357     * accommodates special-purpose queues such as DelayQueues for
358     * which poll() is allowed to return null even if it may later
359     * return non-null when delays expire.
360 tim 1.10 */
361 dl 1.2 private final BlockingQueue<Runnable> workQueue;
362    
363     /**
364 dl 1.85 * Lock held on updates to poolSize, corePoolSize,
365     * maximumPoolSize, runState, and workers set.
366 tim 1.10 */
367 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
368    
369     /**
370     * Wait condition to support awaitTermination
371 tim 1.10 */
372 dl 1.46 private final Condition termination = mainLock.newCondition();
373 dl 1.2
374     /**
375 dl 1.86 * Set containing all worker threads in pool. Accessed onl when
376     * holding mainLock.
377 tim 1.10 */
378 dl 1.17 private final HashSet<Worker> workers = new HashSet<Worker>();
379 dl 1.2
380     /**
381 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
382 dl 1.86 * Threads use this timeout when there are more than corePoolSize
383     * present or if allowCoreThreadTimeOut. Otherwise they wait
384     * forever for new work.
385 tim 1.10 */
386 dl 1.2 private volatile long keepAliveTime;
387    
388     /**
389 dl 1.86 * If false (default) core threads stay alive even when idle. If
390     * true, core threads use keepAliveTime to time out waiting for
391     * work.
392 dl 1.62 */
393 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
394 dl 1.62
395     /**
396 dl 1.86 * Core pool size, updated only while holding mainLock, but
397     * volatile to allow concurrent readability even during updates.
398 tim 1.10 */
399 dl 1.2 private volatile int corePoolSize;
400    
401     /**
402 dl 1.86 * Maximum pool size, updated only while holding mainLock but
403     * volatile to allow concurrent readability even during updates.
404 tim 1.10 */
405 dl 1.2 private volatile int maximumPoolSize;
406    
407     /**
408 dl 1.86 * Current pool size, updated only while holding mainLock but
409     * volatile to allow concurrent readability even during updates.
410 tim 1.10 */
411 dl 1.2 private volatile int poolSize;
412    
413     /**
414     * Handler called when saturated or shutdown in execute.
415 tim 1.10 */
416 dl 1.33 private volatile RejectedExecutionHandler handler;
417 dl 1.2
418     /**
419 dl 1.86 * Factory for new threads. All threads are created using this
420     * factory (via method addThread). All callers must be prepared
421     * for addThread to fail by returning null, which may reflect a
422     * system or user's policy limiting the number of threads. Even
423     * though it is not treated as an error, failure to create threads
424     * may result in new tasks being rejected or existing ones
425     * remaining stuck in the queue. On the other hand, no special
426     * precautions exist to handle OutOfMemoryErrors that might be
427     * thrown while trying to create threads, since there is generally
428     * no recourse from within this class.
429 tim 1.10 */
430 dl 1.33 private volatile ThreadFactory threadFactory;
431 dl 1.2
432     /**
433     * Tracks largest attained pool size.
434 tim 1.10 */
435 dl 1.2 private int largestPoolSize;
436    
437     /**
438     * Counter for completed tasks. Updated only on termination of
439     * worker threads.
440 tim 1.10 */
441 dl 1.2 private long completedTaskCount;
442 jsr166 1.66
443 dl 1.8 /**
444 dl 1.35 * The default rejected execution handler
445 dl 1.8 */
446 tim 1.10 private static final RejectedExecutionHandler defaultHandler =
447 dl 1.2 new AbortPolicy();
448    
449 dl 1.86 // Constructors
450    
451 dl 1.2 /**
452 dl 1.86 * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
453     * parameters and default thread factory and rejected execution handler.
454     * It may be more convenient to use one of the {@link Executors} factory
455     * methods instead of this general purpose constructor.
456     *
457     * @param corePoolSize the number of threads to keep in the
458     * pool, even if they are idle.
459     * @param maximumPoolSize the maximum number of threads to allow in the
460     * pool.
461     * @param keepAliveTime when the number of threads is greater than
462     * the core, this is the maximum time that excess idle threads
463     * will wait for new tasks before terminating.
464     * @param unit the time unit for the keepAliveTime
465     * argument.
466     * @param workQueue the queue to use for holding tasks before they
467     * are executed. This queue will hold only the <tt>Runnable</tt>
468     * tasks submitted by the <tt>execute</tt> method.
469     * @throws IllegalArgumentException if corePoolSize, or
470     * keepAliveTime less than zero, or if maximumPoolSize less than or
471     * equal to zero, or if corePoolSize greater than maximumPoolSize.
472     * @throws NullPointerException if <tt>workQueue</tt> is null
473     */
474     public ThreadPoolExecutor(int corePoolSize,
475     int maximumPoolSize,
476     long keepAliveTime,
477     TimeUnit unit,
478     BlockingQueue<Runnable> workQueue) {
479     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
480     Executors.defaultThreadFactory(), defaultHandler);
481     }
482    
483     /**
484     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
485     * parameters and default rejected execution handler.
486     *
487     * @param corePoolSize the number of threads to keep in the
488     * pool, even if they are idle.
489     * @param maximumPoolSize the maximum number of threads to allow in the
490     * pool.
491     * @param keepAliveTime when the number of threads is greater than
492     * the core, this is the maximum time that excess idle threads
493     * will wait for new tasks before terminating.
494     * @param unit the time unit for the keepAliveTime
495     * argument.
496     * @param workQueue the queue to use for holding tasks before they
497     * are executed. This queue will hold only the <tt>Runnable</tt>
498     * tasks submitted by the <tt>execute</tt> method.
499     * @param threadFactory the factory to use when the executor
500     * creates a new thread.
501     * @throws IllegalArgumentException if corePoolSize, or
502     * keepAliveTime less than zero, or if maximumPoolSize less than or
503     * equal to zero, or if corePoolSize greater than maximumPoolSize.
504     * @throws NullPointerException if <tt>workQueue</tt>
505     * or <tt>threadFactory</tt> are null.
506     */
507     public ThreadPoolExecutor(int corePoolSize,
508     int maximumPoolSize,
509     long keepAliveTime,
510     TimeUnit unit,
511     BlockingQueue<Runnable> workQueue,
512     ThreadFactory threadFactory) {
513     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
514     threadFactory, defaultHandler);
515     }
516    
517     /**
518     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
519     * parameters and default thread factory.
520     *
521     * @param corePoolSize the number of threads to keep in the
522     * pool, even if they are idle.
523     * @param maximumPoolSize the maximum number of threads to allow in the
524     * pool.
525     * @param keepAliveTime when the number of threads is greater than
526     * the core, this is the maximum time that excess idle threads
527     * will wait for new tasks before terminating.
528     * @param unit the time unit for the keepAliveTime
529     * argument.
530     * @param workQueue the queue to use for holding tasks before they
531     * are executed. This queue will hold only the <tt>Runnable</tt>
532     * tasks submitted by the <tt>execute</tt> method.
