ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.93
Committed: Tue Jun 20 22:53:16 2006 UTC (17 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.92: +8 -8 lines
Log Message:
typos

File Contents

# User Rev Content
1 tim 1.1 /*
2 dl 1.2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 dl 1.47 * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5 tim 1.1 */
6    
7     package java.util.concurrent;
8 dl 1.9 import java.util.concurrent.locks.*;
9 dl 1.2 import java.util.*;
10 tim 1.1
11     /**
12 dl 1.17 * An {@link ExecutorService} that executes each submitted task using
13 dl 1.28 * one of possibly several pooled threads, normally configured
14     * using {@link Executors} factory methods.
15 tim 1.1 *
16 dl 1.17 * <p>Thread pools address two different problems: they usually
17     * provide improved performance when executing large numbers of
18     * asynchronous tasks, due to reduced per-task invocation overhead,
19     * and they provide a means of bounding and managing the resources,
20     * including threads, consumed when executing a collection of tasks.
21 dl 1.20 * Each <tt>ThreadPoolExecutor</tt> also maintains some basic
22 dl 1.22 * statistics, such as the number of completed tasks.
23 dl 1.17 *
24 tim 1.1 * <p>To be useful across a wide range of contexts, this class
25 dl 1.24 * provides many adjustable parameters and extensibility
26     * hooks. However, programmers are urged to use the more convenient
27 dl 1.20 * {@link Executors} factory methods {@link
28     * Executors#newCachedThreadPool} (unbounded thread pool, with
29     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
30     * (fixed size thread pool) and {@link
31     * Executors#newSingleThreadExecutor} (single background thread), that
32 dl 1.22 * preconfigure settings for the most common usage
33     * scenarios. Otherwise, use the following guide when manually
34 dl 1.24 * configuring and tuning this class:
35 dl 1.17 *
36 tim 1.1 * <dl>
37 dl 1.2 *
38 dl 1.21 * <dt>Core and maximum pool sizes</dt>
39 dl 1.2 *
40 dl 1.19 * <dd>A <tt>ThreadPoolExecutor</tt> will automatically adjust the
41 jsr166 1.66 * pool size
42 dl 1.21 * (see {@link ThreadPoolExecutor#getPoolSize})
43 jsr166 1.66 * according to the bounds set by corePoolSize
44 dl 1.21 * (see {@link ThreadPoolExecutor#getCorePoolSize})
45     * and
46     * maximumPoolSize
47     * (see {@link ThreadPoolExecutor#getMaximumPoolSize}).
48     * When a new task is submitted in method {@link
49     * ThreadPoolExecutor#execute}, and fewer than corePoolSize threads
50     * are running, a new thread is created to handle the request, even if
51     * other worker threads are idle. If there are more than
52     * corePoolSize but less than maximumPoolSize threads running, a new
53     * thread will be created only if the queue is full. By setting
54     * corePoolSize and maximumPoolSize the same, you create a fixed-size
55     * thread pool. By setting maximumPoolSize to an essentially unbounded
56     * value such as <tt>Integer.MAX_VALUE</tt>, you allow the pool to
57 dl 1.27 * accommodate an arbitrary number of concurrent tasks. Most typically,
58 dl 1.21 * core and maximum pool sizes are set only upon construction, but they
59     * may also be changed dynamically using {@link
60     * ThreadPoolExecutor#setCorePoolSize} and {@link
61 jsr166 1.93 * ThreadPoolExecutor#setMaximumPoolSize}. </dd>
62 dl 1.2 *
63 jsr166 1.93 * <dt>On-demand construction</dt>
64 dl 1.2 *
65 dl 1.21 * <dd> By default, even core threads are initially created and
66 dl 1.69 * started only when new tasks arrive, but this can be overridden
67 dl 1.21 * dynamically using method {@link
68     * ThreadPoolExecutor#prestartCoreThread} or
69 dl 1.64 * {@link ThreadPoolExecutor#prestartAllCoreThreads}.
70     * You probably want to prestart threads if you construct the
71     * pool with a non-empty queue. </dd>
72 dl 1.2 *
73 tim 1.1 * <dt>Creating new threads</dt>
74 dl 1.2 *
75 dl 1.33 * <dd>New threads are created using a {@link
76     * java.util.concurrent.ThreadFactory}. If not otherwise specified, a
77 dl 1.34 * {@link Executors#defaultThreadFactory} is used, that creates threads to all
78 dl 1.33 * be in the same {@link ThreadGroup} and with the same
79     * <tt>NORM_PRIORITY</tt> priority and non-daemon status. By supplying
80     * a different ThreadFactory, you can alter the thread's name, thread
81 dl 1.57 * group, priority, daemon status, etc. If a <tt>ThreadFactory</tt> fails to create
82 jsr166 1.66 * a thread when asked by returning null from <tt>newThread</tt>,
83 dl 1.57 * the executor will continue, but might
84 dl 1.56 * not be able to execute any tasks. </dd>
85 dl 1.2 *
86 dl 1.21 * <dt>Keep-alive times</dt>
87     *
88     * <dd>If the pool currently has more than corePoolSize threads,
89     * excess threads will be terminated if they have been idle for more
90     * than the keepAliveTime (see {@link
91     * ThreadPoolExecutor#getKeepAliveTime}). This provides a means of
92     * reducing resource consumption when the pool is not being actively
93     * used. If the pool becomes more active later, new threads will be
94 dl 1.62 * constructed. This parameter can also be changed dynamically using
95     * method {@link ThreadPoolExecutor#setKeepAliveTime}. Using a value
96     * of <tt>Long.MAX_VALUE</tt> {@link TimeUnit#NANOSECONDS} effectively
97     * disables idle threads from ever terminating prior to shut down. By
98     * default, the keep-alive policy applies only when there are more
99     * than corePoolSizeThreads. But method {@link
100     * ThreadPoolExecutor#allowCoreThreadTimeOut} can be used to apply
101 dl 1.64 * this time-out policy to core threads as well, so long as
102     * the keepAliveTime value is non-zero. </dd>
103 dl 1.21 *
104 dl 1.48 * <dt>Queuing</dt>
105 dl 1.21 *
106     * <dd>Any {@link BlockingQueue} may be used to transfer and hold
107     * submitted tasks. The use of this queue interacts with pool sizing:
108 dl 1.2 *
109 dl 1.21 * <ul>
110     *
111 dl 1.23 * <li> If fewer than corePoolSize threads are running, the Executor
112     * always prefers adding a new thread
113 dl 1.48 * rather than queuing.</li>
114 dl 1.21 *
115 dl 1.23 * <li> If corePoolSize or more threads are running, the Executor
116     * always prefers queuing a request rather than adding a new
117     * thread.</li>
118 jsr166 1.66 *
119 dl 1.21 * <li> If a request cannot be queued, a new thread is created unless
120     * this would exceed maximumPoolSize, in which case, the task will be
121     * rejected.</li>
122     *
123     * </ul>
124     *
125     * There are three general strategies for queuing:
126     * <ol>
127     *
128     * <li> <em> Direct handoffs.</em> A good default choice for a work
129     * queue is a {@link SynchronousQueue} that hands off tasks to threads
130     * without otherwise holding them. Here, an attempt to queue a task
131     * will fail if no threads are immediately available to run it, so a
132     * new thread will be constructed. This policy avoids lockups when
133     * handling sets of requests that might have internal dependencies.
134     * Direct handoffs generally require unbounded maximumPoolSizes to
135 dl 1.24 * avoid rejection of new submitted tasks. This in turn admits the
136 dl 1.21 * possibility of unbounded thread growth when commands continue to
137     * arrive on average faster than they can be processed. </li>
138     *
139     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
140     * example a {@link LinkedBlockingQueue} without a predefined
141 dl 1.69 * capacity) will cause new tasks to wait in the queue when all
142 dl 1.22 * corePoolSize threads are busy. Thus, no more than corePoolSize
143     * threads will ever be created. (And the value of the maximumPoolSize
144     * therefore doesn't have any effect.) This may be appropriate when
145     * each task is completely independent of others, so tasks cannot
146     * affect each others execution; for example, in a web page server.
