ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/test/loops/Heat.java
Revision: 1.8
Committed: Mon Aug 10 03:13:33 2015 UTC (8 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.7: +0 -3 lines
Log Message:
delete unwanted blank lines

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.6 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     // Adapted from a cilk benchmark
8    
9     import java.util.concurrent.*;
10    
11     public class Heat {
12     static final long NPS = (1000L * 1000 * 1000);
13    
14     // Parameters
15     static int nx;
16     static int ny;
17     static int nt;
18     static int leafmaxcol;
19    
20     // the matrix representing the cells
21     static double[][] newm;
22    
23     // alternating workspace matrix
24     static double[][] oldm;
25    
26     public static void main(String[] args) throws Exception {
27     int procs = 0;
28     nx = 4096;
29     ny = 1024;
30     nt = 1000;
31     leafmaxcol = 16;
32    
33     try {
34     if (args.length > 0)
35     procs = Integer.parseInt(args[0]);
36     if (args.length > 1)
37     nx = Integer.parseInt(args[1]);
38     if (args.length > 2)
39     ny = Integer.parseInt(args[2]);
40     if (args.length > 3)
41     nt = Integer.parseInt(args[3]);
42     if (args.length > 4)
43     leafmaxcol = Integer.parseInt(args[4]);
44     }
45     catch (Exception e) {
46     System.out.println("Usage: java Heat threads rows cols steps granularity");
47     return;
48     }
49    
50 jsr166 1.5 ForkJoinPool g = (procs == 0) ? new ForkJoinPool() :
51 dl 1.1 new ForkJoinPool(procs);
52 jsr166 1.2
53 dl 1.1 System.out.print("parallelism = " + g.getParallelism());
54     System.out.print(" granularity = " + leafmaxcol);
55     System.out.print(" rows = " + nx);
56     System.out.print(" columns = " + ny);
57     System.out.println(" steps = " + nt);
58 jsr166 1.2
59 dl 1.1 oldm = new double[nx][ny];
60     newm = new double[nx][ny];
61    
62     for (int i = 0; i < 5; ++i) {
63     long last = System.nanoTime();
64     RecursiveAction main = new RecursiveAction() {
65     public void compute() {
66     for (int timestep = 0; timestep <= nt; timestep++) {
67     (new Compute(0, nx, timestep)).invoke();
68     }
69     }
70     };
71     g.invoke(main);
72     double elapsed = elapsedTime(last);
73     System.out.printf("time: %7.3f", elapsed);
74     System.out.println();
75     }
76     System.out.println(g);
77     g.shutdown();
78     }
79    
80     static double elapsedTime(long startTime) {
81     return (double)(System.nanoTime() - startTime) / NPS;
82     }
83    
84     // constants (at least for this demo)
85     static final double xu = 0.0;
86     static final double xo = 1.570796326794896558;
87     static final double yu = 0.0;
88     static final double yo = 1.570796326794896558;
89     static final double tu = 0.0;
90     static final double to = 0.0000001;
91    
92     static final double dx = (xo - xu) / (nx - 1);
93     static final double dy = (yo - yu) / (ny - 1);
94 jsr166 1.2 static final double dt = (to - tu) / nt;
95 dl 1.1 static final double dtdxsq = dt / (dx * dx);
96     static final double dtdysq = dt / (dy * dy);
97    
98    
99     // the function being applied across the cells
100 jsr166 1.2 static final double f(double x, double y) {
101     return Math.sin(x) * Math.sin(y);
102 dl 1.1 }
103    
104     // random starting values
105    
106 jsr166 1.2 static final double randa(double x, double t) {
107     return 0.0;
108 dl 1.1 }
109 jsr166 1.2 static final double randb(double x, double t) {
110     return Math.exp(-2*t) * Math.sin(x);
111 dl 1.1 }
112 jsr166 1.2 static final double randc(double y, double t) {
113     return 0.0;
114 dl 1.1 }
115 jsr166 1.2 static final double randd(double y, double t) {
116     return Math.exp(-2*t) * Math.sin(y);
117 dl 1.1 }