533     * @param handler the handler to use when execution is blocked
534     * because the thread bounds and queue capacities are reached.
535     * @throws IllegalArgumentException if corePoolSize, or
536     * keepAliveTime less than zero, or if maximumPoolSize less than or
537     * equal to zero, or if corePoolSize greater than maximumPoolSize.
538     * @throws NullPointerException if <tt>workQueue</tt>
539     * or <tt>handler</tt> are null.
540     */
541     public ThreadPoolExecutor(int corePoolSize,
542     int maximumPoolSize,
543     long keepAliveTime,
544     TimeUnit unit,
545     BlockingQueue<Runnable> workQueue,
546     RejectedExecutionHandler handler) {
547     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
548     Executors.defaultThreadFactory(), handler);
549     }
550    
551     /**
552     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
553     * parameters.
554     *
555     * @param corePoolSize the number of threads to keep in the
556     * pool, even if they are idle.
557     * @param maximumPoolSize the maximum number of threads to allow in the
558     * pool.
559     * @param keepAliveTime when the number of threads is greater than
560     * the core, this is the maximum time that excess idle threads
561     * will wait for new tasks before terminating.
562     * @param unit the time unit for the keepAliveTime
563     * argument.
564     * @param workQueue the queue to use for holding tasks before they
565     * are executed. This queue will hold only the <tt>Runnable</tt>
566     * tasks submitted by the <tt>execute</tt> method.
567     * @param threadFactory the factory to use when the executor
568     * creates a new thread.
569     * @param handler the handler to use when execution is blocked
570     * because the thread bounds and queue capacities are reached.
571     * @throws IllegalArgumentException if corePoolSize, or
572     * keepAliveTime less than zero, or if maximumPoolSize less than or
573     * equal to zero, or if corePoolSize greater than maximumPoolSize.
574     * @throws NullPointerException if <tt>workQueue</tt>
575     * or <tt>threadFactory</tt> or <tt>handler</tt> are null.
576     */
577     public ThreadPoolExecutor(int corePoolSize,
578     int maximumPoolSize,
579     long keepAliveTime,
580     TimeUnit unit,
581     BlockingQueue<Runnable> workQueue,
582     ThreadFactory threadFactory,
583     RejectedExecutionHandler handler) {
584     if (corePoolSize < 0 ||
585     maximumPoolSize <= 0 ||
586     maximumPoolSize < corePoolSize ||
587     keepAliveTime < 0)
588     throw new IllegalArgumentException();
589     if (workQueue == null || threadFactory == null || handler == null)
590     throw new NullPointerException();
591     this.corePoolSize = corePoolSize;
592     this.maximumPoolSize = maximumPoolSize;
593     this.workQueue = workQueue;
594     this.keepAliveTime = unit.toNanos(keepAliveTime);
595     this.threadFactory = threadFactory;
596     this.handler = handler;
597     }
598    
599     /*
600     * Support for execute().
601     *
602     * Method execute() and its helper methods handle the various
603     * cases encountered when new tasks are submitted. The main
604     * execute() method proceeds in 3 steps:
605     *
606     * 1. If it appears that fewer than corePoolSize threads are
607     * running, try to start a new thread with the given command as
608     * its first task. The check here errs on the side of caution.
609     * The call to addIfUnderCorePoolSize rechecks runState and pool
610     * size under lock (they change only under lock) so prevents false
611     * alarms that would add threads when it shouldn't, but may also
612     * fail to add them when they should. This is compensated within
613     * the following steps.
614     *
615     * 2. If a task can be successfully queued, then we are done, but
616     * still need to compensate for missing the fact that we should
617     * have added a thread (because existing ones died) or that
618     * shutdown occured since entry into this method. So we recheck
619     * state to and if necessary (in ensureQueuedTaskHandled) roll
620     * back the enqueuing if shut down, or start a new thread if there
621     * are none.
622     *
623     * 3. If we cannot queue task, then we try to add a new
624     * thread. There's no guesswork here (addIfUnderMaximumPoolSize)
625     * since it is performed under lock. If it fails, we know we are
626     * shut down or saturated.
627     *
628     * The reason for taking this overall approach is to normally
629     * avoid holding mainLock during this method, which would be a
630     * serious scalability bottleneck. After warmup, almost all calls
631     * take step 2 in a way that entails no locking.
632     */
633    
634     /**
635     * Executes the given task sometime in the future. The task
636     * may execute in a new thread or in an existing pooled thread.
637     *
638     * If the task cannot be submitted for execution, either because this
639     * executor has been shutdown or because its capacity has been reached,
640     * the task is handled by the current <tt>RejectedExecutionHandler</tt>.
641     *
642     * @param command the task to execute
643     * @throws RejectedExecutionException at discretion of
644     * <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
645     * for execution
646     * @throws NullPointerException if command is null
647 dl 1.13 */
648 dl 1.86 public void execute(Runnable command) {
649     if (command == null)
650     throw new NullPointerException();
651     if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
652     if (runState == RUNNING && workQueue.offer(command)) {
653     if (runState != RUNNING || poolSize == 0)
654     ensureQueuedTaskHandled(command);
655     }
656     else if (!addIfUnderMaximumPoolSize(command))
657     reject(command); // is shutdown or saturated
658     }
659 dl 1.13 }
660    
661 dl 1.33 /**
662 jsr166 1.66 * Creates and returns a new thread running firstTask as its first
663 dl 1.86 * task. Call only while holding mainLock.
664     *
665 dl 1.8 * @param firstTask the task the new thread should run first (or
666     * null if none)
667 dl 1.56 * @return the new thread, or null if threadFactory fails to create thread
668 dl 1.2 */
669     private Thread addThread(Runnable firstTask) {
670     Worker w = new Worker(firstTask);
671 dl 1.57 Thread t = threadFactory.newThread(w);
672 dl 1.56 if (t != null) {
673     w.thread = t;
674     workers.add(w);
675     int nt = ++poolSize;
676     if (nt > largestPoolSize)
677     largestPoolSize = nt;
678     }
679 dl 1.2 return t;
680     }
681 dl 1.15
682 dl 1.2 /**
683 jsr166 1.66 * Creates and starts a new thread running firstTask as its first
684 dl 1.86 * task, only if fewer than corePoolSize threads are running
685     * and the pool is not shut down.
686 dl 1.8 * @param firstTask the task the new thread should run first (or
687     * null if none)
688 dl 1.2 * @return true if successful.
689     */
690 dl 1.16 private boolean addIfUnderCorePoolSize(Runnable firstTask) {
691 dl 1.2 Thread t = null;
692 dl 1.45 final ReentrantLock mainLock = this.mainLock;
693 dl 1.2 mainLock.lock();
694     try {
695 dl 1.85 if (poolSize < corePoolSize && runState == RUNNING)
696 dl 1.8 t = addThread(firstTask);
697 tim 1.14 } finally {
698 dl 1.2 mainLock.unlock();
699     }
700     if (t == null)
701     return false;
702     t.start();
703     return true;
704     }
705    
706     /**
707 dl 1.86 * Creates and starts a new thread running firstTask as its first
708     * task, only if fewer than maximumPoolSize threads are running
709     * and pool is not shut down.