147     * While this style of queuing can be useful in smoothing out
148     * transient bursts of requests, it admits the possibility of
149     * unbounded work queue growth when commands continue to arrive on
150     * average faster than they can be processed. </li>
151 dl 1.21 *
152     * <li><em>Bounded queues.</em> A bounded queue (for example, an
153     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
154     * used with finite maximumPoolSizes, but can be more difficult to
155     * tune and control. Queue sizes and maximum pool sizes may be traded
156     * off for each other: Using large queues and small pools minimizes
157     * CPU usage, OS resources, and context-switching overhead, but can
158 dl 1.27 * lead to artificially low throughput. If tasks frequently block (for
159 dl 1.21 * example if they are I/O bound), a system may be able to schedule
160     * time for more threads than you otherwise allow. Use of small queues
161 dl 1.24 * generally requires larger pool sizes, which keeps CPUs busier but
162     * may encounter unacceptable scheduling overhead, which also
163     * decreases throughput. </li>
164 dl 1.21 *
165     * </ol>
166     *
167     * </dd>
168     *
169     * <dt>Rejected tasks</dt>
170     *
171     * <dd> New tasks submitted in method {@link
172     * ThreadPoolExecutor#execute} will be <em>rejected</em> when the
173     * Executor has been shut down, and also when the Executor uses finite
174     * bounds for both maximum threads and work queue capacity, and is
175 dl 1.22 * saturated. In either case, the <tt>execute</tt> method invokes the
176     * {@link RejectedExecutionHandler#rejectedExecution} method of its
177     * {@link RejectedExecutionHandler}. Four predefined handler policies
178     * are provided:
179 dl 1.21 *
180     * <ol>
181     *
182     * <li> In the
183     * default {@link ThreadPoolExecutor.AbortPolicy}, the handler throws a
184     * runtime {@link RejectedExecutionException} upon rejection. </li>
185 jsr166 1.66 *
186 dl 1.21 * <li> In {@link
187     * ThreadPoolExecutor.CallerRunsPolicy}, the thread that invokes
188     * <tt>execute</tt> itself runs the task. This provides a simple
189     * feedback control mechanism that will slow down the rate that new
190     * tasks are submitted. </li>
191     *
192     * <li> In {@link ThreadPoolExecutor.DiscardPolicy},
193     * a task that cannot be executed is simply dropped. </li>
194     *
195     * <li>In {@link
196     * ThreadPoolExecutor.DiscardOldestPolicy}, if the executor is not
197     * shut down, the task at the head of the work queue is dropped, and
198     * then execution is retried (which can fail again, causing this to be
199     * repeated.) </li>
200     *
201     * </ol>
202     *
203     * It is possible to define and use other kinds of {@link
204     * RejectedExecutionHandler} classes. Doing so requires some care
205     * especially when policies are designed to work only under particular
206 dl 1.48 * capacity or queuing policies. </dd>
207 dl 1.21 *
208     * <dt>Hook methods</dt>
209     *
210 dl 1.23 * <dd>This class provides <tt>protected</tt> overridable {@link
211 dl 1.21 * ThreadPoolExecutor#beforeExecute} and {@link
212     * ThreadPoolExecutor#afterExecute} methods that are called before and
213 dl 1.19 * after execution of each task. These can be used to manipulate the
214 dl 1.59 * execution environment; for example, reinitializing ThreadLocals,
215 dl 1.21 * gathering statistics, or adding log entries. Additionally, method
216     * {@link ThreadPoolExecutor#terminated} can be overridden to perform
217     * any special processing that needs to be done once the Executor has
218 jsr166 1.66 * fully terminated.
219 dl 1.57 *
220 jsr166 1.66 * <p>If hook or callback methods throw
221 dl 1.57 * exceptions, internal worker threads may in turn fail and
222 jsr166 1.66 * abruptly terminate.</dd>
223 dl 1.2 *
224 dl 1.21 * <dt>Queue maintenance</dt>
225 dl 1.2 *
226 dl 1.24 * <dd> Method {@link ThreadPoolExecutor#getQueue} allows access to
227     * the work queue for purposes of monitoring and debugging. Use of
228     * this method for any other purpose is strongly discouraged. Two
229     * supplied methods, {@link ThreadPoolExecutor#remove} and {@link
230     * ThreadPoolExecutor#purge} are available to assist in storage
231     * reclamation when large numbers of queued tasks become
232 jsr166 1.80 * cancelled.</dd>
233 dl 1.79 *
234     * <dt>Finalization</dt>
235     *
236     * <dd> A pool that is no longer referenced in a program <em>AND</em>
237     * has no remaining threads will be <tt>shutdown</tt>
238     * automatically. If you would like to ensure that unreferenced pools
239     * are reclaimed even if users forget to call {@link
240     * ThreadPoolExecutor#shutdown}, then you must arrange that unused
241     * threads eventually die, by setting appropriate keep-alive times,
242     * using a lower bound of zero core threads and/or setting {@link
243     * ThreadPoolExecutor#allowCoreThreadTimeOut}. </dd> </dl>
244 tim 1.1 *
245 dl 1.43 * <p> <b>Extension example</b>. Most extensions of this class
246     * override one or more of the protected hook methods. For example,
247     * here is a subclass that adds a simple pause/resume feature:
248     *
249     * <pre>
250     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
251     * private boolean isPaused;
252     * private ReentrantLock pauseLock = new ReentrantLock();
253     * private Condition unpaused = pauseLock.newCondition();
254     *
255     * public PausableThreadPoolExecutor(...) { super(...); }
256 jsr166 1.66 *
257 dl 1.43 * protected void beforeExecute(Thread t, Runnable r) {
258     * super.beforeExecute(t, r);
259     * pauseLock.lock();
260     * try {
261     * while (isPaused) unpaused.await();
262 jsr166 1.66 * } catch (InterruptedException ie) {
263 dl 1.53 * t.interrupt();
264 dl 1.43 * } finally {
265 dl 1.53 * pauseLock.unlock();
266 dl 1.43 * }
267     * }
268 jsr166 1.66 *
269 dl 1.43 * public void pause() {
270     * pauseLock.lock();
271     * try {
272     * isPaused = true;
273     * } finally {
274 dl 1.53 * pauseLock.unlock();
275 dl 1.43 * }
276     * }
277 jsr166 1.66 *
278 dl 1.43 * public void resume() {
279     * pauseLock.lock();
280     * try {
281     * isPaused = false;
282     * unpaused.signalAll();
283     * } finally {
284 dl 1.53 * pauseLock.unlock();
285 dl 1.43 * }
286     * }
287     * }
288     * </pre>
289 tim 1.1 * @since 1.5
290 dl 1.8 * @author Doug Lea
291 tim 1.1 */
292 tim 1.38 public class ThreadPoolExecutor extends AbstractExecutorService {
293 dl 1.85
294 dl 1.86 /**
295     * Permission for checking shutdown
296     */
297     private static final RuntimePermission shutdownPerm =
298     new RuntimePermission("modifyThread");
299    
300 dl 1.85 /*
301 dl 1.86 * A ThreadPoolExecutor manages a largish set of control fields.
302     * State changes in fields that affect execution control
303     * guarantees only occur within mainLock regions. These include
304     * fields runState, poolSize, corePoolSize, and maximumPoolSize
305     * However, these fields are also declared volatile, so can be
306     * read outside of locked regions. (Also, the workers Set is
307     * accessed only under lock).
308     *
309 jsr166 1.88 * The other fields representing user control parameters do not
310 dl 1.86 * affect execution invariants, so are declared volatile and
311     * allowed to change (via user methods) asynchronously with
312 dl 1.89 * execution. These fields: allowCoreThreadTimeOut, keepAliveTime,
313     * the rejected execution handler, and threadFactory, are not
314     * updated within locks.
315 dl 1.86 *
316     * The extensive use of volatiles here enables the most
317 jsr166 1.91 * performance-critical actions, such as enqueuing and dequeuing
318 dl 1.86 * tasks in the workQueue, to normally proceed without holding the
319     * mainLock when they see that the state allows actions, although,
320     * as described below, sometimes at the expense of re-checks
321     * following these actions.
322     */
323    
324     /**
325     * runState provides the main lifecyle control, taking on values:
326     *
327 dl 1.85 * RUNNING: Accept new tasks and process queued tasks
328     * SHUTDOWN: Don't accept new tasks, but process queued tasks
329 jsr166 1.91 * STOP: Don't accept new tasks, don't process queued tasks,
330 dl 1.85 * and interrupt in-progress tasks
331 jsr166 1.91 * TERMINATED: Same as STOP, plus all threads have terminated
332 dl 1.86 *
333     * The numerical order among these values matters, to allow
334     * ordered comparisons. The runState monotonically increases over
335     * time, but need not hit each state. The transitions are:
336 jsr166 1.87 *
337     * RUNNING -> SHUTDOWN
338 jsr166 1.88 * On invocation of shutdown(), perhaps implicitly in finalize()
339 jsr166 1.87 * (RUNNING or SHUTDOWN) -> STOP
340 dl 1.86 * On invocation of shutdownNow()
341     * SHUTDOWN -> TERMINATED
342     * When both queue and pool are empty
343     * STOP -> TERMINATED
344     * When pool is empty
345 tim 1.41 */
346 dl 1.86 volatile int runState;
347     static final int RUNNING = 0;
348     static final int SHUTDOWN = 1;
349     static final int STOP = 2;
350     static final int TERMINATED = 3;
351 tim 1.41
352     /**
353 dl 1.86 * The queue used for holding tasks and handing off to worker
354     * threads. Note that when using this queue, we do not require
355     * that workQueue.poll() returning null necessarily means that
356     * workQueue.isEmpty(), so must sometimes check both. This
357     * accommodates special-purpose queues such as DelayQueues for
358     * which poll() is allowed to return null even if it may later
359     * return non-null when delays expire.
360 tim 1.10 */
361 dl 1.2 private final BlockingQueue<Runnable> workQueue;
362    
363     /**
364 dl 1.85 * Lock held on updates to poolSize, corePoolSize,
365     * maximumPoolSize, runState, and workers set.
366 tim 1.10 */
367 dl 1.2 private final ReentrantLock mainLock = new ReentrantLock();
368    
369     /**
370     * Wait condition to support awaitTermination
371 tim 1.10 */
372 dl 1.46 private final Condition termination = mainLock.newCondition();
373 dl 1.2
374     /**
375 jsr166 1.88 * Set containing all worker threads in pool. Accessed only when
376 dl 1.86 * holding mainLock.
377 tim 1.10 */
378 dl 1.17 private final HashSet<Worker> workers = new HashSet<Worker>();
379 dl 1.2
380     /**
381 dl 1.35 * Timeout in nanoseconds for idle threads waiting for work.
382 dl 1.86 * Threads use this timeout when there are more than corePoolSize
383     * present or if allowCoreThreadTimeOut. Otherwise they wait
384     * forever for new work.
