ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/test/loops/MatrixMultiply.java
Revision: 1.9
Committed: Sat Sep 12 19:39:26 2015 UTC (8 years, 7 months ago) by dl
Branch: MAIN
CVS Tags: HEAD
Changes since 1.8: +9 -6 lines
Log Message:
Use commonPool

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 //import jsr166y.*;
8 import java.util.concurrent.*;
9
10 /**
11 * Divide and Conquer matrix multiply demo
12 */
13 public class MatrixMultiply {
14
15 /** for time conversion */
16 static final long NPS = (1000L * 1000 * 1000);
17
18 static final int DEFAULT_GRANULARITY = 16; // 32;
19
20 /**
21 * The quadrant size at which to stop recursing down
22 * and instead directly multiply the matrices.
23 * Must be a power of two. Minimum value is 2.
24 */
25 static int granularity = DEFAULT_GRANULARITY;
26
27 public static void main(String[] args) throws Exception {
28
29 final String usage = "Usage: java MatrixMultiply <threads> <matrix size (must be a power of two)> [<granularity>] \n Size and granularity must be powers of two.\n For example, try java MatrixMultiply 2 512 16";
30
31 int procs = 0;
32 int n = 2048;
33 int runs = 32;
34 try {
35 if (args.length > 0)
36 procs = Integer.parseInt(args[0]);
37 if (args.length > 1)
38 n = Integer.parseInt(args[1]);
39 if (args.length > 2)
40 granularity = Integer.parseInt(args[2]);
41 if (args.length > 3)
42 runs = Integer.parseInt(args[2]);
43 }
44
45 catch (Exception e) {
46 System.out.println(usage);
47 return;
48 }
49
50 if ( ((n & (n - 1)) != 0) ||
51 ((granularity & (granularity - 1)) != 0) ||
52 granularity < 2) {
53 System.out.println(usage);
54 return;
55 }
56
57 ForkJoinPool pool = (procs == 0) ? ForkJoinPool.commonPool() :
58 new ForkJoinPool(procs);
59 System.out.println("procs: " + pool.getParallelism() +
60 " n: " + n + " granularity: " + granularity +
61 " runs: " + runs);
62
63 float[][] a = new float[n][n];
64 float[][] b = new float[n][n];
65 float[][] c = new float[n][n];
66
67 for (int i = 0; i < runs; ++i) {
68 init(a, b, n);
69 long start = System.nanoTime();
70 new Multiplier(a, 0, 0, b, 0, 0, c, 0, 0, n).invoke();
71 long time = System.nanoTime() - start;
72 double secs = ((double)time) / NPS;
73 Thread.sleep(100);
74 System.out.printf("Time: %7.3f ", secs);
75 if ((i & 3) == 3) System.out.println();
76 // check(c, n);
77 }
78 System.out.println(pool.toString());
79 if (pool != ForkJoinPool.commonPool())
80 pool.shutdown();
81 Thread.sleep(100);
82 }
83
84 // To simplify checking, fill with all 1's. Answer should be all n's.
85 static void init(float[][] a, float[][] b, int n) {
86 for (int i = 0; i < n; ++i) {
87 for (int j = 0; j < n; ++j) {
88 a[i][j] = 1.0F;
89 b[i][j] = 1.0F;
90 }
91 }
92 }
93
94 static void check(float[][] c, int n) {
95 for (int i = 0; i < n; i++ ) {
96 for (int j = 0; j < n; j++ ) {
97 if (c[i][j] != n) {
98 throw new Error("Check Failed at [" + i +"]["+j+"]: " + c[i][j]);
99 }
100 }
101 }
102 }
103
104 /**
105 * Multiply matrices AxB by dividing into quadrants, using algorithm:
106 * <pre>
107 * A x B
108 *
109 * A11 | A12 B11 | B12 A11*B11 | A11*B12 A12*B21 | A12*B22
110 * |----+----| x |----+----| = |--------+--------| + |---------+-------|
111 * A21 | A22 B21 | B21 A21*B11 | A21*B21 A22*B21 | A22*B22
112 * </pre>
113 */
114 static class Multiplier extends RecursiveAction {