710 dl 1.8 * @param firstTask the task the new thread should run first (or
711     * null if none)
712 dl 1.86 * @return true if successful.
713 dl 1.2 */
714 dl 1.86 private boolean addIfUnderMaximumPoolSize(Runnable firstTask) {
715 dl 1.2 Thread t = null;
716 dl 1.45 final ReentrantLock mainLock = this.mainLock;
717 dl 1.2 mainLock.lock();
718     try {
719 dl 1.86 if (poolSize < maximumPoolSize && runState == RUNNING)
720     t = addThread(firstTask);
721 tim 1.14 } finally {
722 dl 1.2 mainLock.unlock();
723     }
724     if (t == null)
725 dl 1.86 return false;
726 dl 1.2 t.start();
727 dl 1.86 return true;
728 dl 1.16 }
729    
730 dl 1.85 /**
731 dl 1.86 * Rechecks state after queuing a task. Called from execute when
732     * pool state has been observed to change after queuing a task. If
733     * the task was queued concurrently with a call to shutdownNow,
734     * and is still present in the queue, this task must be removed
735     * and rejected to preserve shutdownNow guarantees. Otherwise,
736     * this method ensures (unless addThread fails) that there is at
737     * least one live thread to handle this task
738 dl 1.85 * @param command the task
739     */
740 dl 1.86 private void ensureQueuedTaskHandled(Runnable command) {
741 dl 1.85 final ReentrantLock mainLock = this.mainLock;
742     mainLock.lock();
743 dl 1.86 boolean reject = false;
744     Thread t = null;
745 dl 1.85 try {
746 dl 1.86 int state = runState;
747     if (state != RUNNING && workQueue.remove(command))
748     reject = true;
749     else if (state < STOP &&
750     poolSize < Math.max(corePoolSize, 1) &&
751     !workQueue.isEmpty())
752     t = addThread(null);
753 dl 1.85 } finally {
754     mainLock.unlock();
755     }
756 dl 1.86 if (reject)
757 dl 1.85 reject(command);
758 dl 1.86 else if (t != null)
759     t.start();
760 dl 1.85 }
761    
762 dl 1.16 /**
763 dl 1.86 * Invokes the rejected execution handler for the given command.
764 dl 1.16 */
765 dl 1.86 void reject(Runnable command) {
766     handler.rejectedExecution(command, this);
767 dl 1.2 }
768    
769    
770     /**
771 dl 1.86 * Worker threads.
772     *
773     * Worker threads can start out life either with an initial first
774     * task, oo without one. Normally, they are started with a first
775     * task. This enables execute(), etc to bypass queuing when there
776     * are fewer than corePoolSize threads (in which case we always
777     * start one), or when the queue is full.(in which case we must
778     * bypass queue.) Initially idle threads are created either by
779     * users (prestartCoreThread and setCorePoolSize) or when methods
780     * ensureQueuedTaskHandled and tryTerminate notice that the queue
781     * is not empty but there are no active threads to handle them.
782     *
783     * After completing a task, workers try to get another one,
784     * via method getTask.
785     *
786     * When starting to run a task, unless the pool is stopped, each
787     * worker thread ensures that it is not interrupted, and uses
788     * runLock to prevent the pool from interrupting it in the midst
789     * of execution. This shields user tasks from any interrupts that
790     * may otherwise be needed during shutdown (see method
791     * interruptIdleWorkers), unless the pool is stopping (via
792     * shutdownNow) in which case interrupts are let through to affect
793     * both tasks and workers. However, this shielding does not
794     * necessarily protect the workers from lagging interrupts from
795     * other user threads directed towards tasks that have already
796     * been completed. Thus, a worker thread may be interrupted
797     * needlessly (for example in getTask), in which case it rechecks
798     * pool state to see it it should exit.
799     *
800 dl 1.2 */
801 dl 1.85 private final class Worker implements Runnable {
802 dl 1.2 /**
803     * The runLock is acquired and released surrounding each task
804     * execution. It mainly protects against interrupts that are
805     * intended to cancel the worker thread from instead
806     * interrupting the task being run.
807     */
808     private final ReentrantLock runLock = new ReentrantLock();
809    
810     /**
811 dl 1.86 * Initial task to run before entering run loop. Possibly null.
812 dl 1.2 */
813     private Runnable firstTask;
814    
815     /**
816     * Per thread completed task counter; accumulated
817     * into completedTaskCount upon termination.
818     */
819     volatile long completedTasks;
820    
821     /**
822     * Thread this worker is running in. Acts as a final field,
823     * but cannot be set until thread is created.
824     */
825     Thread thread;
826    
827     Worker(Runnable firstTask) {
828     this.firstTask = firstTask;
829     }
830    
831     boolean isActive() {
832     return runLock.isLocked();
833     }
834    
835     /**
836 jsr166 1.73 * Interrupts thread if not running a task.
837 tim 1.10 */
838 dl 1.2 void interruptIfIdle() {
839 dl 1.45 final ReentrantLock runLock = this.runLock;
840 dl 1.2 if (runLock.tryLock()) {
841     try {
842     thread.interrupt();
843 tim 1.14 } finally {
844 dl 1.2 runLock.unlock();
845     }
846     }
847     }
848    
849     /**
850 jsr166 1.73 * Interrupts thread even if running a task.
851 tim 1.10 */
852 dl 1.2 void interruptNow() {
853     thread.interrupt();
854     }
855    
856     /**
857 jsr166 1.73 * Runs a single task between before/after methods.
858 dl 1.2 */
859     private void runTask(Runnable task) {
860 dl 1.45 final ReentrantLock runLock = this.runLock;
861 dl 1.2 runLock.lock();
862     try {
863 dl 1.86 /*
864     * Ensure that unless pool is stopping, this thread
865     * does not have its interrupt set. This requires a
866     * double-check of state in case the interrupt was
867     * cleared concurrently with a shutdownNow -- if so,
868     * the interrupt is re-enabled.
869     */
870 dl 1.85 if (runState < STOP &&
871 dl 1.81 Thread.interrupted() &&
872 dl 1.86 runState >= STOP)
873 dl 1.81 thread.interrupt();
874 dl 1.86 /*
875     * Track execution state to ensure that afterExecute
876     * is called only if task completed or threw
877     * exception. Otherwise, the caught runtime exception
878     * will have been thrown by afterExecute itself, in
879     * which case we don't want to call it again.