385 tim 1.10 */
386 dl 1.2 private volatile long keepAliveTime;
387    
388     /**
389 dl 1.86 * If false (default) core threads stay alive even when idle. If
390     * true, core threads use keepAliveTime to time out waiting for
391     * work.
392 dl 1.62 */
393 dl 1.82 private volatile boolean allowCoreThreadTimeOut;
394 dl 1.62
395     /**
396 dl 1.86 * Core pool size, updated only while holding mainLock, but
397     * volatile to allow concurrent readability even during updates.
398 tim 1.10 */
399 dl 1.2 private volatile int corePoolSize;
400    
401     /**
402 dl 1.86 * Maximum pool size, updated only while holding mainLock but
403     * volatile to allow concurrent readability even during updates.
404 tim 1.10 */
405 dl 1.2 private volatile int maximumPoolSize;
406    
407     /**
408 dl 1.86 * Current pool size, updated only while holding mainLock but
409     * volatile to allow concurrent readability even during updates.
410 tim 1.10 */
411 dl 1.2 private volatile int poolSize;
412    
413     /**
414     * Handler called when saturated or shutdown in execute.
415 tim 1.10 */
416 dl 1.33 private volatile RejectedExecutionHandler handler;
417 dl 1.2
418     /**
419 dl 1.86 * Factory for new threads. All threads are created using this
420     * factory (via method addThread). All callers must be prepared
421     * for addThread to fail by returning null, which may reflect a
422     * system or user's policy limiting the number of threads. Even
423     * though it is not treated as an error, failure to create threads
424     * may result in new tasks being rejected or existing ones
425     * remaining stuck in the queue. On the other hand, no special
426     * precautions exist to handle OutOfMemoryErrors that might be
427     * thrown while trying to create threads, since there is generally
428     * no recourse from within this class.
429 tim 1.10 */
430 dl 1.33 private volatile ThreadFactory threadFactory;
431 dl 1.2
432     /**
433     * Tracks largest attained pool size.
434 tim 1.10 */
435 dl 1.2 private int largestPoolSize;
436    
437     /**
438     * Counter for completed tasks. Updated only on termination of
439     * worker threads.
440 tim 1.10 */
441 dl 1.2 private long completedTaskCount;
442 jsr166 1.66
443 dl 1.8 /**
444 dl 1.35 * The default rejected execution handler
445 dl 1.8 */
446 tim 1.10 private static final RejectedExecutionHandler defaultHandler =
447 dl 1.2 new AbortPolicy();
448    
449 dl 1.86 // Constructors
450    
451 dl 1.2 /**
452 dl 1.86 * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
453     * parameters and default thread factory and rejected execution handler.
454     * It may be more convenient to use one of the {@link Executors} factory
455     * methods instead of this general purpose constructor.
456     *
457     * @param corePoolSize the number of threads to keep in the
458     * pool, even if they are idle.
459     * @param maximumPoolSize the maximum number of threads to allow in the
460     * pool.
461     * @param keepAliveTime when the number of threads is greater than
462     * the core, this is the maximum time that excess idle threads
463     * will wait for new tasks before terminating.
464     * @param unit the time unit for the keepAliveTime
465     * argument.
466     * @param workQueue the queue to use for holding tasks before they
467     * are executed. This queue will hold only the <tt>Runnable</tt>
468     * tasks submitted by the <tt>execute</tt> method.
469 jsr166 1.93 * @throws IllegalArgumentException if corePoolSize or
470 dl 1.86 * keepAliveTime less than zero, or if maximumPoolSize less than or
471     * equal to zero, or if corePoolSize greater than maximumPoolSize.
472     * @throws NullPointerException if <tt>workQueue</tt> is null
473     */
474     public ThreadPoolExecutor(int corePoolSize,
475     int maximumPoolSize,
476     long keepAliveTime,
477     TimeUnit unit,
478     BlockingQueue<Runnable> workQueue) {
479     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
480     Executors.defaultThreadFactory(), defaultHandler);
481     }
482    
483     /**
484     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
485     * parameters and default rejected execution handler.
486     *
487     * @param corePoolSize the number of threads to keep in the
488     * pool, even if they are idle.
489     * @param maximumPoolSize the maximum number of threads to allow in the
490     * pool.
491     * @param keepAliveTime when the number of threads is greater than
492     * the core, this is the maximum time that excess idle threads
493     * will wait for new tasks before terminating.
494     * @param unit the time unit for the keepAliveTime
495     * argument.
496     * @param workQueue the queue to use for holding tasks before they
497     * are executed. This queue will hold only the <tt>Runnable</tt>
498     * tasks submitted by the <tt>execute</tt> method.
499     * @param threadFactory the factory to use when the executor
500     * creates a new thread.
501 jsr166 1.93 * @throws IllegalArgumentException if corePoolSize or
502 dl 1.86 * keepAliveTime less than zero, or if maximumPoolSize less than or
503     * equal to zero, or if corePoolSize greater than maximumPoolSize.
504     * @throws NullPointerException if <tt>workQueue</tt>
505     * or <tt>threadFactory</tt> are null.
506     */
507     public ThreadPoolExecutor(int corePoolSize,
508     int maximumPoolSize,
509     long keepAliveTime,
510     TimeUnit unit,
511     BlockingQueue<Runnable> workQueue,
512     ThreadFactory threadFactory) {
513     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
514     threadFactory, defaultHandler);
515     }
516    
517     /**
518     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
519     * parameters and default thread factory.
520     *
521     * @param corePoolSize the number of threads to keep in the
522     * pool, even if they are idle.
523     * @param maximumPoolSize the maximum number of threads to allow in the
524     * pool.
525     * @param keepAliveTime when the number of threads is greater than
526     * the core, this is the maximum time that excess idle threads
527     * will wait for new tasks before terminating.
528     * @param unit the time unit for the keepAliveTime
529     * argument.
530     * @param workQueue the queue to use for holding tasks before they
531     * are executed. This queue will hold only the <tt>Runnable</tt>
532     * tasks submitted by the <tt>execute</tt> method.
533     * @param handler the handler to use when execution is blocked
534     * because the thread bounds and queue capacities are reached.
535 jsr166 1.93 * @throws IllegalArgumentException if corePoolSize or
536 dl 1.86 * keepAliveTime less than zero, or if maximumPoolSize less than or
537     * equal to zero, or if corePoolSize greater than maximumPoolSize.
538     * @throws NullPointerException if <tt>workQueue</tt>
539     * or <tt>handler</tt> are null.
540     */
541     public ThreadPoolExecutor(int corePoolSize,
542     int maximumPoolSize,
543     long keepAliveTime,
544     TimeUnit unit,
545     BlockingQueue<Runnable> workQueue,
546     RejectedExecutionHandler handler) {
547     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
548     Executors.defaultThreadFactory(), handler);
549     }
550    
551     /**
552     * Creates a new <tt>ThreadPoolExecutor</tt> with the given initial
553     * parameters.
554     *
555     * @param corePoolSize the number of threads to keep in the
556     * pool, even if they are idle.
557     * @param maximumPoolSize the maximum number of threads to allow in the
558     * pool.
559     * @param keepAliveTime when the number of threads is greater than
560     * the core, this is the maximum time that excess idle threads
561     * will wait for new tasks before terminating.
562     * @param unit the time unit for the keepAliveTime
563     * argument.
564     * @param workQueue the queue to use for holding tasks before they
565     * are executed. This queue will hold only the <tt>Runnable</tt>
566     * tasks submitted by the <tt>execute</tt> method.
567     * @param threadFactory the factory to use when the executor
568     * creates a new thread.
569     * @param handler the handler to use when execution is blocked
570     * because the thread bounds and queue capacities are reached.
571 jsr166 1.93 * @throws IllegalArgumentException if corePoolSize or
572 dl 1.86 * keepAliveTime less than zero, or if maximumPoolSize less than or
573     * equal to zero, or if corePoolSize greater than maximumPoolSize.
574     * @throws NullPointerException if <tt>workQueue</tt>
575     * or <tt>threadFactory</tt> or <tt>handler</tt> are null.
576     */
577     public ThreadPoolExecutor(int corePoolSize,
578     int maximumPoolSize,
579     long keepAliveTime,
580     TimeUnit unit,
581     BlockingQueue<Runnable> workQueue,
582     ThreadFactory threadFactory,
583     RejectedExecutionHandler handler) {
584     if (corePoolSize < 0 ||
585     maximumPoolSize <= 0 ||
586     maximumPoolSize < corePoolSize ||
587     keepAliveTime < 0)
588     throw new IllegalArgumentException();
589     if (workQueue == null || threadFactory == null || handler == null)
590     throw new NullPointerException();
591     this.corePoolSize = corePoolSize;
592     this.maximumPoolSize = maximumPoolSize;
593     this.workQueue = workQueue;
594     this.keepAliveTime = unit.toNanos(keepAliveTime);
595     this.threadFactory = threadFactory;
596     this.handler = handler;
597     }
598    
599     /*
600 jsr166 1.87 * Support for execute().
601 dl 1.86 *
602     * Method execute() and its helper methods handle the various
603     * cases encountered when new tasks are submitted. The main
604     * execute() method proceeds in 3 steps:
605     *
606     * 1. If it appears that fewer than corePoolSize threads are
607     * running, try to start a new thread with the given command as
608     * its first task. The check here errs on the side of caution.
609     * The call to addIfUnderCorePoolSize rechecks runState and pool
610     * size under lock (they change only under lock) so prevents false
611     * alarms that would add threads when it shouldn't, but may also
612     * fail to add them when they should. This is compensated within
613     * the following steps.