118 jsr166 1.2 static final double solu(double x, double y, double t) {
119     return Math.exp(-2*t) * Math.sin(x) * Math.sin(y);
120 dl 1.1 }
121    
122    
123    
124    
125     static final class Compute extends RecursiveAction {
126     final int lb;
127     final int ub;
128     final int time;
129    
130     Compute(int lowerBound, int upperBound, int timestep) {
131     lb = lowerBound;
132     ub = upperBound;
133     time = timestep;
134     }
135 jsr166 1.2
136 dl 1.1 public void compute() {
137     if (ub - lb > leafmaxcol) {
138     int mid = (lb + ub) >>> 1;
139     Compute left = new Compute(lb, mid, time);
140     left.fork();
141     new Compute(mid, ub, time).compute();
142     left.join();
143     }
144     else if (time == 0) // if first pass, initialize cells
145     init();
146     else if (time %2 != 0) // alternate new/old
147     compstripe(newm, oldm);
148     else
149     compstripe(oldm, newm);
150     }
151    
152    
153 jsr166 1.4 /** Updates all cells. */
154 dl 1.1 final void compstripe(double[][] newMat, double[][] oldMat) {
155    
156     // manually mangled to reduce array indexing
157    
158     final int llb = (lb == 0) ? 1 : lb;
159     final int lub = (ub == nx) ? nx - 1 : ub;
160    
161     double[] west;
162     double[] row = oldMat[llb-1];
163     double[] east = oldMat[llb];
164    
165     for (int a = llb; a < lub; a++) {
166    
167     west = row;
168     row = east;
169     east = oldMat[a+1];
170    
171     double prev;
172     double cell = row[0];
173     double next = row[1];
174    
175     double[] nv = newMat[a];
176    
177     for (int b = 1; b < ny-1; b++) {
178    
179     prev = cell;
180     cell = next;
181     double twoc = 2 * cell;
182     next = row[b+1];
183    
184     nv[b] = cell
185     + dtdysq * (prev - twoc + next)
186     + dtdxsq * (east[b] - twoc + west[b]);
187     }
188     }
189    
190 jsr166 1.7 edges(newMat, llb, lub, tu + time * dt);
191 dl 1.1 }
192    
193    
194     // the original version from cilk
195     final void origcompstripe(double[][] newMat, double[][] oldMat) {
196 jsr166 1.2
197 dl 1.1 final int llb = (lb == 0) ? 1 : lb;
198     final int lub = (ub == nx) ? nx - 1 : ub;
199    
200     for (int a = llb; a < lub; a++) {
201     for (int b = 1; b < ny-1; b++) {
202     double cell = oldMat[a][b];
203     double twoc = 2 * cell;
204     newMat[a][b] = cell
205     + dtdxsq * (oldMat[a+1][b] - twoc + oldMat[a-1][b])
206     + dtdysq * (oldMat[a][b+1] - twoc + oldMat[a][b-1]);
207     }
208     }
209    
210     edges(newMat, llb, lub, tu + time * dt);
211     }
212    
213    
214 jsr166 1.4 /** Initializes all cells. */
215 dl 1.1 final void init() {
216     final int llb = (lb == 0) ? 1 : lb;
217     final int lub = (ub == nx) ? nx - 1 : ub;
218    
219 jsr166 1.3 for (int a = llb; a < lub; a++) { /* inner nodes */
220 dl 1.1 double[] ov = oldm[a];
221     double x = xu + a * dx;
222     double y = yu;
223     for (int b = 1; b < ny-1; b++) {
224     y += dy;
225     ov[b] = f(x, y);
226     }
227     }
228    
229     edges(oldm, llb, lub, 0);
230     }
231    
232 jsr166 1.4 /** Fills in edges with boundary values. */
233 dl 1.1 final void edges(double [][] m, int llb, int lub, double t) {
234    
235     for (int a = llb; a < lub; a++) {
236     double[] v = m[a];
237     double x = xu + a * dx;
238     v[0] = randa(x, t);
239     v[ny-1] = randb(x, t);
240     }
241    
242     if (lb == 0) {
243     double[] v = m[0];
244     double y = yu;
245     for (int b = 0; b < ny; b++) {
246     y += dy;
247     v[b] = randc(y, t);
248     }
249     }
250    
251     if (ub == nx) {
252 jsr166 1.2 double[] v = m[nx - 1];
253 dl 1.1 double y = yu;
254     for (int b = 0; b < ny; b++) {
255     y += dy;
256     v[b] = randd(y, t);
257     }
258     }
259     }
260     }
261     }