880     */
881 dl 1.2 boolean ran = false;
882     beforeExecute(thread, task);
883     try {
884     task.run();
885     ran = true;
886     afterExecute(task, null);
887     ++completedTasks;
888 jsr166 1.66 } catch (RuntimeException ex) {
889 dl 1.2 if (!ran)
890     afterExecute(task, ex);
891     throw ex;
892     }
893 tim 1.14 } finally {
894 dl 1.2 runLock.unlock();
895     }
896     }
897    
898     /**
899     * Main run loop
900     */
901     public void run() {
902     try {
903 dl 1.50 Runnable task = firstTask;
904     firstTask = null;
905     while (task != null || (task = getTask()) != null) {
906 dl 1.2 runTask(task);
907 dl 1.85 task = null;
908 dl 1.2 }
909 tim 1.14 } finally {
910 dl 1.2 workerDone(this);
911     }
912     }
913     }
914 tim 1.1
915 dl 1.86 /* Utilities for worker thread control */
916 dl 1.17
917 tim 1.1 /**
918 dl 1.86 * Gets the next task for a worker thread to run. The general
919     * approach is similar to execute() in that worker threads trying
920     * to get a task to run do so on the basis of prevailing state
921     * accessed outside of locks. This may cause them to choose the
922     * "wrong" action, such as or trying to exit because no tasks
923     * appear to a available, or entering a take when the pool is in
924     * the process of being shut down. These potential problems are
925     * countered by (1) rechecking pool state (in workerCanExit)
926     * before giving up, and (2) interrupting other workers upon
927     * shutdown, so they can recheck state. All other user-based state
928     * changes (to allowCoreThreadTimeOut etc) are OK even when
929     * perfromed asynchronously wrt getTask.
930 tim 1.1 *
931 dl 1.86 * @return the task
932 tim 1.1 */
933 dl 1.86 Runnable getTask() {
934     for (;;) {
935     try {
936     int state = runState;
937     if (state > SHUTDOWN)
938     return null;
939     Runnable r;
940     if (state == SHUTDOWN) // Help drain queue
941     r = workQueue.poll();
942     else if (poolSize > corePoolSize || allowCoreThreadTimeOut)
943     r = workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS);
944     else
945     r = workQueue.take();
946     if (r != null)
947     return r;
948     if (workerCanExit()) {
949     if (runState >= SHUTDOWN) // Wake up others
950     interruptIdleWorkers();
951     return null;
952     }
953     // Else retry
954     } catch (InterruptedException ie) {
955     // On interruption, re-check runstate
956     }
957     }
958 dl 1.2 }
959 tim 1.1
960 dl 1.2 /**
961 dl 1.86 * Check whether a worker thread that fails to get a task can
962     * exit. We allow a worker thread to die if the pool is stopping,
963     * or the queue is empty, or there is at least one thread to
964     * handle possibly non-empty queue, even if core timeouts are
965     * allowed.
966 dl 1.2 */
967 dl 1.86 private boolean workerCanExit() {
968     final ReentrantLock mainLock = this.mainLock;
969     mainLock.lock();
970     boolean canExit;
971     try {
972     canExit = runState >= STOP ||
973     workQueue.isEmpty() ||
974     (allowCoreThreadTimeOut &&
975     poolSize > Math.max(1, corePoolSize));
976     } finally {
977     mainLock.unlock();
978     }
979     return canExit;
980 dl 1.2 }
981 tim 1.1
982 dl 1.2 /**
983 dl 1.86 * Wakes up all threads that might be waiting for tasks so they
984     * can check for termination. Note: this method is also called by
985     * ScheduledThreadPoolExecutor.
986 dl 1.2 */
987 dl 1.86 void interruptIdleWorkers() {
988     final ReentrantLock mainLock = this.mainLock;
989     mainLock.lock();
990     try {
991     for (Worker w : workers)
992     w.interruptIfIdle();
993     } finally {
994     mainLock.unlock();
995     }
996 dl 1.2 }
997 tim 1.1
998 dl 1.2 /**
999 dl 1.86 * Performs bookkeeping for an exiting worker thread.
1000     * @param w the worker
1001 dl 1.2 */
1002 dl 1.86 void workerDone(Worker w) {
1003     final ReentrantLock mainLock = this.mainLock;
1004     mainLock.lock();
1005     try {
1006     completedTaskCount += w.completedTasks;
1007     workers.remove(w);
1008     if (--poolSize == 0)
1009     tryTerminate();
1010     } finally {
1011     mainLock.unlock();
1012     }
1013 tim 1.1 }
1014    
1015 dl 1.86 /* Termination support. */
1016    
1017 dl 1.2 /**
1018 dl 1.86 * Transitions to TERMINATED state if either (SHUTDOWN and pool
1019     * and queue empty) or (STOP and pool empty), otherwisem unless
1020     * stopped, ensuring that there is at least one live thread to
1021     * handle queued tasks.
1022 dl 1.2 *
1023 dl 1.86 * This method is called from the three places in which
1024     * termination can occur: in workerDone on exit of the last thread
1025     * after pool has been shut down, or directly within calls to
1026     * shutdown or shutdownNow, if there are no live threads,
1027 dl 1.2 */
1028 dl 1.86 private void tryTerminate() {
1029     if (poolSize == 0) {
1030     int state = runState;
1031     if (state < STOP && !workQueue.isEmpty()) {
1032     state = RUNNING; // disable termination check below
1033     Thread t = addThread(null);
1034     if (t != null)
1035     t.start();
1036     }
1037     if (state == STOP || state == SHUTDOWN) {
1038     runState = TERMINATED;
1039     termination.signalAll();
1040     terminated();
1041     }
1042 dl 1.2 }
1043 tim 1.1 }
1044 dl 1.4
1045 dl 1.53 /**
1046     * Initiates an orderly shutdown in which previously submitted
1047     * tasks are executed, but no new tasks will be
1048     * accepted. Invocation has no additional effect if already shut
1049     * down.
1050     * @throws SecurityException if a security manager exists and
1051     * shutting down this ExecutorService may manipulate threads that
1052     * the caller is not permitted to modify because it does not hold
1053     * {@link java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1054 jsr166 1.68 * or the security manager's <tt>checkAccess</tt> method denies access.
1055 dl 1.53 */
1056 dl 1.2 public void shutdown() {
1057 dl 1.86 /*
1058     * Conceptually, shutdown is just a matter of changing the
1059     * runsState to SHUTDOWN, and then interrupting any worker
1060     * threads that might be blocked in getTask() to wake them up
1061     * so they can exit. Then, if there happen not to be any
1062     * threads or tasks, we can directly terminate pool via
1063     * tryTerminate.
1064     *
1065     * But this is made more delicate because we must cooperate
1066     * with the security manager (if present), which may implement
1067     * policies that make more sense for operations on Threads
1068     * than they do for ThreadPools. This requires 3 steps:
1069     *
1070     * 1. Making sure caller has permission to shut down threads
1071     * in general (see shutdownPerm).
1072     *
1073     * 2. If (1) passes, making sure the caller is allowed to
1074     * modify each of our threads. This might not be true even if
1075     * first check passed, if the SecurityManager treats some
1076     * threads specially. If this check passes, then we can try
1077     * to set runState.