614     *
615     * 2. If a task can be successfully queued, then we are done, but
616     * still need to compensate for missing the fact that we should
617     * have added a thread (because existing ones died) or that
618 jsr166 1.88 * shutdown occurred since entry into this method. So we recheck
619 dl 1.86 * state to and if necessary (in ensureQueuedTaskHandled) roll
620     * back the enqueuing if shut down, or start a new thread if there
621     * are none.
622     *
623     * 3. If we cannot queue task, then we try to add a new
624     * thread. There's no guesswork here (addIfUnderMaximumPoolSize)
625     * since it is performed under lock. If it fails, we know we are
626     * shut down or saturated.
627     *
628     * The reason for taking this overall approach is to normally
629     * avoid holding mainLock during this method, which would be a
630     * serious scalability bottleneck. After warmup, almost all calls
631     * take step 2 in a way that entails no locking.
632     */
633    
634     /**
635     * Executes the given task sometime in the future. The task
636     * may execute in a new thread or in an existing pooled thread.
637     *
638     * If the task cannot be submitted for execution, either because this
639     * executor has been shutdown or because its capacity has been reached,
640     * the task is handled by the current <tt>RejectedExecutionHandler</tt>.
641     *
642     * @param command the task to execute
643     * @throws RejectedExecutionException at discretion of
644     * <tt>RejectedExecutionHandler</tt>, if task cannot be accepted
645     * for execution
646     * @throws NullPointerException if command is null
647 dl 1.13 */
648 dl 1.86 public void execute(Runnable command) {
649     if (command == null)
650     throw new NullPointerException();
651     if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
652     if (runState == RUNNING && workQueue.offer(command)) {
653     if (runState != RUNNING || poolSize == 0)
654     ensureQueuedTaskHandled(command);
655     }
656     else if (!addIfUnderMaximumPoolSize(command))
657     reject(command); // is shutdown or saturated
658     }
659 dl 1.13 }
660    
661 dl 1.33 /**
662 jsr166 1.66 * Creates and returns a new thread running firstTask as its first
663 jsr166 1.87 * task. Call only while holding mainLock.
664 dl 1.86 *
665 dl 1.8 * @param firstTask the task the new thread should run first (or
666     * null if none)
667 dl 1.56 * @return the new thread, or null if threadFactory fails to create thread
668 dl 1.2 */
669     private Thread addThread(Runnable firstTask) {
670     Worker w = new Worker(firstTask);
671 dl 1.57 Thread t = threadFactory.newThread(w);
672 dl 1.56 if (t != null) {
673     w.thread = t;
674     workers.add(w);
675     int nt = ++poolSize;
676     if (nt > largestPoolSize)
677     largestPoolSize = nt;
678     }
679 dl 1.2 return t;
680     }
681 dl 1.15
682 dl 1.2 /**
683 jsr166 1.66 * Creates and starts a new thread running firstTask as its first
684 dl 1.86 * task, only if fewer than corePoolSize threads are running
685     * and the pool is not shut down.
686 dl 1.8 * @param firstTask the task the new thread should run first (or
687     * null if none)
688 jsr166 1.88 * @return true if successful
689 dl 1.2 */
690 dl 1.16 private boolean addIfUnderCorePoolSize(Runnable firstTask) {
691 dl 1.2 Thread t = null;
692 dl 1.45 final ReentrantLock mainLock = this.mainLock;
693 dl 1.2 mainLock.lock();
694     try {
695 dl 1.85 if (poolSize < corePoolSize && runState == RUNNING)
696 dl 1.8 t = addThread(firstTask);
697 tim 1.14 } finally {
698 dl 1.2 mainLock.unlock();
699     }
700     if (t == null)
701     return false;
702     t.start();
703     return true;
704     }
705    
706     /**
707 dl 1.86 * Creates and starts a new thread running firstTask as its first
708     * task, only if fewer than maximumPoolSize threads are running
709     * and pool is not shut down.
710 dl 1.8 * @param firstTask the task the new thread should run first (or
711     * null if none)
712 jsr166 1.88 * @return true if successful
713 dl 1.2 */
714 dl 1.86 private boolean addIfUnderMaximumPoolSize(Runnable firstTask) {
715 dl 1.2 Thread t = null;
716 dl 1.45 final ReentrantLock mainLock = this.mainLock;
717 dl 1.2 mainLock.lock();
718     try {
719 dl 1.86 if (poolSize < maximumPoolSize && runState == RUNNING)
720     t = addThread(firstTask);
721 tim 1.14 } finally {
722 dl 1.2 mainLock.unlock();
723     }
724     if (t == null)
725 dl 1.86 return false;
726 dl 1.2 t.start();
727 dl 1.86 return true;
728 dl 1.16 }
729    
730 dl 1.85 /**
731 dl 1.86 * Rechecks state after queuing a task. Called from execute when
732     * pool state has been observed to change after queuing a task. If
733     * the task was queued concurrently with a call to shutdownNow,
734     * and is still present in the queue, this task must be removed
735     * and rejected to preserve shutdownNow guarantees. Otherwise,
736     * this method ensures (unless addThread fails) that there is at
737     * least one live thread to handle this task
738 dl 1.85 * @param command the task
739     */
740 dl 1.86 private void ensureQueuedTaskHandled(Runnable command) {
741 dl 1.85 final ReentrantLock mainLock = this.mainLock;
742     mainLock.lock();
743 dl 1.86 boolean reject = false;
744     Thread t = null;
745 dl 1.85 try {
746 dl 1.86 int state = runState;
747     if (state != RUNNING && workQueue.remove(command))
748     reject = true;
749     else if (state < STOP &&
750 jsr166 1.87 poolSize < Math.max(corePoolSize, 1) &&
751 dl 1.86 !workQueue.isEmpty())
752     t = addThread(null);
753 dl 1.85 } finally {
754     mainLock.unlock();
755     }
756 dl 1.86 if (reject)
757 dl 1.85 reject(command);
758 dl 1.86 else if (t != null)
759     t.start();
760 dl 1.85 }
761    
762 dl 1.16 /**
763 dl 1.86 * Invokes the rejected execution handler for the given command.
764 dl 1.16 */
765 dl 1.86 void reject(Runnable command) {
766     handler.rejectedExecution(command, this);
767 dl 1.2 }
768    
769    
770     /**
771 dl 1.86 * Worker threads.
772     *
773     * Worker threads can start out life either with an initial first
774 jsr166 1.88 * task, or without one. Normally, they are started with a first
775 dl 1.86 * task. This enables execute(), etc to bypass queuing when there
776     * are fewer than corePoolSize threads (in which case we always
777     * start one), or when the queue is full.(in which case we must
778     * bypass queue.) Initially idle threads are created either by
779     * users (prestartCoreThread and setCorePoolSize) or when methods
780     * ensureQueuedTaskHandled and tryTerminate notice that the queue
781     * is not empty but there are no active threads to handle them.
782     *
783     * After completing a task, workers try to get another one,
784 dl 1.89 * via method getTask. If they cannot (i.e., getTask returns
785     * null), they exit, calling workerDone to update pool state.
786 dl 1.86 *
787     * When starting to run a task, unless the pool is stopped, each
788     * worker thread ensures that it is not interrupted, and uses
789     * runLock to prevent the pool from interrupting it in the midst
790     * of execution. This shields user tasks from any interrupts that
791     * may otherwise be needed during shutdown (see method
792     * interruptIdleWorkers), unless the pool is stopping (via
793     * shutdownNow) in which case interrupts are let through to affect
794     * both tasks and workers. However, this shielding does not
795     * necessarily protect the workers from lagging interrupts from
796     * other user threads directed towards tasks that have already
797 jsr166 1.87 * been completed. Thus, a worker thread may be interrupted
798 dl 1.86 * needlessly (for example in getTask), in which case it rechecks
799 dl 1.89 * pool state to see if it should exit.
800 dl 1.86 *
801 dl 1.2 */
802 dl 1.85 private final class Worker implements Runnable {
803 dl 1.2 /**
804     * The runLock is acquired and released surrounding each task
805     * execution. It mainly protects against interrupts that are
806     * intended to cancel the worker thread from instead
807     * interrupting the task being run.
808     */
809     private final ReentrantLock runLock = new ReentrantLock();
810    
811     /**
812 dl 1.86 * Initial task to run before entering run loop. Possibly null.
813 dl 1.2 */
814     private Runnable firstTask;
815    
816     /**
817     * Per thread completed task counter; accumulated
818     * into completedTaskCount upon termination.
819     */
820     volatile long completedTasks;
821    
822     /**
823     * Thread this worker is running in. Acts as a final field,
824     * but cannot be set until thread is created.
825     */
826     Thread thread;
827    
828     Worker(Runnable firstTask) {
829     this.firstTask = firstTask;
830     }
831    
832     boolean isActive() {
833     return runLock.isLocked();
834     }
835    
836     /**
837 jsr166 1.73 * Interrupts thread if not running a task.
838 tim 1.10 */
839 dl 1.2 void interruptIfIdle() {
840 dl 1.45 final ReentrantLock runLock = this.runLock;
841 dl 1.2 if (runLock.tryLock()) {
842     try {
843     thread.interrupt();
844 tim 1.14 } finally {
845 dl 1.2 runLock.unlock();
846     }
847     }
848     }
849    
850     /**
851 jsr166 1.73 * Interrupts thread even if running a task.
