/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/licenses/publicdomain */ import java.util.*; import java.math.*; /** * A micro-benchmark with key types and operation mixes roughly * corresponding to some real programs. * * The main results are a table of approximate nanoseconds per * element-operation (averaged across get, put etc) for each type, * across a range of map sizes. It also includes category "Mixed" * that includes elements of multiple types including those with * identical hash codes. * * The program includes a bunch of microbenchmarking safeguards that * might underestimate typical performance. For example, by using many * different key types and exercising them in warmups it disables most * dynamic type specialization. Some test classes, like Float and * BigDecimal are included not because they are commonly used as keys, * but because they can be problematic for some map implementations. * * By default, it creates and inserts in order dense numerical keys * and searches for keys in scrambled order. Use "r" as second arg to * instead use random numerical values, and "s" as third arg to search * in insertion order. */ public class MapMicroBenchmark { static Class mapClass; static boolean randomSearches = true; static boolean randomKeys = false; // Nanoseconds per run static final long NANOS_PER_JOB = 6L * 1000L*1000L*1000L; static final long NANOS_PER_WARMUP = 100L*1000L*1000L; // map operations per item per iteration -- change if job.work changed static final int OPS_PER_ITER = 11; static final int MIN_ITERS_PER_TEST = 3; static final int MAX_ITERS_PER_TEST = 1000000; // avoid runaway // sizes are at halfway points for HashMap default resizes static final int firstSize = 9; static final int sizeStep = 4; // each size 4X last static final int nsizes = 9; static final int[] sizes = new int[nsizes]; public static void main(String[] args) throws Throwable { if (args.length == 0) { System.out.println("Usage: java MapMicroBenchmark className [r|s]keys [r|s]searches"); return; } mapClass = Class.forName(args[0]); if (args.length > 1) { if (args[1].startsWith("s")) randomKeys = false; else if (args[1].startsWith("r")) randomKeys = true; } if (args.length > 2) { if (args[2].startsWith("s")) randomSearches = false; else if (args[2].startsWith("r")) randomSearches = true; } System.out.print("Class " + mapClass.getName()); if (randomKeys) System.out.print(" random keys"); else System.out.print(" sequential keys"); if (randomSearches) System.out.print(" randomized searches"); else System.out.print(" sequential searches"); System.out.println(); int n = firstSize; for (int i = 0; i < nsizes - 1; ++i) { sizes[i] = n; n *= sizeStep; } sizes[nsizes - 1] = n; int njobs = 9; Object[] os = new Object[n]; Object[] ss = new Object[n]; Object[] is = new Object[n]; Object[] ls = new Object[n]; Object[] fs = new Object[n]; Object[] ds = new Object[n]; Object[] bs = new Object[n]; Object[] es = new Object[n]; Object[] ms = new Object[n]; for (int i = 0; i < n; i++) { os[i] = new Object(); } // To guarantee uniqueness, use xorshift for "random" versions int rnd = 3122688; for (int i = 0; i < n; i++) { rnd = xorshift(rnd); int j = randomKeys? rnd : i; ss[i] = String.valueOf(j); } for (int i = 0; i < n; i++) { rnd = xorshift(rnd); int j = randomKeys? rnd : i; is[i] = Integer.valueOf(j); } for (int i = 0; i < n; i++) { rnd = xorshift(rnd); int j = randomKeys? rnd : i; ls[i] = Long.valueOf((long)j); } for (int i = 0; i < n; i++) { // rnd = xorshift(rnd); // int j = randomKeys? rnd : i; fs[i] = Float.valueOf((float)i); // can't use random for float } for (int i = 0; i < n; i++) { rnd = xorshift(rnd); int j = randomKeys? rnd : i; ds[i] = Double.valueOf((double)j); } for (int i = 0; i < n; i++) { rnd = xorshift(rnd); int j = randomKeys? rnd : i; bs[i] = BigInteger.valueOf(j); } for (int i = 0; i < n; i++) { rnd = xorshift(rnd); int j = randomKeys? rnd : i; es[i] = BigDecimal.valueOf(j); } Job[] jobs = new Job[njobs]; jobs[0] = new Job("Object ", os, Object.class); jobs[1] = new Job("String ", ss, String.class); jobs[2] = new Job("Integer ", is, Integer.class); jobs[3] = new Job("Long ", ls, Long.class); jobs[4] = new Job("Float ", fs, Float.class); jobs[5] = new Job("Double ", ds, Double.class); jobs[6] = new Job("BigInteger", bs, BigInteger.class); jobs[7] = new Job("BigDecimal", es, BigDecimal.class); for (int i = 0; i < n; i +=2) { rnd = xorshift(rnd); int j = (rnd & 7); // change if njobs changes ms[i] = jobs[j].items[i]; j = (j + 1) & 7; ms[i+1] = jobs[j].items[i]; } jobs[8] = new Job("Mixed ", ms, Object.class); warmup1(jobs[8]); warmup2(jobs); warmup1(jobs[8]); warmup3(jobs); warmup1(jobs[8]); Thread.sleep(500); time(jobs); } static void runWork(Job[] jobs, int minIters, int maxIters, long timeLimit) throws Throwable { for (int k = 0; k < nsizes; ++k) { int len = sizes[k]; for (int i = 0; i < jobs.length; i++) { Thread.sleep(50); jobs[i].nanos[k] = jobs[i].work(len, minIters, maxIters, timeLimit); System.out.print("."); } } System.out.println(); } // First warmup -- run only mixed job to discourage type specialization static void warmup1(Job job) throws Throwable { for (int k = 0; k < nsizes; ++k) job.work(sizes[k], 1, 1, 0); } // Second, run each once static void warmup2(Job[] jobs) throws Throwable { System.out.print("warm up"); runWork(jobs, 1, 1, 0); long ck = jobs[0].checkSum; for (int i = 1; i < jobs.length - 1; i++) { if (jobs[i].checkSum != ck) throw new Error("CheckSum"); } } // Third: short timed runs static void warmup3(Job[] jobs) throws Throwable { System.out.print("warm up"); runWork(jobs, 1, MAX_ITERS_PER_TEST, NANOS_PER_WARMUP); } static void time(Job[] jobs) throws Throwable { System.out.print("running"); runWork(jobs, MIN_ITERS_PER_TEST, MAX_ITERS_PER_TEST, NANOS_PER_JOB); System.out.print("Type/Size:"); for (int k = 0; k < nsizes; ++k) System.out.printf("%7d", sizes[k]); System.out.println(); long[] aves = new long[nsizes]; int njobs = jobs.length; for (int i = 0; i < njobs; i++) { System.out.print(jobs[i].name); for (int k = 0; k < nsizes; ++k) { long nanos = jobs[i].nanos[k]; System.out.printf("%7d", nanos); aves[k] += nanos; } System.out.println(); } System.out.println(); System.out.print("average "); for (int k = 0; k < nsizes; ++k) System.out.printf("%7d", (aves[k] / njobs)); System.out.println("\n"); } static final class Job { final String name; final Class elementClass; long[] nanos = new long[nsizes]; final Object[] items; Object[] searches; volatile long checkSum; volatile int lastSum; Job(String name, Object[] items, Class elementClass) { this.name = name; this.items = items; this.elementClass = elementClass; if (randomSearches) { scramble(items); this.searches = new Object[items.length]; System.arraycopy(items, 0, searches, 0, items.length); scramble(searches); } else this.searches = items; } public long work(int len, int minIters, int maxIters, long timeLimit) { Map m; try { m = (Map)mapClass.newInstance(); } catch(Exception e) { throw new RuntimeException("Can't instantiate " + mapClass + ": " + e); } Object[] ins = items; Object[] keys = searches; if (ins.length < len || keys.length < len) throw new Error(name); int half = len / 2; int quarter = half / 2; int sum = lastSum; long startTime = System.nanoTime(); long elapsed; int j = 0; for (;;) { for (int i = 0; i < half; ++i) { Object x = ins[i]; if (m.put(x, x) == null) ++sum; } checkSum += sum ^ (sum << 1); // help avoid loop merging sum += len - half; for (int i = 0; i < len; ++i) { Object x = keys[i]; Object v = m.get(x); if (elementClass.isInstance(v)) // touch v ++sum; } checkSum += sum ^ (sum << 2); for (int i = half; i < len; ++i) { Object x = ins[i]; if (m.put(x, x) == null) ++sum; } checkSum += sum ^ (sum << 3); for (Object e : m.keySet()) { if (elementClass.isInstance(e)) ++sum; } checkSum += sum ^ (sum << 4); for (Object e : m.values()) { if (elementClass.isInstance(e)) ++sum; } checkSum += sum ^ (sum << 5); for (int i = len - 1; i >= 0; --i) { Object x = keys[i]; Object v = m.get(x); if (elementClass.isInstance(v)) ++sum; } checkSum += sum ^ (sum << 6); for (int i = 0; i < len; ++i) { Object x = ins[i]; Object v = m.get(x); if (elementClass.isInstance(v)) ++sum; } checkSum += sum ^ (sum << 7); for (int i = 0; i < len; ++i) { Object x = keys[i]; Object v = ins[i]; if (m.put(x, v) == x) ++sum; } checkSum += sum ^ (sum << 8); for (int i = 0; i < len; ++i) { Object x = keys[i]; Object v = ins[i]; if (v == m.get(x)) ++sum; } checkSum += sum ^ (sum << 9); for (int i = len - 1; i >= 0; --i) { Object x = ins[i]; Object v = m.get(x); if (elementClass.isInstance(v)) ++sum; } checkSum += sum ^ (sum << 10); for (int i = len - 1; i >= 0; --i) { Object x = keys[i]; Object v = ins[i]; if (v == m.get(x)) ++sum; } checkSum += sum ^ (sum << 11); for (int i = 0; i < quarter; ++i) { Object x = keys[i]; if (m.remove(x) != null) ++sum; } m.clear(); sum += len - quarter; checkSum += sum ^ (sum << 12); elapsed = System.nanoTime() - startTime; ++j; if (j >= minIters && (j >= maxIters || elapsed >= timeLimit)) break; } long ops = ((long)j) * len * OPS_PER_ITER; if (sum != lastSum + (int)ops) throw new Error(name); lastSum = sum; return elapsed / ops; } } static final int xorshift(int seed) { seed ^= seed << 1; seed ^= seed >>> 3; seed ^= seed << 10; return seed; } static final Random rng = new Random(3122688); // Shuffle the subarrays for each size. This doesn't fully // randomize, but the remaining partial locality is arguably a bit // more realistic static void scramble(Object[] a) { for (int k = 0; k < sizes.length; ++k) { int origin = k == 0? 0 : sizes[k-1]; for (int i = sizes[k]; i > origin + 1; i--) { Object t = a[i-1]; int r = rng.nextInt(i - origin) + origin; a[i-1] = a[r]; a[r] = t; } } } // plain array shuffle static void shuffle(Object[] a, int size) { for (int i= size; i>1; i--) { Object t = a[i-1]; int r = rng.nextInt(i); a[i-1] = a[r]; a[r] = t; } } }