1078     *
1079     * 3. If both (1) and (2) pass, dealing with inconsistent
1080     * security managers that allow checkAccess but then throw a
1081     * SecurityException when interrupt() is invoked. In this
1082     * third case, because we have already set runState, we can
1083     * only try to back out from the shutdown.as cleanly as
1084     * possible. Some threads may have been killed but we remain
1085     * in non-shutdown state (which may entail tryTerminate
1086     * starting a thread to maintain liveness.)
1087     */
1088    
1089 dl 1.42 SecurityManager security = System.getSecurityManager();
1090 jsr166 1.66 if (security != null)
1091 dl 1.78 security.checkPermission(shutdownPerm);
1092 dl 1.42
1093 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1094 dl 1.2 mainLock.lock();
1095     try {
1096 dl 1.86 if (security != null) { // Check if caller can modify our threads
1097 dl 1.85 for (Worker w: workers)
1098     security.checkAccess(w.thread);
1099     }
1100 dl 1.43
1101 dl 1.85 int state = runState;
1102 dl 1.86 if (state < SHUTDOWN)
1103 dl 1.85 runState = SHUTDOWN;
1104 dl 1.43
1105 dl 1.85 try {
1106     for (Worker w: workers) {
1107     w.interruptIfIdle();
1108 dl 1.43 }
1109 dl 1.86 } catch (SecurityException se) { // Try to back out
1110 dl 1.85 runState = state;
1111 dl 1.86 tryTerminate();
1112 dl 1.85 throw se;
1113 dl 1.25 }
1114 dl 1.85
1115 dl 1.86 tryTerminate(); // Terminate now if pool and queue empty
1116 tim 1.14 } finally {
1117 dl 1.2 mainLock.unlock();
1118     }
1119 tim 1.1 }
1120    
1121 dl 1.53 /**
1122     * Attempts to stop all actively executing tasks, halts the
1123 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1124 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1125     * from the task queue upon return from this method.
1126 jsr166 1.66 *
1127 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1128     * processing actively executing tasks. This implementation
1129     * cancels tasks via {@link Thread#interrupt}, so any task that
1130     * fails to respond to interrupts may never terminate.
1131 dl 1.53 *
1132     * @return list of tasks that never commenced execution
1133     * @throws SecurityException if a security manager exists and
1134     * shutting down this ExecutorService may manipulate threads that
1135     * the caller is not permitted to modify because it does not hold
1136     * {@link java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1137     * or the security manager's <tt>checkAccess</tt> method denies access.
1138     */
1139 tim 1.39 public List<Runnable> shutdownNow() {
1140 dl 1.86 /*
1141     * shutdownNow differs from shutdown only in that
1142     * (1) runState is set to STOP, (2) All worker threads
1143     * are interrupted, not just the idle ones, and (3)
1144     * the queue is drained and returned.
1145     */
1146 dl 1.42 SecurityManager security = System.getSecurityManager();
1147 jsr166 1.66 if (security != null)
1148 dl 1.78 security.checkPermission(shutdownPerm);
1149 dl 1.43
1150 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1151 dl 1.2 mainLock.lock();
1152     try {
1153 dl 1.86 if (security != null) { // Check if caller can modify our threads
1154 dl 1.85 for (Worker w: workers)
1155     security.checkAccess(w.thread);
1156     }
1157 dl 1.43
1158 dl 1.85 int state = runState;
1159 dl 1.86 if (state < STOP)
1160 dl 1.85 runState = STOP;
1161 dl 1.86
1162 dl 1.85 try {
1163     for (Worker w : workers) {
1164     w.interruptNow();
1165 dl 1.43 }
1166 dl 1.86 } catch (SecurityException se) { // Try to back out
1167     runState = state;
1168     tryTerminate();
1169 dl 1.85 throw se;
1170 dl 1.25 }
1171 dl 1.85
1172 dl 1.86 List<Runnable> tasks = drainQueue();
1173     tryTerminate(); // Terminate now if pool and queue empty
1174     return tasks;
1175 tim 1.14 } finally {
1176 dl 1.2 mainLock.unlock();
1177     }
1178 tim 1.1 }
1179    
1180 dl 1.86 /**
1181     * Drains the task queue into a new list. Used by shutdownNow.
1182     * Call only while holding main lock.
1183     */
1184     private List<Runnable> drainQueue() {
1185     List<Runnable> taskList = new ArrayList<Runnable>();
1186     workQueue.drainTo(taskList);
1187     /*
1188     * If the queue is a DelayQueue or any other kind of queue
1189     * for which poll or drainTo may fail to remove some elements,
1190     * we need to manually traverse and remove remaining tasks.
1191     * To guarantee atomicity wrt other threads using this queue,
1192     * we need to create a new iterator for each element removed.
1193     */
1194     while (!workQueue.isEmpty()) {
1195     Iterator<Runnable> it = workQueue.iterator();
1196     try {
1197     if (it.hasNext()) {
1198     Runnable r = it.next();
1199     if (workQueue.remove(r))
1200     taskList.add(r);
1201     }
1202     } catch(ConcurrentModificationException ignore) {
1203     }
1204     }
1205     return taskList;
1206     }
1207    
1208 dl 1.2 public boolean isShutdown() {
1209 dl 1.16 return runState != RUNNING;
1210     }
1211    
1212 jsr166 1.66 /**
1213 dl 1.55 * Returns true if this executor is in the process of terminating
1214 dl 1.16 * after <tt>shutdown</tt> or <tt>shutdownNow</tt> but has not
1215     * completely terminated. This method may be useful for
1216     * debugging. A return of <tt>true</tt> reported a sufficient
1217     * period after shutdown may indicate that submitted tasks have
1218     * ignored or suppressed interruption, causing this executor not
1219     * to properly terminate.
1220     * @return true if terminating but not yet terminated.
1221     */
1222     public boolean isTerminating() {
1223     return runState == STOP;
1224 tim 1.1 }
1225    
1226 dl 1.2 public boolean isTerminated() {
1227 dl 1.16 return runState == TERMINATED;
1228 dl 1.2 }
1229 tim 1.1
1230 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1231     throws InterruptedException {
1232 dl 1.50 long nanos = unit.toNanos(timeout);
1233 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1234 dl 1.2 mainLock.lock();
1235     try {
1236 dl 1.25 for (;;) {
1237 jsr166 1.66 if (runState == TERMINATED)
1238 dl 1.25 return true;
1239     if (nanos <= 0)
1240     return false;
1241     nanos = termination.awaitNanos(nanos);
1242     }
1243 tim 1.14 } finally {
1244 dl 1.2 mainLock.unlock();
1245     }
1246 dl 1.15 }
1247    
1248     /**
1249     * Invokes <tt>shutdown</tt> when this executor is no longer
1250     * referenced.
1251 jsr166 1.66 */
1252 dl 1.15 protected void finalize() {
1253     shutdown();
1254 dl 1.2 }
1255 tim 1.10
1256 dl 1.86 /* Getting and setting tunable parameters */
1257    
1258 dl 1.2 /**
1259     * Sets the thread factory used to create new threads.