852 tim 1.10 */
853 dl 1.2 void interruptNow() {
854     thread.interrupt();
855     }
856    
857     /**
858 jsr166 1.73 * Runs a single task between before/after methods.
859 dl 1.2 */
860     private void runTask(Runnable task) {
861 dl 1.45 final ReentrantLock runLock = this.runLock;
862 dl 1.2 runLock.lock();
863     try {
864 dl 1.86 /*
865     * Ensure that unless pool is stopping, this thread
866     * does not have its interrupt set. This requires a
867     * double-check of state in case the interrupt was
868     * cleared concurrently with a shutdownNow -- if so,
869     * the interrupt is re-enabled.
870     */
871 jsr166 1.87 if (runState < STOP &&
872     Thread.interrupted() &&
873     runState >= STOP)
874 dl 1.81 thread.interrupt();
875 dl 1.86 /*
876     * Track execution state to ensure that afterExecute
877     * is called only if task completed or threw
878     * exception. Otherwise, the caught runtime exception
879     * will have been thrown by afterExecute itself, in
880     * which case we don't want to call it again.
881     */
882 dl 1.2 boolean ran = false;
883     beforeExecute(thread, task);
884     try {
885     task.run();
886     ran = true;
887     afterExecute(task, null);
888     ++completedTasks;
889 jsr166 1.66 } catch (RuntimeException ex) {
890 dl 1.2 if (!ran)
891     afterExecute(task, ex);
892     throw ex;
893     }
894 tim 1.14 } finally {
895 dl 1.2 runLock.unlock();
896     }
897     }
898    
899     /**
900     * Main run loop
901     */
902     public void run() {
903     try {
904 dl 1.50 Runnable task = firstTask;
905     firstTask = null;
906     while (task != null || (task = getTask()) != null) {
907 dl 1.2 runTask(task);
908 dl 1.85 task = null;
909 dl 1.2 }
910 tim 1.14 } finally {
911 dl 1.2 workerDone(this);
912     }
913     }
914     }
915 tim 1.1
916 dl 1.86 /* Utilities for worker thread control */
917 dl 1.17
918 tim 1.1 /**
919 dl 1.86 * Gets the next task for a worker thread to run. The general
920     * approach is similar to execute() in that worker threads trying
921     * to get a task to run do so on the basis of prevailing state
922     * accessed outside of locks. This may cause them to choose the
923     * "wrong" action, such as or trying to exit because no tasks
924 dl 1.89 * appear to be available, or entering a take when the pool is in
925 dl 1.86 * the process of being shut down. These potential problems are
926     * countered by (1) rechecking pool state (in workerCanExit)
927     * before giving up, and (2) interrupting other workers upon
928     * shutdown, so they can recheck state. All other user-based state
929     * changes (to allowCoreThreadTimeOut etc) are OK even when
930 jsr166 1.88 * performed asynchronously wrt getTask.
931 tim 1.1 *
932 dl 1.86 * @return the task
933 tim 1.1 */
934 dl 1.86 Runnable getTask() {
935     for (;;) {
936     try {
937     int state = runState;
938     if (state > SHUTDOWN)
939     return null;
940     Runnable r;
941     if (state == SHUTDOWN) // Help drain queue
942     r = workQueue.poll();
943     else if (poolSize > corePoolSize || allowCoreThreadTimeOut)
944     r = workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS);
945     else
946     r = workQueue.take();
947     if (r != null)
948     return r;
949     if (workerCanExit()) {
950     if (runState >= SHUTDOWN) // Wake up others
951     interruptIdleWorkers();
952     return null;
953     }
954     // Else retry
955     } catch (InterruptedException ie) {
956 jsr166 1.88 // On interruption, re-check runState
957 dl 1.86 }
958     }
959 dl 1.2 }
960 tim 1.1
961 dl 1.2 /**
962 dl 1.86 * Check whether a worker thread that fails to get a task can
963     * exit. We allow a worker thread to die if the pool is stopping,
964     * or the queue is empty, or there is at least one thread to
965     * handle possibly non-empty queue, even if core timeouts are
966     * allowed.
967 dl 1.2 */
968 dl 1.86 private boolean workerCanExit() {
969     final ReentrantLock mainLock = this.mainLock;
970     mainLock.lock();
971     boolean canExit;
972     try {
973 jsr166 1.87 canExit = runState >= STOP ||
974     workQueue.isEmpty() ||
975     (allowCoreThreadTimeOut &&
976 dl 1.86 poolSize > Math.max(1, corePoolSize));
977     } finally {
978     mainLock.unlock();
979     }
980     return canExit;
981 dl 1.2 }
982 tim 1.1
983 dl 1.2 /**
984 dl 1.86 * Wakes up all threads that might be waiting for tasks so they
985     * can check for termination. Note: this method is also called by
986     * ScheduledThreadPoolExecutor.
987 dl 1.2 */
988 dl 1.86 void interruptIdleWorkers() {
989     final ReentrantLock mainLock = this.mainLock;
990     mainLock.lock();
991     try {
992     for (Worker w : workers)
993     w.interruptIfIdle();
994     } finally {
995     mainLock.unlock();
996     }
997 dl 1.2 }
998 tim 1.1
999 dl 1.2 /**
1000 dl 1.86 * Performs bookkeeping for an exiting worker thread.
1001     * @param w the worker
1002 dl 1.2 */
1003 dl 1.86 void workerDone(Worker w) {
1004     final ReentrantLock mainLock = this.mainLock;
1005     mainLock.lock();
1006     try {
1007     completedTaskCount += w.completedTasks;
1008     workers.remove(w);
1009 jsr166 1.87 if (--poolSize == 0)
1010 dl 1.86 tryTerminate();
1011     } finally {
1012     mainLock.unlock();
1013     }
1014 tim 1.1 }
1015    
1016 dl 1.86 /* Termination support. */
1017    
1018 dl 1.2 /**
1019 dl 1.86 * Transitions to TERMINATED state if either (SHUTDOWN and pool
1020 jsr166 1.88 * and queue empty) or (STOP and pool empty), otherwise unless
1021 dl 1.86 * stopped, ensuring that there is at least one live thread to
1022     * handle queued tasks.
1023 dl 1.2 *
1024 dl 1.86 * This method is called from the three places in which
1025     * termination can occur: in workerDone on exit of the last thread
1026     * after pool has been shut down, or directly within calls to
1027 dl 1.90 * shutdown or shutdownNow, if there are no live threads.
1028 dl 1.2 */
1029 dl 1.86 private void tryTerminate() {
1030     if (poolSize == 0) {
1031     int state = runState;
1032     if (state < STOP && !workQueue.isEmpty()) {
1033     state = RUNNING; // disable termination check below
1034     Thread t = addThread(null);
1035     if (t != null)
1036     t.start();
1037     }
1038     if (state == STOP || state == SHUTDOWN) {
1039     runState = TERMINATED;
1040     termination.signalAll();
1041     terminated();
1042     }
1043 dl 1.2 }
1044 tim 1.1 }
1045 dl 1.4
1046 dl 1.53 /**
1047     * Initiates an orderly shutdown in which previously submitted
1048     * tasks are executed, but no new tasks will be
1049     * accepted. Invocation has no additional effect if already shut
1050     * down.
1051     * @throws SecurityException if a security manager exists and
1052     * shutting down this ExecutorService may manipulate threads that
1053     * the caller is not permitted to modify because it does not hold
1054     * {@link java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1055 jsr166 1.68 * or the security manager's <tt>checkAccess</tt> method denies access.
1056 dl 1.53 */
1057 dl 1.2 public void shutdown() {
1058 dl 1.86 /*
1059     * Conceptually, shutdown is just a matter of changing the
1060 jsr166 1.88 * runState to SHUTDOWN, and then interrupting any worker
1061 dl 1.86 * threads that might be blocked in getTask() to wake them up
1062     * so they can exit. Then, if there happen not to be any
1063     * threads or tasks, we can directly terminate pool via
1064     * tryTerminate.
1065     *
1066     * But this is made more delicate because we must cooperate
1067     * with the security manager (if present), which may implement
1068     * policies that make more sense for operations on Threads
1069     * than they do for ThreadPools. This requires 3 steps:
1070     *
1071     * 1. Making sure caller has permission to shut down threads
1072     * in general (see shutdownPerm).
1073     *
1074     * 2. If (1) passes, making sure the caller is allowed to
1075     * modify each of our threads. This might not be true even if
1076     * first check passed, if the SecurityManager treats some
1077     * threads specially. If this check passes, then we can try
1078     * to set runState.
1079     *
1080     * 3. If both (1) and (2) pass, dealing with inconsistent
1081     * security managers that allow checkAccess but then throw a
1082     * SecurityException when interrupt() is invoked. In this
1083     * third case, because we have already set runState, we can
1084     * only try to back out from the shutdown.as cleanly as
1085     * possible. Some threads may have been killed but we remain
1086     * in non-shutdown state (which may entail tryTerminate
1087     * starting a thread to maintain liveness.)
