/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ import java.util.concurrent.*; /** * Sample program using Gaussian Quadrature for numerical integration. * This version uses a simplified hardwired function. Inspired by a * * Filaments demo program. */ public final class Integrate { static final double errorTolerance = 1.0e-12; /** for time conversion */ static final long NPS = (1000L * 1000 * 1000); static final int SERIAL = -1; static final int DYNAMIC = 0; static final int FORK = 1; static int forkPolicy = DYNAMIC; static String forkArg = "dynamic"; /** the function to integrate */ static double computeFunction(double x) { return (x * x + 1.0) * x; } static final double start = 0.0; static final double end = 1536.0; /** * The number of recursive calls for * integrate from start to end. * (Empirically determined) */ static final int calls = 263479047; public static void main(String[] args) throws Exception { int procs = 0; try { if (args.length > 0) procs = Integer.parseInt(args[0]); if (args.length > 1) { forkArg = args[1]; if (forkArg.startsWith("s")) forkPolicy = SERIAL; else if (forkArg.startsWith("f")) forkPolicy = FORK; } } catch (Exception e) { System.out.println("Usage: java Integrate3 threads "); return; } oneTest(procs); oneTest(procs); oneTest(procs); } static void oneTest(int procs) { ForkJoinPool g = (procs == 0) ? new ForkJoinPool() : new ForkJoinPool(procs); System.out.println("Number of procs=" + g.getParallelism()); System.out.println("Integrating from " + start + " to " + end + " forkPolicy = " + forkArg); long lastTime = System.nanoTime(); for (int i = 0; i < 20; ++i) { double a; if (forkPolicy == SERIAL) a = SQuad.computeArea(g, start, end); else if (forkPolicy == FORK) a = FQuad.computeArea(g, start, end); else a = DQuad.computeArea(g, start, end); long now = System.nanoTime(); double s = ((double)(now - lastTime))/NPS; lastTime = now; System.out.printf("Calls/sec: %12d", (long) (calls / s)); System.out.printf(" Time: %7.3f", s); System.out.printf(" Threads: %5d", g.getPoolSize()); // System.out.printf(" Area: %12.1f", a); System.out.println(); } System.out.println(g); g.shutdown(); } // Sequential version static final class SQuad extends RecursiveAction { static double computeArea(ForkJoinPool pool, double l, double r) { SQuad q = new SQuad(l, r, 0); pool.invoke(q); return q.area; } final double left; // lower bound final double right; // upper bound double area; SQuad(double l, double r, double a) { this.left = l; this.right = r; this.area = a; } public final void compute() { double l = left; double r = right; area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area); } static final double recEval(double l, double r, double fl, double fr, double a) { double h = (r - l) * 0.5; double c = l + h; double fc = (c * c + 1.0) * c; double hh = h * 0.5; double al = (fl + fc) * hh; double ar = (fr + fc) * hh; double alr = al + ar; if (Math.abs(alr - a) <= errorTolerance) return alr; else return recEval(c, r, fc, fr, ar) + recEval(l, c, fl, fc, al); } } //.................................... // ForkJoin version static final class FQuad extends RecursiveAction { static double computeArea(ForkJoinPool pool, double l, double r) { FQuad q = new FQuad(l, r, 0); pool.invoke(q); return q.area; } final double left; // lower bound final double right; // upper bound double area; FQuad(double l, double r, double a) { this.left = l; this.right = r; this.area = a; } public final void compute() { double l = left; double r = right; area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area); } static final double recEval(double l, double r, double fl, double fr, double a) { double h = (r - l) * 0.5; double c = l + h; double fc = (c * c + 1.0) * c; double hh = h * 0.5; double al = (fl + fc) * hh; double ar = (fr + fc) * hh; double alr = al + ar; if (Math.abs(alr - a) <= errorTolerance) return alr; FQuad q = new FQuad(l, c, al); q.fork(); ar = recEval(c, r, fc, fr, ar); if (!q.tryUnfork()) { q.quietlyJoin(); return ar + q.area; } return ar + recEval(l, c, fl, fc, al); } } // ........................... // Version using on-demand Fork static final class DQuad extends RecursiveAction { static double computeArea(ForkJoinPool pool, double l, double r) { DQuad q = new DQuad(l, r, 0); pool.invoke(q); return q.area; } final double left; // lower bound final double right; // upper bound double area; DQuad(double l, double r, double a) { this.left = l; this.right = r; this.area = a; } public final void compute() { double l = left; double r = right; area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area); } static final double recEval(double l, double r, double fl, double fr, double a) { double h = (r - l) * 0.5; double c = l + h; double fc = (c * c + 1.0) * c; double hh = h * 0.5; double al = (fl + fc) * hh; double ar = (fr + fc) * hh; double alr = al + ar; if (Math.abs(alr - a) <= errorTolerance) return alr; DQuad q = null; if (getSurplusQueuedTaskCount() <= 3) (q = new DQuad(l, c, al)).fork(); ar = recEval(c, r, fc, fr, ar); if (q != null && !q.tryUnfork()) { q.quietlyJoin(); return ar + q.area; } return ar + recEval(l, c, fl, fc, al); } } }