1260     *
1261     * @param threadFactory the new thread factory
1262 dl 1.30 * @throws NullPointerException if threadFactory is null
1263 tim 1.11 * @see #getThreadFactory
1264 dl 1.2 */
1265     public void setThreadFactory(ThreadFactory threadFactory) {
1266 dl 1.30 if (threadFactory == null)
1267     throw new NullPointerException();
1268 dl 1.2 this.threadFactory = threadFactory;
1269 tim 1.1 }
1270    
1271 dl 1.2 /**
1272     * Returns the thread factory used to create new threads.
1273     *
1274     * @return the current thread factory
1275 tim 1.11 * @see #setThreadFactory
1276 dl 1.2 */
1277     public ThreadFactory getThreadFactory() {
1278     return threadFactory;
1279 tim 1.1 }
1280    
1281 dl 1.2 /**
1282     * Sets a new handler for unexecutable tasks.
1283     *
1284     * @param handler the new handler
1285 dl 1.31 * @throws NullPointerException if handler is null
1286 tim 1.11 * @see #getRejectedExecutionHandler
1287 dl 1.2 */
1288     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1289 dl 1.31 if (handler == null)
1290     throw new NullPointerException();
1291 dl 1.2 this.handler = handler;
1292     }
1293 tim 1.1
1294 dl 1.2 /**
1295     * Returns the current handler for unexecutable tasks.
1296     *
1297     * @return the current handler
1298 tim 1.11 * @see #setRejectedExecutionHandler
1299 dl 1.2 */
1300     public RejectedExecutionHandler getRejectedExecutionHandler() {
1301     return handler;
1302 tim 1.1 }
1303    
1304 dl 1.2 /**
1305     * Sets the core number of threads. This overrides any value set
1306     * in the constructor. If the new value is smaller than the
1307     * current value, excess existing threads will be terminated when
1308 dl 1.34 * they next become idle. If larger, new threads will, if needed,
1309     * be started to execute any queued tasks.
1310 tim 1.1 *
1311 dl 1.2 * @param corePoolSize the new core size
1312 tim 1.10 * @throws IllegalArgumentException if <tt>corePoolSize</tt>
1313 dl 1.8 * less than zero
1314 tim 1.11 * @see #getCorePoolSize
1315 tim 1.1 */
1316 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1317     if (corePoolSize < 0)
1318     throw new IllegalArgumentException();
1319 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1320 dl 1.2 mainLock.lock();
1321     try {
1322     int extra = this.corePoolSize - corePoolSize;
1323     this.corePoolSize = corePoolSize;
1324 tim 1.38 if (extra < 0) {
1325 dl 1.86 int n = workQueue.size(); // don't add more threads than tasks
1326     while (extra++ < 0 && n-- > 0 && poolSize < corePoolSize) {
1327 dl 1.56 Thread t = addThread(null);
1328 jsr166 1.66 if (t != null)
1329 dl 1.56 t.start();
1330     else
1331     break;
1332     }
1333 tim 1.38 }
1334     else if (extra > 0 && poolSize > corePoolSize) {
1335 dl 1.86 try {
1336     Iterator<Worker> it = workers.iterator();
1337     while (it.hasNext() &&
1338     extra-- > 0 &&
1339     poolSize > corePoolSize &&
1340     workQueue.remainingCapacity() == 0)
1341     it.next().interruptIfIdle();
1342     } catch(SecurityException ignore) {
1343     // Not an error; it is OK if the threads can stay live
1344     }
1345 dl 1.2 }
1346 tim 1.14 } finally {
1347 dl 1.2 mainLock.unlock();
1348     }
1349     }
1350 tim 1.1
1351     /**
1352 dl 1.2 * Returns the core number of threads.
1353 tim 1.1 *
1354 dl 1.2 * @return the core number of threads
1355 tim 1.11 * @see #setCorePoolSize
1356 tim 1.1 */
1357 tim 1.10 public int getCorePoolSize() {
1358 dl 1.2 return corePoolSize;
1359 dl 1.16 }
1360    
1361     /**
1362 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1363 dl 1.16 * overrides the default policy of starting core threads only when
1364     * new tasks are executed. This method will return <tt>false</tt>
1365     * if all core threads have already been started.
1366     * @return true if a thread was started
1367 jsr166 1.66 */
1368 dl 1.16 public boolean prestartCoreThread() {
1369     return addIfUnderCorePoolSize(null);
1370     }
1371    
1372     /**
1373 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1374 dl 1.16 * overrides the default policy of starting core threads only when
1375 jsr166 1.66 * new tasks are executed.
1376 dl 1.16 * @return the number of threads started.
1377 jsr166 1.66 */
1378 dl 1.16 public int prestartAllCoreThreads() {
1379     int n = 0;
1380     while (addIfUnderCorePoolSize(null))
1381     ++n;
1382     return n;
1383 dl 1.2 }
1384 tim 1.1
1385     /**
1386 dl 1.62 * Returns true if this pool allows core threads to time out and
1387     * terminate if no tasks arrive within the keepAlive time, being
1388     * replaced if needed when new tasks arrive. When true, the same
1389     * keep-alive policy applying to non-core threads applies also to
1390     * core threads. When false (the default), core threads are never
1391     * terminated due to lack of incoming tasks.
1392     * @return <tt>true</tt> if core threads are allowed to time out,
1393     * else <tt>false</tt>
1394 jsr166 1.72 *
1395     * @since 1.6
1396 dl 1.62 */
1397     public boolean allowsCoreThreadTimeOut() {
1398     return allowCoreThreadTimeOut;
1399     }
1400    
1401     /**
1402     * Sets the policy governing whether core threads may time out and
1403     * terminate if no tasks arrive within the keep-alive time, being
1404     * replaced if needed when new tasks arrive. When false, core
1405     * threads are never terminated due to lack of incoming
1406     * tasks. When true, the same keep-alive policy applying to
1407     * non-core threads applies also to core threads. To avoid
1408     * continual thread replacement, the keep-alive time must be
1409 dl 1.64 * greater than zero when setting <tt>true</tt>. This method
1410     * should in general be called before the pool is actively used.
1411 dl 1.62 * @param value <tt>true</tt> if should time out, else <tt>false</tt>
1412 dl 1.64 * @throws IllegalArgumentException if value is <tt>true</tt>
1413     * and the current keep-alive time is not greater than zero.
1414 jsr166 1.72 *
1415     * @since 1.6
1416 dl 1.62 */
1417     public void allowCoreThreadTimeOut(boolean value) {
1418 dl 1.64 if (value && keepAliveTime <= 0)
1419     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1420    
1421 dl 1.62 allowCoreThreadTimeOut = value;
1422     }
1423    
1424     /**
1425 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1426 dl 1.2 * value set in the constructor. If the new value is smaller than
1427     * the current value, excess existing threads will be
1428     * terminated when they next become idle.