1088     */
1089    
1090 dl 1.42 SecurityManager security = System.getSecurityManager();
1091 jsr166 1.66 if (security != null)
1092 dl 1.78 security.checkPermission(shutdownPerm);
1093 dl 1.42
1094 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1095 dl 1.2 mainLock.lock();
1096     try {
1097 dl 1.86 if (security != null) { // Check if caller can modify our threads
1098 dl 1.85 for (Worker w: workers)
1099     security.checkAccess(w.thread);
1100     }
1101 dl 1.43
1102 dl 1.85 int state = runState;
1103 dl 1.86 if (state < SHUTDOWN)
1104 dl 1.85 runState = SHUTDOWN;
1105 dl 1.43
1106 dl 1.85 try {
1107     for (Worker w: workers) {
1108     w.interruptIfIdle();
1109 dl 1.43 }
1110 dl 1.86 } catch (SecurityException se) { // Try to back out
1111 dl 1.85 runState = state;
1112 dl 1.86 tryTerminate();
1113 dl 1.85 throw se;
1114 dl 1.25 }
1115 dl 1.85
1116 dl 1.86 tryTerminate(); // Terminate now if pool and queue empty
1117 tim 1.14 } finally {
1118 dl 1.2 mainLock.unlock();
1119     }
1120 tim 1.1 }
1121    
1122 dl 1.53 /**
1123     * Attempts to stop all actively executing tasks, halts the
1124 jsr166 1.75 * processing of waiting tasks, and returns a list of the tasks
1125 dl 1.85 * that were awaiting execution. These tasks are drained (removed)
1126     * from the task queue upon return from this method.
1127 jsr166 1.66 *
1128 jsr166 1.75 * <p>There are no guarantees beyond best-effort attempts to stop
1129     * processing actively executing tasks. This implementation
1130     * cancels tasks via {@link Thread#interrupt}, so any task that
1131     * fails to respond to interrupts may never terminate.
1132 dl 1.53 *
1133     * @return list of tasks that never commenced execution
1134     * @throws SecurityException if a security manager exists and
1135     * shutting down this ExecutorService may manipulate threads that
1136     * the caller is not permitted to modify because it does not hold
1137     * {@link java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1138     * or the security manager's <tt>checkAccess</tt> method denies access.
1139     */
1140 tim 1.39 public List<Runnable> shutdownNow() {
1141 dl 1.86 /*
1142     * shutdownNow differs from shutdown only in that
1143     * (1) runState is set to STOP, (2) All worker threads
1144 jsr166 1.87 * are interrupted, not just the idle ones, and (3)
1145 dl 1.86 * the queue is drained and returned.
1146     */
1147 dl 1.42 SecurityManager security = System.getSecurityManager();
1148 jsr166 1.66 if (security != null)
1149 dl 1.78 security.checkPermission(shutdownPerm);
1150 dl 1.43
1151 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1152 dl 1.2 mainLock.lock();
1153     try {
1154 dl 1.86 if (security != null) { // Check if caller can modify our threads
1155 dl 1.85 for (Worker w: workers)
1156     security.checkAccess(w.thread);
1157     }
1158 dl 1.43
1159 dl 1.85 int state = runState;
1160 dl 1.86 if (state < STOP)
1161 dl 1.85 runState = STOP;
1162 dl 1.86
1163 dl 1.85 try {
1164     for (Worker w : workers) {
1165     w.interruptNow();
1166 dl 1.43 }
1167 dl 1.86 } catch (SecurityException se) { // Try to back out
1168 jsr166 1.87 runState = state;
1169 dl 1.86 tryTerminate();
1170 dl 1.85 throw se;
1171 dl 1.25 }
1172 dl 1.85
1173 dl 1.86 List<Runnable> tasks = drainQueue();
1174     tryTerminate(); // Terminate now if pool and queue empty
1175     return tasks;
1176 tim 1.14 } finally {
1177 dl 1.2 mainLock.unlock();
1178     }
1179 tim 1.1 }
1180    
1181 dl 1.86 /**
1182     * Drains the task queue into a new list. Used by shutdownNow.
1183     * Call only while holding main lock.
1184     */
1185     private List<Runnable> drainQueue() {
1186     List<Runnable> taskList = new ArrayList<Runnable>();
1187     workQueue.drainTo(taskList);
1188     /*
1189     * If the queue is a DelayQueue or any other kind of queue
1190     * for which poll or drainTo may fail to remove some elements,
1191     * we need to manually traverse and remove remaining tasks.
1192     * To guarantee atomicity wrt other threads using this queue,
1193     * we need to create a new iterator for each element removed.
1194     */
1195     while (!workQueue.isEmpty()) {
1196     Iterator<Runnable> it = workQueue.iterator();
1197     try {
1198     if (it.hasNext()) {
1199     Runnable r = it.next();
1200     if (workQueue.remove(r))
1201     taskList.add(r);
1202     }
1203 jsr166 1.92 } catch (ConcurrentModificationException ignore) {
1204 dl 1.86 }
1205     }
1206     return taskList;
1207     }
1208    
1209 dl 1.2 public boolean isShutdown() {
1210 dl 1.16 return runState != RUNNING;
1211     }
1212    
1213 jsr166 1.66 /**
1214 dl 1.55 * Returns true if this executor is in the process of terminating
1215 dl 1.16 * after <tt>shutdown</tt> or <tt>shutdownNow</tt> but has not
1216     * completely terminated. This method may be useful for
1217     * debugging. A return of <tt>true</tt> reported a sufficient
1218     * period after shutdown may indicate that submitted tasks have
1219     * ignored or suppressed interruption, causing this executor not
1220     * to properly terminate.
1221 jsr166 1.93 * @return true if terminating but not yet terminated
1222 dl 1.16 */
1223     public boolean isTerminating() {
1224     return runState == STOP;
1225 tim 1.1 }
1226    
1227 dl 1.2 public boolean isTerminated() {
1228 dl 1.16 return runState == TERMINATED;
1229 dl 1.2 }
1230 tim 1.1
1231 dl 1.2 public boolean awaitTermination(long timeout, TimeUnit unit)
1232     throws InterruptedException {
1233 dl 1.50 long nanos = unit.toNanos(timeout);
1234 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1235 dl 1.2 mainLock.lock();
1236     try {
1237 dl 1.25 for (;;) {
1238 jsr166 1.66 if (runState == TERMINATED)
1239 dl 1.25 return true;
1240     if (nanos <= 0)
1241     return false;
1242     nanos = termination.awaitNanos(nanos);
1243     }
1244 tim 1.14 } finally {
1245 dl 1.2 mainLock.unlock();
1246     }
1247 dl 1.15 }
1248    
1249     /**
1250     * Invokes <tt>shutdown</tt> when this executor is no longer
1251     * referenced.
1252 jsr166 1.66 */
1253 dl 1.15 protected void finalize() {
1254     shutdown();
1255 dl 1.2 }
1256 tim 1.10
1257 dl 1.86 /* Getting and setting tunable parameters */
1258    
1259 dl 1.2 /**
1260     * Sets the thread factory used to create new threads.
1261     *
1262     * @param threadFactory the new thread factory
1263 dl 1.30 * @throws NullPointerException if threadFactory is null
1264 tim 1.11 * @see #getThreadFactory
1265 dl 1.2 */
1266     public void setThreadFactory(ThreadFactory threadFactory) {
1267 dl 1.30 if (threadFactory == null)
1268     throw new NullPointerException();
1269 dl 1.2 this.threadFactory = threadFactory;
1270 tim 1.1 }
1271    
1272 dl 1.2 /**
1273     * Returns the thread factory used to create new threads.
1274     *
1275     * @return the current thread factory
1276 tim 1.11 * @see #setThreadFactory
1277 dl 1.2 */
1278     public ThreadFactory getThreadFactory() {
1279     return threadFactory;
1280 tim 1.1 }
1281    
1282 dl 1.2 /**
1283     * Sets a new handler for unexecutable tasks.
1284     *
1285     * @param handler the new handler
1286 dl 1.31 * @throws NullPointerException if handler is null
1287 tim 1.11 * @see #getRejectedExecutionHandler
1288 dl 1.2 */
1289     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1290 dl 1.31 if (handler == null)
1291     throw new NullPointerException();
1292 dl 1.2 this.handler = handler;
1293     }
1294 tim 1.1
1295 dl 1.2 /**
1296     * Returns the current handler for unexecutable tasks.
1297     *
1298     * @return the current handler
1299 tim 1.11 * @see #setRejectedExecutionHandler
1300 dl 1.2 */
1301     public RejectedExecutionHandler getRejectedExecutionHandler() {
1302     return handler;
1303 tim 1.1 }
1304    
1305 dl 1.2 /**
1306     * Sets the core number of threads. This overrides any value set
1307     * in the constructor. If the new value is smaller than the
1308     * current value, excess existing threads will be terminated when
1309 dl 1.34 * they next become idle. If larger, new threads will, if needed,
1310     * be started to execute any queued tasks.
1311 tim 1.1 *
1312 dl 1.2 * @param corePoolSize the new core size
1313 tim 1.10 * @throws IllegalArgumentException if <tt>corePoolSize</tt>
1314 dl 1.8 * less than zero
1315 tim 1.11 * @see #getCorePoolSize
1316 tim 1.1 */
1317 dl 1.2 public void setCorePoolSize(int corePoolSize) {
1318     if (corePoolSize < 0)
1319     throw new IllegalArgumentException();
1320 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1321 dl 1.2 mainLock.lock();
1322     try {
1323     int extra = this.corePoolSize - corePoolSize;
1324     this.corePoolSize = corePoolSize;
1325 tim 1.38 if (extra < 0) {
1326 dl 1.86 int n = workQueue.size(); // don't add more threads than tasks
1327     while (extra++ < 0 && n-- > 0 && poolSize < corePoolSize) {
1328 dl 1.56 Thread t = addThread(null);
1329 jsr166 1.66 if (t != null)
1330 dl 1.56 t.start();
1331     else
1332     break;
1333     }
1334 tim 1.38 }
1335     else if (extra > 0 && poolSize > corePoolSize) {
1336 dl 1.86 try {
1337     Iterator<Worker> it = workers.iterator();
1338     while (it.hasNext() &&
1339     extra-- > 0 &&
1340     poolSize > corePoolSize &&
1341     workQueue.remainingCapacity() == 0)
1342     it.next().interruptIfIdle();
1343 jsr166 1.92 } catch (SecurityException ignore) {
1344 dl 1.89 // Not an error; it is OK if the threads stay live
1345 dl 1.86 }
1346 dl 1.2 }
1347 tim 1.14 } finally {
1348 dl 1.2 mainLock.unlock();
1349     }
1350     }
1351 tim 1.1
1352     /**
1353 dl 1.2 * Returns the core number of threads.
