/* * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @summary micro-benchmark correctness mode * @run main IteratorMicroBenchmark iterations=1 size=8 warmup=0 */ import java.lang.ref.WeakReference; import java.util.ArrayDeque; import java.util.Arrays; import java.util.ArrayList; import java.util.Collection; import java.util.Deque; import java.util.Enumeration; import java.util.Iterator; import java.util.List; import java.util.ListIterator; import java.util.Map; import java.util.Spliterator; import java.util.Vector; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.ConcurrentLinkedDeque; import java.util.concurrent.ConcurrentLinkedQueue; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.LinkedTransferQueue; import java.util.concurrent.ConcurrentSkipListMap; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ThreadLocalRandom; import java.util.concurrent.TimeUnit; import java.util.regex.Pattern; /** * Usage: [iterations=N] [size=N] [filter=REGEXP] [warmup=SECONDS] * * To run this in micro-benchmark mode, simply run as a normal java program. * Be patient; this program runs for a very long time. * For faster runs, restrict execution using command line args. * * This is an interface based version of ArrayList/IteratorMicroBenchmark * * @author Martin Buchholz */ public class IteratorMicroBenchmark { abstract static class Job { private final String name; public Job(String name) { this.name = name; } public String name() { return name; } public abstract void work() throws Throwable; } int iterations; int size; double warmupSeconds; Pattern filter; // --------------- GC finalization infrastructure --------------- /** No guarantees, but effective in practice. */ static void forceFullGc() { CountDownLatch finalizeDone = new CountDownLatch(1); WeakReference ref = new WeakReference(new Object() { protected void finalize() { finalizeDone.countDown(); }}); try { for (int i = 0; i < 10; i++) { System.gc(); if (finalizeDone.await(1L, TimeUnit.SECONDS) && ref.get() == null) { System.runFinalization(); // try to pick up stragglers return; } } } catch (InterruptedException unexpected) { throw new AssertionError("unexpected InterruptedException"); } throw new AssertionError("failed to do a \"full\" gc"); } /** * Runs each job for long enough that all the runtime compilers * have had plenty of time to warm up, i.e. get around to * compiling everything worth compiling. * Returns array of average times per job per run. */ long[] time0(List jobs) throws Throwable { final long warmupNanos = (long) (warmupSeconds * 1000L * 1000L * 1000L); final int size = jobs.size(); long[] nanoss = new long[size]; for (int i = 0; i < size; i++) { if (warmupNanos > 0) forceFullGc(); long t0 = System.nanoTime(); long t; int j = 0; do { jobs.get(i).work(); j++; } while ((t = System.nanoTime() - t0) < warmupNanos); nanoss[i] = t/j; } return nanoss; } void time(List jobs) throws Throwable { if (warmupSeconds > 0) time0(jobs); // Warm up run final int size = jobs.size(); final long[] nanoss = time0(jobs); // Real timing run final long[] milliss = new long[size]; final double[] ratios = new double[size]; final String nameHeader = "Method"; final String millisHeader = "Millis"; final String ratioHeader = "Ratio"; int nameWidth = nameHeader.length(); int millisWidth = millisHeader.length(); int ratioWidth = ratioHeader.length(); for (int i = 0; i < size; i++) { nameWidth = Math.max(nameWidth, jobs.get(i).name().length()); milliss[i] = nanoss[i]/(1000L * 1000L); millisWidth = Math.max(millisWidth, String.format("%d", milliss[i]).length()); ratios[i] = (double) nanoss[i] / (double) nanoss[0]; ratioWidth = Math.max(ratioWidth, String.format("%.3f", ratios[i]).length()); } String format = String.format("%%-%ds %%%dd %%%d.3f%%n", nameWidth, millisWidth, ratioWidth); String headerFormat = String.format("%%-%ds %%%ds %%%ds%%n", nameWidth, millisWidth, ratioWidth); System.out.printf(headerFormat, "Method", "Millis", "Ratio"); // Print out absolute and relative times, calibrated against first job for (int i = 0; i < size; i++) System.out.printf(format, jobs.get(i).name(), milliss[i], ratios[i]); } private static String keywordValue(String[] args, String keyword) { for (String arg : args) if (arg.startsWith(keyword)) return arg.substring(keyword.length() + 1); return null; } private static int intArg(String[] args, String keyword, int defaultValue) { String val = keywordValue(args, keyword); return (val == null) ? defaultValue : Integer.parseInt(val); } private static double doubleArg(String[] args, String keyword, double defaultValue) { String val = keywordValue(args, keyword); return (val == null) ? defaultValue : Double.parseDouble(val); } private static Pattern patternArg(String[] args, String keyword) { String val = keywordValue(args, keyword); return (val == null) ? null : Pattern.compile(val); } private static List filter(Pattern filter, List jobs) { if (filter == null) return jobs; ArrayList newJobs = new ArrayList<>(); for (Job job : jobs) if (filter.matcher(job.name()).find()) newJobs.add(job); return newJobs; } private static void deoptimize(int sum) { if (sum == 42) System.out.println("the answer"); } private static List asSubList(List list) { return list.subList(0, list.size()); } private static Iterable backwards(final List list) { return new Iterable() { public Iterator iterator() { return new Iterator() { final ListIterator it = list.listIterator(list.size()); public boolean hasNext() { return it.hasPrevious(); } public T next() { return it.previous(); } public void remove() { it.remove(); }};}}; } // Checks for correctness *and* prevents loop optimizations class Check { private int sum; public void sum(int sum) { if (this.sum == 0) this.sum = sum; if (this.sum != sum) throw new AssertionError("Sum mismatch"); } } volatile Check check = new Check(); public static void main(String[] args) throws Throwable { new IteratorMicroBenchmark().run(args); } void run(String[] args) throws Throwable { iterations = intArg(args, "iterations", 10_000); size = intArg(args, "size", 1000); warmupSeconds = doubleArg(args, "warmup", 5); filter = patternArg(args, "filter"); // System.out.printf( // "iterations=%d size=%d, warmup=%1g, filter=\"%s\"%n", // iterations, size, warmupSeconds, filter); final ArrayList al = new ArrayList(size); // Populate collections with random data final ThreadLocalRandom rnd = ThreadLocalRandom.current(); for (int i = 0; i < size; i++) al.add(rnd.nextInt(size)); final ArrayDeque ad = new ArrayDeque<>(al); final ArrayBlockingQueue abq = new ArrayBlockingQueue<>(al.size()); abq.addAll(al); // shuffle circular array elements so they wrap for (int i = 0, n = rnd.nextInt(size); i < n; i++) { ad.addLast(ad.removeFirst()); abq.add(abq.remove()); } ArrayList jobs = new ArrayList<>(Arrays.asList()); List.of(al, ad, abq, new Vector<>(al), new ConcurrentLinkedQueue<>(al), new ConcurrentLinkedDeque<>(al), new LinkedBlockingQueue<>(al), new LinkedBlockingDeque<>(al), new LinkedTransferQueue<>(al)) .stream() .forEach(x -> { jobs.addAll(collectionJobs(x)); if (x instanceof Deque) jobs.addAll(dequeJobs((Deque)x)); }); time(filter(filter, jobs)); } List collectionJobs(Collection x) { String klazz = x.getClass().getSimpleName(); return List.of( new Job(klazz + " iterate for loop") { public void work() throws Throwable { for (int i = 0; i < iterations; i++) { int sum = 0; for (Integer n : x) sum += n; check.sum(sum);}}}, new Job(klazz + " .iterator().forEachRemaining()") { public void work() throws Throwable { int[] sum = new int[1]; for (int i = 0; i < iterations; i++) { sum[0] = 0; x.iterator().forEachRemaining(n -> sum[0] += n); check.sum(sum[0]);}}}, new Job(klazz + " .spliterator().tryAdvance()") { public void work() throws Throwable { int[] sum = new int[1]; for (int i = 0; i < iterations; i++) { sum[0] = 0; Spliterator spliterator = x.spliterator(); do {} while (spliterator.tryAdvance(n -> sum[0] += n)); check.sum(sum[0]);}}}, new Job(klazz + " .spliterator().forEachRemaining()") { public void work() throws Throwable { int[] sum = new int[1]; for (int i = 0; i < iterations; i++) { sum[0] = 0; x.spliterator().forEachRemaining(n -> sum[0] += n); check.sum(sum[0]);}}}, new Job(klazz + " .removeIf") { public void work() throws Throwable { int[] sum = new int[1]; for (int i = 0; i < iterations; i++) { sum[0] = 0; x.removeIf(n -> { sum[0] += n; return false; }); check.sum(sum[0]);}}}, new Job(klazz + " .forEach") { public void work() throws Throwable { int[] sum = new int[1]; for (int i = 0; i < iterations; i++) { sum[0] = 0; x.forEach(n -> sum[0] += n); check.sum(sum[0]);}}}, new Job(klazz + " .toArray()") { public void work() throws Throwable { int[] sum = new int[1]; for (int i = 0; i < iterations; i++) { sum[0] = 0; for (Object o : x.toArray()) sum[0] += (Integer) o; check.sum(sum[0]);}}}, new Job(klazz + " .toArray(a)") { public void work() throws Throwable { Integer[] a = new Integer[x.size()]; int[] sum = new int[1]; for (int i = 0; i < iterations; i++) { sum[0] = 0; x.toArray(a); for (Object o : a) sum[0] += (Integer) o; check.sum(sum[0]);}}}); } List dequeJobs(Deque x) { String klazz = x.getClass().getSimpleName(); return List.of( new Job(klazz + " .descendingIterator() loop") { public void work() throws Throwable { for (int i = 0; i < iterations; i++) { int sum = 0; Iterator it = x.descendingIterator(); while (it.hasNext()) sum += it.next(); check.sum(sum);}}}, new Job(klazz + " .descendingIterator().forEachRemaining()") { public void work() throws Throwable { int[] sum = new int[1]; for (int i = 0; i < iterations; i++) { sum[0] = 0; x.descendingIterator().forEachRemaining(n -> sum[0] += n); check.sum(sum[0]);}}}); } }