1429 tim 1.1 *
1430 dl 1.2 * @param maximumPoolSize the new maximum
1431 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1432     * less than or equal to zero, or
1433     * less than the {@linkplain #getCorePoolSize core pool size}
1434 tim 1.11 * @see #getMaximumPoolSize
1435 dl 1.2 */
1436     public void setMaximumPoolSize(int maximumPoolSize) {
1437     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1438     throw new IllegalArgumentException();
1439 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1440 dl 1.2 mainLock.lock();
1441     try {
1442     int extra = this.maximumPoolSize - maximumPoolSize;
1443     this.maximumPoolSize = maximumPoolSize;
1444     if (extra > 0 && poolSize > maximumPoolSize) {
1445 dl 1.86 try {
1446     Iterator<Worker> it = workers.iterator();
1447     while (it.hasNext() &&
1448     extra > 0 &&
1449     poolSize > maximumPoolSize) {
1450     it.next().interruptIfIdle();
1451     --extra;
1452     }
1453     } catch(SecurityException ignore) {
1454     // Not an error; it is OK if the threads can stay live
1455 dl 1.2 }
1456     }
1457 tim 1.14 } finally {
1458 dl 1.2 mainLock.unlock();
1459     }
1460     }
1461 tim 1.1
1462     /**
1463     * Returns the maximum allowed number of threads.
1464     *
1465 dl 1.2 * @return the maximum allowed number of threads
1466 tim 1.11 * @see #setMaximumPoolSize
1467 tim 1.1 */
1468 tim 1.10 public int getMaximumPoolSize() {
1469 dl 1.2 return maximumPoolSize;
1470     }
1471 tim 1.1
1472     /**
1473     * Sets the time limit for which threads may remain idle before
1474 dl 1.2 * being terminated. If there are more than the core number of
1475 tim 1.1 * threads currently in the pool, after waiting this amount of
1476     * time without processing a task, excess threads will be
1477     * terminated. This overrides any value set in the constructor.
1478     * @param time the time to wait. A time value of zero will cause
1479     * excess threads to terminate immediately after executing tasks.
1480 dl 1.2 * @param unit the time unit of the time argument
1481 dl 1.64 * @throws IllegalArgumentException if time less than zero or
1482     * if time is zero and allowsCoreThreadTimeOut
1483 tim 1.11 * @see #getKeepAliveTime
1484 tim 1.1 */
1485 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1486     if (time < 0)
1487     throw new IllegalArgumentException();
1488 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1489     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1490 dl 1.2 this.keepAliveTime = unit.toNanos(time);
1491     }
1492 tim 1.1
1493     /**
1494     * Returns the thread keep-alive time, which is the amount of time
1495 dl 1.2 * which threads in excess of the core pool size may remain
1496 tim 1.10 * idle before being terminated.
1497 tim 1.1 *
1498 dl 1.2 * @param unit the desired time unit of the result
1499 tim 1.1 * @return the time limit
1500 tim 1.11 * @see #setKeepAliveTime
1501 tim 1.1 */
1502 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1503 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1504     }
1505 tim 1.1
1506 dl 1.86 /* User-level queue utilities */
1507    
1508     /**
1509     * Returns the task queue used by this executor. Access to the
1510     * task queue is intended primarily for debugging and monitoring.
1511     * This queue may be in active use. Retrieving the task queue
1512     * does not prevent queued tasks from executing.
1513     *
1514     * @return the task queue
1515     */
1516     public BlockingQueue<Runnable> getQueue() {
1517     return workQueue;
1518     }
1519    
1520     /**
1521     * Removes this task from the executor's internal queue if it is
1522     * present, thus causing it not to be run if it has not already
1523     * started.
1524     *
1525     * <p> This method may be useful as one part of a cancellation
1526     * scheme. It may fail to remove tasks that have been converted
1527     * into other forms before being placed on the internal queue. For
1528     * example, a task entered using <tt>submit</tt> might be
1529     * converted into a form that maintains <tt>Future</tt> status.
1530     * However, in such cases, method {@link ThreadPoolExecutor#purge}
1531     * may be used to remove those Futures that have been cancelled.
1532     *
1533     * @param task the task to remove
1534     * @return true if the task was removed
1535     */
1536     public boolean remove(Runnable task) {
1537     return getQueue().remove(task);
1538     }
1539    
1540     /**
1541     * Tries to remove from the work queue all {@link Future}
1542     * tasks that have been cancelled. This method can be useful as a
1543     * storage reclamation operation, that has no other impact on
1544     * functionality. Cancelled tasks are never executed, but may
1545     * accumulate in work queues until worker threads can actively
1546     * remove them. Invoking this method instead tries to remove them now.
1547     * However, this method may fail to remove tasks in
1548     * the presence of interference by other threads.
1549     */
1550     public void purge() {
1551     // Fail if we encounter interference during traversal
1552     try {
1553     Iterator<Runnable> it = getQueue().iterator();
1554     while (it.hasNext()) {
1555     Runnable r = it.next();
1556     if (r instanceof Future<?>) {
1557     Future<?> c = (Future<?>)r;
1558     if (c.isCancelled())
1559     it.remove();
1560     }
1561     }
1562     }
1563     catch (ConcurrentModificationException ex) {
1564     return;
1565     }
1566     }
1567    
1568 tim 1.1 /* Statistics */
1569    
1570     /**
1571     * Returns the current number of threads in the pool.
1572     *
1573     * @return the number of threads
1574     */
1575 tim 1.10 public int getPoolSize() {
1576 dl 1.2 return poolSize;
1577     }
1578 tim 1.1
1579     /**
1580 dl 1.2 * Returns the approximate number of threads that are actively
1581 tim 1.1 * executing tasks.
1582     *
1583     * @return the number of threads
1584     */
1585 tim 1.10 public int getActiveCount() {
1586 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1587 dl 1.2 mainLock.lock();
1588     try {
1589     int n = 0;
1590 tim 1.39 for (Worker w : workers) {
1591     if (w.isActive())
1592 dl 1.2 ++n;
1593     }
1594     return n;
1595 tim 1.14 } finally {
1596 dl 1.2 mainLock.unlock();
1597     }
1598     }
1599 tim 1.1
1600     /**
1601 dl 1.2 * Returns the largest number of threads that have ever
1602     * simultaneously been in the pool.
1603 tim 1.1 *
1604     * @return the number of threads
1605     */
1606 tim 1.10 public int getLargestPoolSize() {
1607 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1608 dl 1.2 mainLock.lock();
1609     try {
1610     return largestPoolSize;
1611 tim 1.14 } finally {
1612 dl 1.2 mainLock.unlock();
1613     }
1614     }
1615 tim 1.1
1616     /**
1617 dl 1.85 * Returns the approximate total number of tasks that have ever been
1618 dl 1.2 * scheduled for execution. Because the states of tasks and
1619     * threads may change dynamically during computation, the returned
1620 dl 1.17 * value is only an approximation, but one that does not ever
1621     * decrease across successive calls.