1354 tim 1.1 *
1355 dl 1.2 * @return the core number of threads
1356 tim 1.11 * @see #setCorePoolSize
1357 tim 1.1 */
1358 tim 1.10 public int getCorePoolSize() {
1359 dl 1.2 return corePoolSize;
1360 dl 1.16 }
1361    
1362     /**
1363 dl 1.55 * Starts a core thread, causing it to idly wait for work. This
1364 dl 1.16 * overrides the default policy of starting core threads only when
1365     * new tasks are executed. This method will return <tt>false</tt>
1366     * if all core threads have already been started.
1367     * @return true if a thread was started
1368 jsr166 1.66 */
1369 dl 1.16 public boolean prestartCoreThread() {
1370     return addIfUnderCorePoolSize(null);
1371     }
1372    
1373     /**
1374 dl 1.55 * Starts all core threads, causing them to idly wait for work. This
1375 dl 1.16 * overrides the default policy of starting core threads only when
1376 jsr166 1.66 * new tasks are executed.
1377 jsr166 1.88 * @return the number of threads started
1378 jsr166 1.66 */
1379 dl 1.16 public int prestartAllCoreThreads() {
1380     int n = 0;
1381     while (addIfUnderCorePoolSize(null))
1382     ++n;
1383     return n;
1384 dl 1.2 }
1385 tim 1.1
1386     /**
1387 dl 1.62 * Returns true if this pool allows core threads to time out and
1388     * terminate if no tasks arrive within the keepAlive time, being
1389     * replaced if needed when new tasks arrive. When true, the same
1390     * keep-alive policy applying to non-core threads applies also to
1391     * core threads. When false (the default), core threads are never
1392     * terminated due to lack of incoming tasks.
1393     * @return <tt>true</tt> if core threads are allowed to time out,
1394     * else <tt>false</tt>
1395 jsr166 1.72 *
1396     * @since 1.6
1397 dl 1.62 */
1398     public boolean allowsCoreThreadTimeOut() {
1399     return allowCoreThreadTimeOut;
1400     }
1401    
1402     /**
1403     * Sets the policy governing whether core threads may time out and
1404     * terminate if no tasks arrive within the keep-alive time, being
1405     * replaced if needed when new tasks arrive. When false, core
1406     * threads are never terminated due to lack of incoming
1407     * tasks. When true, the same keep-alive policy applying to
1408     * non-core threads applies also to core threads. To avoid
1409     * continual thread replacement, the keep-alive time must be
1410 dl 1.64 * greater than zero when setting <tt>true</tt>. This method
1411     * should in general be called before the pool is actively used.
1412 dl 1.62 * @param value <tt>true</tt> if should time out, else <tt>false</tt>
1413 dl 1.64 * @throws IllegalArgumentException if value is <tt>true</tt>
1414     * and the current keep-alive time is not greater than zero.
1415 jsr166 1.72 *
1416     * @since 1.6
1417 dl 1.62 */
1418     public void allowCoreThreadTimeOut(boolean value) {
1419 dl 1.64 if (value && keepAliveTime <= 0)
1420     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1421    
1422 dl 1.62 allowCoreThreadTimeOut = value;
1423     }
1424    
1425     /**
1426 tim 1.1 * Sets the maximum allowed number of threads. This overrides any
1427 dl 1.2 * value set in the constructor. If the new value is smaller than
1428     * the current value, excess existing threads will be
1429     * terminated when they next become idle.
1430 tim 1.1 *
1431 dl 1.2 * @param maximumPoolSize the new maximum
1432 jsr166 1.84 * @throws IllegalArgumentException if the new maximum is
1433     * less than or equal to zero, or
1434     * less than the {@linkplain #getCorePoolSize core pool size}
1435 tim 1.11 * @see #getMaximumPoolSize
1436 dl 1.2 */
1437     public void setMaximumPoolSize(int maximumPoolSize) {
1438     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1439     throw new IllegalArgumentException();
1440 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1441 dl 1.2 mainLock.lock();
1442     try {
1443     int extra = this.maximumPoolSize - maximumPoolSize;
1444     this.maximumPoolSize = maximumPoolSize;
1445     if (extra > 0 && poolSize > maximumPoolSize) {
1446 dl 1.86 try {
1447     Iterator<Worker> it = workers.iterator();
1448     while (it.hasNext() &&
1449     extra > 0 &&
1450     poolSize > maximumPoolSize) {
1451     it.next().interruptIfIdle();
1452     --extra;
1453     }
1454 jsr166 1.92 } catch (SecurityException ignore) {
1455 dl 1.89 // Not an error; it is OK if the threads stay live
1456 dl 1.2 }
1457     }
1458 tim 1.14 } finally {
1459 dl 1.2 mainLock.unlock();
1460     }
1461     }
1462 tim 1.1
1463     /**
1464     * Returns the maximum allowed number of threads.
1465     *
1466 dl 1.2 * @return the maximum allowed number of threads
1467 tim 1.11 * @see #setMaximumPoolSize
1468 tim 1.1 */
1469 tim 1.10 public int getMaximumPoolSize() {
1470 dl 1.2 return maximumPoolSize;
1471     }
1472 tim 1.1
1473     /**
1474     * Sets the time limit for which threads may remain idle before
1475 dl 1.2 * being terminated. If there are more than the core number of
1476 tim 1.1 * threads currently in the pool, after waiting this amount of
1477     * time without processing a task, excess threads will be
1478     * terminated. This overrides any value set in the constructor.
1479     * @param time the time to wait. A time value of zero will cause
1480     * excess threads to terminate immediately after executing tasks.
1481 dl 1.2 * @param unit the time unit of the time argument
1482 dl 1.64 * @throws IllegalArgumentException if time less than zero or
1483     * if time is zero and allowsCoreThreadTimeOut
1484 tim 1.11 * @see #getKeepAliveTime
1485 tim 1.1 */
1486 dl 1.2 public void setKeepAliveTime(long time, TimeUnit unit) {
1487     if (time < 0)
1488     throw new IllegalArgumentException();
1489 dl 1.64 if (time == 0 && allowsCoreThreadTimeOut())
1490     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1491 dl 1.2 this.keepAliveTime = unit.toNanos(time);
1492     }
1493 tim 1.1
1494     /**
1495     * Returns the thread keep-alive time, which is the amount of time
1496 jsr166 1.93 * that threads in excess of the core pool size may remain
1497 tim 1.10 * idle before being terminated.
1498 tim 1.1 *
1499 dl 1.2 * @param unit the desired time unit of the result
1500 tim 1.1 * @return the time limit
1501 tim 1.11 * @see #setKeepAliveTime
1502 tim 1.1 */
1503 tim 1.10 public long getKeepAliveTime(TimeUnit unit) {
1504 dl 1.2 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1505     }
1506 tim 1.1
1507 dl 1.86 /* User-level queue utilities */
1508    
1509     /**
1510     * Returns the task queue used by this executor. Access to the
1511     * task queue is intended primarily for debugging and monitoring.
1512     * This queue may be in active use. Retrieving the task queue
1513     * does not prevent queued tasks from executing.
1514     *
1515     * @return the task queue
1516     */
1517     public BlockingQueue<Runnable> getQueue() {
1518     return workQueue;
1519     }
1520    
1521     /**
1522     * Removes this task from the executor's internal queue if it is
1523     * present, thus causing it not to be run if it has not already
1524     * started.
1525     *
1526     * <p> This method may be useful as one part of a cancellation
1527     * scheme. It may fail to remove tasks that have been converted
1528     * into other forms before being placed on the internal queue. For
1529     * example, a task entered using <tt>submit</tt> might be
1530     * converted into a form that maintains <tt>Future</tt> status.
1531     * However, in such cases, method {@link ThreadPoolExecutor#purge}
1532     * may be used to remove those Futures that have been cancelled.
1533     *
1534     * @param task the task to remove
1535     * @return true if the task was removed
1536     */
1537     public boolean remove(Runnable task) {
1538     return getQueue().remove(task);
1539     }
1540    
1541     /**
1542     * Tries to remove from the work queue all {@link Future}
1543     * tasks that have been cancelled. This method can be useful as a
1544     * storage reclamation operation, that has no other impact on
1545     * functionality. Cancelled tasks are never executed, but may
1546     * accumulate in work queues until worker threads can actively
1547     * remove them. Invoking this method instead tries to remove them now.
1548     * However, this method may fail to remove tasks in
1549     * the presence of interference by other threads.
1550     */
1551     public void purge() {
1552     // Fail if we encounter interference during traversal
1553     try {
1554     Iterator<Runnable> it = getQueue().iterator();
1555     while (it.hasNext()) {
1556     Runnable r = it.next();
1557     if (r instanceof Future<?>) {
1558     Future<?> c = (Future<?>)r;
1559     if (c.isCancelled())
1560     it.remove();
1561     }
1562     }
1563     }
1564     catch (ConcurrentModificationException ex) {
1565     return;
1566     }
1567     }
1568    
1569 tim 1.1 /* Statistics */
1570    
1571     /**
1572     * Returns the current number of threads in the pool.