115 final float[][] A; // Matrix A
116 final int aRow; // first row of current quadrant of A
117 final int aCol; // first column of current quadrant of A
118
119 final float[][] B; // Similarly for B
120 final int bRow;
121 final int bCol;
122
123 final float[][] C; // Similarly for result matrix C
124 final int cRow;
125 final int cCol;
126
127 final int size; // number of elements in current quadrant
128
129 Multiplier(float[][] A, int aRow, int aCol,
130 float[][] B, int bRow, int bCol,
131 float[][] C, int cRow, int cCol,
132 int size) {
133 this.A = A; this.aRow = aRow; this.aCol = aCol;
134 this.B = B; this.bRow = bRow; this.bCol = bCol;
135 this.C = C; this.cRow = cRow; this.cCol = cCol;
136 this.size = size;
137 }
138
139 public void compute() {
140
141 if (size <= granularity) {
142 multiplyStride2();
143 }
144
145 else {
146 int h = size / 2;
147
148 invokeAll(new Seq2[] {
149 seq(new Multiplier(A, aRow, aCol, // A11
150 B, bRow, bCol, // B11
151 C, cRow, cCol, // C11
152 h),
153 new Multiplier(A, aRow, aCol+h, // A12
154 B, bRow+h, bCol, // B21
155 C, cRow, cCol, // C11
156 h)),
157
158 seq(new Multiplier(A, aRow, aCol, // A11
159 B, bRow, bCol+h, // B12
160 C, cRow, cCol+h, // C12
161 h),
162 new Multiplier(A, aRow, aCol+h, // A12
163 B, bRow+h, bCol+h, // B22
164 C, cRow, cCol+h, // C12
165 h)),
166
167 seq(new Multiplier(A, aRow+h, aCol, // A21
168 B, bRow, bCol, // B11
169 C, cRow+h, cCol, // C21
170 h),
171 new Multiplier(A, aRow+h, aCol+h, // A22
172 B, bRow+h, bCol, // B21
173 C, cRow+h, cCol, // C21
174 h)),
175
176 seq(new Multiplier(A, aRow+h, aCol, // A21
177 B, bRow, bCol+h, // B12
178 C, cRow+h, cCol+h, // C22
179 h),
180 new Multiplier(A, aRow+h, aCol+h, // A22
181 B, bRow+h, bCol+h, // B22
182 C, cRow+h, cCol+h, // C22
183 h))
184 });
185 }
186 }
187
188 /**
189 * Version of matrix multiplication that steps 2 rows and columns
190 * at a time. Adapted from Cilk demos.
191 * Note that the results are added into C, not just set into C.
192 * This works well here because Java array elements
193 * are created with all zero values.
194 */
195 void multiplyStride2() {
196 for (int j = 0; j < size; j+=2) {
197 for (int i = 0; i < size; i +=2) {
198
199 float[] a0 = A[aRow+i];
200 float[] a1 = A[aRow+i+1];
201
202 float s00 = 0.0F;
203 float s01 = 0.0F;
204 float s10 = 0.0F;
205 float s11 = 0.0F;
206
207 for (int k = 0; k < size; k+=2) {
208
209 float[] b0 = B[bRow+k];
210
211 s00 += a0[aCol+k] * b0[bCol+j];
212 s10 += a1[aCol+k] * b0[bCol+j];
213 s01 += a0[aCol+k] * b0[bCol+j+1];
214 s11 += a1[aCol+k] * b0[bCol+j+1];
215
216 float[] b1 = B[bRow+k+1];
217
218 s00 += a0[aCol+k+1] * b1[bCol+j];
219 s10 += a1[aCol+k+1] * b1[bCol+j];
220 s01 += a0[aCol+k+1] * b1[bCol+j+1];
221 s11 += a1[aCol+k+1] * b1[bCol+j+1];
222 }
223
224 C[cRow+i] [cCol+j] += s00;
225 C[cRow+i] [cCol+j+1] += s01;
226 C[cRow+i+1][cCol+j] += s10;
227 C[cRow+i+1][cCol+j+1] += s11;
228 }
229 }
230 }
231
232 }
233
234 static Seq2 seq(RecursiveAction task1,
235 RecursiveAction task2) {
236 return new Seq2(task1, task2);
237 }
238
239 static final class Seq2 extends RecursiveAction {
240 final RecursiveAction fst;
241 final RecursiveAction snd;
242 public Seq2(RecursiveAction task1, RecursiveAction task2) {
243 fst = task1;
244 snd = task2;
245 }
246 public void compute() {
247 fst.invoke();
248 snd.invoke();
249 }
250 }
251 }