1622 tim 1.1 *
1623     * @return the number of tasks
1624     */
1625 tim 1.10 public long getTaskCount() {
1626 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1627 dl 1.2 mainLock.lock();
1628     try {
1629     long n = completedTaskCount;
1630 tim 1.39 for (Worker w : workers) {
1631 dl 1.2 n += w.completedTasks;
1632     if (w.isActive())
1633     ++n;
1634     }
1635     return n + workQueue.size();
1636 tim 1.14 } finally {
1637 dl 1.2 mainLock.unlock();
1638     }
1639     }
1640 tim 1.1
1641     /**
1642 dl 1.2 * Returns the approximate total number of tasks that have
1643     * completed execution. Because the states of tasks and threads
1644     * may change dynamically during computation, the returned value
1645 dl 1.17 * is only an approximation, but one that does not ever decrease
1646     * across successive calls.
1647 tim 1.1 *
1648     * @return the number of tasks
1649     */
1650 tim 1.10 public long getCompletedTaskCount() {
1651 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1652 dl 1.2 mainLock.lock();
1653     try {
1654     long n = completedTaskCount;
1655 tim 1.39 for (Worker w : workers)
1656     n += w.completedTasks;
1657 dl 1.2 return n;
1658 tim 1.14 } finally {
1659 dl 1.2 mainLock.unlock();
1660     }
1661     }
1662 tim 1.1
1663 dl 1.86 /* Extension hooks */
1664    
1665 tim 1.1 /**
1666 dl 1.17 * Method invoked prior to executing the given Runnable in the
1667 dl 1.43 * given thread. This method is invoked by thread <tt>t</tt> that
1668     * will execute task <tt>r</tt>, and may be used to re-initialize
1669 jsr166 1.73 * ThreadLocals, or to perform logging.
1670     *
1671     * <p>This implementation does nothing, but may be customized in
1672     * subclasses. Note: To properly nest multiple overridings, subclasses
1673     * should generally invoke <tt>super.beforeExecute</tt> at the end of
1674     * this method.
1675 tim 1.1 *
1676 dl 1.2 * @param t the thread that will run task r.
1677     * @param r the task that will be executed.
1678 tim 1.1 */
1679 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1680 tim 1.1
1681     /**
1682 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1683     * This method is invoked by the thread that executed the task. If
1684     * non-null, the Throwable is the uncaught <tt>RuntimeException</tt>
1685     * or <tt>Error</tt> that caused execution to terminate abruptly.
1686 dl 1.69 *
1687     * <p><b>Note:</b> When actions are enclosed in tasks (such as
1688     * {@link FutureTask}) either explicitly or via methods such as
1689     * <tt>submit</tt>, these task objects catch and maintain
1690     * computational exceptions, and so they do not cause abrupt
1691 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1692 dl 1.69 * passed to this method.
1693     *
1694 jsr166 1.70 * <p>This implementation does nothing, but may be customized in
1695     * subclasses. Note: To properly nest multiple overridings, subclasses
1696     * should generally invoke <tt>super.afterExecute</tt> at the
1697     * beginning of this method.
1698 tim 1.1 *
1699 dl 1.2 * @param r the runnable that has completed.
1700 dl 1.24 * @param t the exception that caused termination, or null if
1701 dl 1.2 * execution completed normally.
1702 tim 1.1 */
1703 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1704 tim 1.1
1705 dl 1.2 /**
1706     * Method invoked when the Executor has terminated. Default
1707 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1708     * overridings, subclasses should generally invoke
1709     * <tt>super.terminated</tt> within this method.
1710 dl 1.2 */
1711     protected void terminated() { }
1712 tim 1.1
1713 dl 1.86 /* Predefined RejectedExecutionHandlers */
1714    
1715 tim 1.1 /**
1716 dl 1.21 * A handler for rejected tasks that runs the rejected task
1717     * directly in the calling thread of the <tt>execute</tt> method,
1718     * unless the executor has been shut down, in which case the task
1719     * is discarded.
1720 tim 1.1 */
1721 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1722 tim 1.1 /**
1723 dl 1.24 * Creates a <tt>CallerRunsPolicy</tt>.
1724 tim 1.1 */
1725     public CallerRunsPolicy() { }
1726    
1727 dl 1.24 /**
1728     * Executes task r in the caller's thread, unless the executor
1729     * has been shut down, in which case the task is discarded.
1730     * @param r the runnable task requested to be executed
1731     * @param e the executor attempting to execute this task
1732     */
1733 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1734     if (!e.isShutdown()) {
1735 tim 1.1 r.run();
1736     }
1737     }
1738     }
1739    
1740     /**
1741 dl 1.21 * A handler for rejected tasks that throws a
1742 dl 1.8 * <tt>RejectedExecutionException</tt>.
1743 tim 1.1 */
1744 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
1745 tim 1.1 /**
1746 dl 1.29 * Creates an <tt>AbortPolicy</tt>.
1747 tim 1.1 */
1748     public AbortPolicy() { }
1749    
1750 dl 1.24 /**
1751 dl 1.54 * Always throws RejectedExecutionException.
1752 dl 1.24 * @param r the runnable task requested to be executed
1753     * @param e the executor attempting to execute this task
1754     * @throws RejectedExecutionException always.
1755     */
1756 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1757     throw new RejectedExecutionException();
1758 tim 1.1 }
1759     }
1760    
1761     /**
1762 dl 1.21 * A handler for rejected tasks that silently discards the
1763     * rejected task.
1764 tim 1.1 */
1765 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
1766 tim 1.1 /**
1767 dl 1.54 * Creates a <tt>DiscardPolicy</tt>.
1768 tim 1.1 */
1769     public DiscardPolicy() { }
1770    
1771 dl 1.24 /**
1772     * Does nothing, which has the effect of discarding task r.
1773     * @param r the runnable task requested to be executed
1774     * @param e the executor attempting to execute this task
1775     */
1776 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1777 tim 1.1 }
1778     }
1779    
1780     /**
1781 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
1782     * request and then retries <tt>execute</tt>, unless the executor
1783     * is shut down, in which case the task is discarded.
1784 tim 1.1 */
1785 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
1786 tim 1.1 /**
1787 dl 1.24 * Creates a <tt>DiscardOldestPolicy</tt> for the given executor.
1788 tim 1.1 */
1789     public DiscardOldestPolicy() { }
1790    
1791 dl 1.24 /**
1792     * Obtains and ignores the next task that the executor
1793     * would otherwise execute, if one is immediately available,
1794     * and then retries execution of task r, unless the executor
1795     * is shut down, in which case task r is instead discarded.
1796     * @param r the runnable task requested to be executed
1797     * @param e the executor attempting to execute this task
1798     */
1799 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1800     if (!e.isShutdown()) {
1801     e.getQueue().poll();
1802     e.execute(r);
1803 tim 1.1 }
1804     }
1805     }
1806     }