1573     *
1574     * @return the number of threads
1575     */
1576 tim 1.10 public int getPoolSize() {
1577 dl 1.2 return poolSize;
1578     }
1579 tim 1.1
1580     /**
1581 dl 1.2 * Returns the approximate number of threads that are actively
1582 tim 1.1 * executing tasks.
1583     *
1584     * @return the number of threads
1585     */
1586 tim 1.10 public int getActiveCount() {
1587 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1588 dl 1.2 mainLock.lock();
1589     try {
1590     int n = 0;
1591 tim 1.39 for (Worker w : workers) {
1592     if (w.isActive())
1593 dl 1.2 ++n;
1594     }
1595     return n;
1596 tim 1.14 } finally {
1597 dl 1.2 mainLock.unlock();
1598     }
1599     }
1600 tim 1.1
1601     /**
1602 dl 1.2 * Returns the largest number of threads that have ever
1603     * simultaneously been in the pool.
1604 tim 1.1 *
1605     * @return the number of threads
1606     */
1607 tim 1.10 public int getLargestPoolSize() {
1608 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1609 dl 1.2 mainLock.lock();
1610     try {
1611     return largestPoolSize;
1612 tim 1.14 } finally {
1613 dl 1.2 mainLock.unlock();
1614     }
1615     }
1616 tim 1.1
1617     /**
1618 dl 1.85 * Returns the approximate total number of tasks that have ever been
1619 dl 1.2 * scheduled for execution. Because the states of tasks and
1620     * threads may change dynamically during computation, the returned
1621 dl 1.17 * value is only an approximation, but one that does not ever
1622     * decrease across successive calls.
1623 tim 1.1 *
1624     * @return the number of tasks
1625     */
1626 tim 1.10 public long getTaskCount() {
1627 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1628 dl 1.2 mainLock.lock();
1629     try {
1630     long n = completedTaskCount;
1631 tim 1.39 for (Worker w : workers) {
1632 dl 1.2 n += w.completedTasks;
1633     if (w.isActive())
1634     ++n;
1635     }
1636     return n + workQueue.size();
1637 tim 1.14 } finally {
1638 dl 1.2 mainLock.unlock();
1639     }
1640     }
1641 tim 1.1
1642     /**
1643 dl 1.2 * Returns the approximate total number of tasks that have
1644     * completed execution. Because the states of tasks and threads
1645     * may change dynamically during computation, the returned value
1646 dl 1.17 * is only an approximation, but one that does not ever decrease
1647     * across successive calls.
1648 tim 1.1 *
1649     * @return the number of tasks
1650     */
1651 tim 1.10 public long getCompletedTaskCount() {
1652 dl 1.45 final ReentrantLock mainLock = this.mainLock;
1653 dl 1.2 mainLock.lock();
1654     try {
1655     long n = completedTaskCount;
1656 tim 1.39 for (Worker w : workers)
1657     n += w.completedTasks;
1658 dl 1.2 return n;
1659 tim 1.14 } finally {
1660 dl 1.2 mainLock.unlock();
1661     }
1662     }
1663 tim 1.1
1664 dl 1.86 /* Extension hooks */
1665    
1666 tim 1.1 /**
1667 dl 1.17 * Method invoked prior to executing the given Runnable in the
1668 dl 1.43 * given thread. This method is invoked by thread <tt>t</tt> that
1669     * will execute task <tt>r</tt>, and may be used to re-initialize
1670 jsr166 1.73 * ThreadLocals, or to perform logging.
1671     *
1672     * <p>This implementation does nothing, but may be customized in
1673     * subclasses. Note: To properly nest multiple overridings, subclasses
1674     * should generally invoke <tt>super.beforeExecute</tt> at the end of
1675     * this method.
1676 tim 1.1 *
1677 dl 1.2 * @param t the thread that will run task r.
1678     * @param r the task that will be executed.
1679 tim 1.1 */
1680 dl 1.2 protected void beforeExecute(Thread t, Runnable r) { }
1681 tim 1.1
1682     /**
1683 jsr166 1.70 * Method invoked upon completion of execution of the given Runnable.
1684     * This method is invoked by the thread that executed the task. If
1685     * non-null, the Throwable is the uncaught <tt>RuntimeException</tt>
1686     * or <tt>Error</tt> that caused execution to terminate abruptly.
1687 dl 1.69 *
1688     * <p><b>Note:</b> When actions are enclosed in tasks (such as
1689     * {@link FutureTask}) either explicitly or via methods such as
1690     * <tt>submit</tt>, these task objects catch and maintain
1691     * computational exceptions, and so they do not cause abrupt
1692 jsr166 1.70 * termination, and the internal exceptions are <em>not</em>
1693 dl 1.69 * passed to this method.
1694     *
1695 jsr166 1.70 * <p>This implementation does nothing, but may be customized in
1696     * subclasses. Note: To properly nest multiple overridings, subclasses
1697     * should generally invoke <tt>super.afterExecute</tt> at the
1698     * beginning of this method.
1699 tim 1.1 *
1700 dl 1.2 * @param r the runnable that has completed.
1701 dl 1.24 * @param t the exception that caused termination, or null if
1702 dl 1.2 * execution completed normally.
1703 tim 1.1 */
1704 dl 1.2 protected void afterExecute(Runnable r, Throwable t) { }
1705 tim 1.1
1706 dl 1.2 /**
1707     * Method invoked when the Executor has terminated. Default
1708 dl 1.17 * implementation does nothing. Note: To properly nest multiple
1709     * overridings, subclasses should generally invoke
1710     * <tt>super.terminated</tt> within this method.
1711 dl 1.2 */
1712     protected void terminated() { }
1713 tim 1.1
1714 dl 1.86 /* Predefined RejectedExecutionHandlers */
1715    
1716 tim 1.1 /**
1717 dl 1.21 * A handler for rejected tasks that runs the rejected task
1718     * directly in the calling thread of the <tt>execute</tt> method,
1719     * unless the executor has been shut down, in which case the task
1720     * is discarded.
1721 tim 1.1 */
1722 jsr166 1.71 public static class CallerRunsPolicy implements RejectedExecutionHandler {
1723 tim 1.1 /**
1724 dl 1.24 * Creates a <tt>CallerRunsPolicy</tt>.
1725 tim 1.1 */
1726     public CallerRunsPolicy() { }
1727    
1728 dl 1.24 /**
1729     * Executes task r in the caller's thread, unless the executor
1730     * has been shut down, in which case the task is discarded.
1731     * @param r the runnable task requested to be executed
1732     * @param e the executor attempting to execute this task
1733     */
1734 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1735     if (!e.isShutdown()) {
1736 tim 1.1 r.run();
1737     }
1738     }
1739     }
1740    
1741     /**
1742 dl 1.21 * A handler for rejected tasks that throws a
1743 dl 1.8 * <tt>RejectedExecutionException</tt>.
1744 tim 1.1 */
1745 dl 1.2 public static class AbortPolicy implements RejectedExecutionHandler {
1746 tim 1.1 /**
1747 dl 1.29 * Creates an <tt>AbortPolicy</tt>.
1748 tim 1.1 */
1749     public AbortPolicy() { }
1750    
1751 dl 1.24 /**
1752 dl 1.54 * Always throws RejectedExecutionException.
1753 dl 1.24 * @param r the runnable task requested to be executed
1754     * @param e the executor attempting to execute this task
1755     * @throws RejectedExecutionException always.
1756     */
1757 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1758     throw new RejectedExecutionException();
1759 tim 1.1 }
1760     }
1761    
1762     /**
1763 dl 1.21 * A handler for rejected tasks that silently discards the
1764     * rejected task.
1765 tim 1.1 */
1766 dl 1.2 public static class DiscardPolicy implements RejectedExecutionHandler {
1767 tim 1.1 /**
1768 dl 1.54 * Creates a <tt>DiscardPolicy</tt>.
1769 tim 1.1 */
1770     public DiscardPolicy() { }
1771    
1772 dl 1.24 /**
1773     * Does nothing, which has the effect of discarding task r.
1774     * @param r the runnable task requested to be executed
1775     * @param e the executor attempting to execute this task
1776     */
1777 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1778 tim 1.1 }
1779     }
1780    
1781     /**
1782 dl 1.21 * A handler for rejected tasks that discards the oldest unhandled
1783     * request and then retries <tt>execute</tt>, unless the executor
1784     * is shut down, in which case the task is discarded.
1785 tim 1.1 */
1786 dl 1.2 public static class DiscardOldestPolicy implements RejectedExecutionHandler {
1787 tim 1.1 /**
1788 dl 1.24 * Creates a <tt>DiscardOldestPolicy</tt> for the given executor.
1789 tim 1.1 */
1790     public DiscardOldestPolicy() { }
1791    
1792 dl 1.24 /**
1793     * Obtains and ignores the next task that the executor
1794     * would otherwise execute, if one is immediately available,
1795     * and then retries execution of task r, unless the executor
1796     * is shut down, in which case task r is instead discarded.
1797     * @param r the runnable task requested to be executed
1798     * @param e the executor attempting to execute this task
1799     */
1800 dl 1.2 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
1801     if (!e.isShutdown()) {
1802     e.getQueue().poll();
1803     e.execute(r);
1804 tim 1.1 }
1805     }
1806     }
1807     }